
ENE4014: Programming Languages

Lecture 4 — Recursive and Higher-Order Programming

Woosuk Lee
2024 Spring

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 1 / 25

Why Recursive and Higher-Order Programming?

Recursion and higher-order functions are essential in programming:

Recursion provides a powerful problem-solving method.

Higher-order functions provide a powerful means for abstractions (i.e.
the capability of combining simple ideas to form more complex ideas).

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 2 / 25

The Power of Recursive Thinking

Quiz) Describe an algorithm to draw the following pattern:

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 3 / 25

Recursive Problem-Solving Strategy

If the problem is sufficiently small, directly solve the problem.

Otherwise,
1 Decompose the problem to smaller problems with the same structure

as original.
2 Solve each of those smaller problems.
3 Combine the results to get the overall solution.

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 4 / 25

Example: list length

If the list is empty, the length is 0.

Otherwise,
1 The list can be split into its head and tail.
2 Compute the length of the tail.
3 The overall solution is the length of the tail plus one.

length [];;

- : int = 0

length [1;2;3];;

- : int = 3

let rec length l =

match l with

| [] -> 0

| hd::tl -> 1 + length tl

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 5 / 25

Exercise 1: append

Write a function that appends two lists:

append [1; 2; 3] [4; 5; 6; 7];;

- : int list = [1; 2; 3; 4; 5; 6; 7]

append [2; 4; 6] [8; 10];;

- : int list = [2; 4; 6; 8; 10]

let rec append l1 l2 =

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 6 / 25

Exercise 2: reverse

Write a function that reverses a given list:

val reverse : ’a list -> ’a list = <fun>

reverse [1; 2; 3];;

- : int list = [3; 2; 1]

reverse ["C"; "Java"; "OCaml"];;

- : string list = ["OCaml"; "Java"; "C"]

let rec reverse l =

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 7 / 25

Exercise 3: nth-element

Write a function that computes nth element of a list:

nth [1;2;3] 0;;

- : int = 1

nth [1;2;3] 1;;

- : int = 2

nth [1;2;3] 2;;

- : int = 3

nth [1;2;3] 3;;

Exception: Failure "list is too short".

let rec nth l n =

match l with

| [] -> raise (Failure "list is too short")

| hd::tl -> (* ... *)

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 8 / 25

Exercise 4: remove-first

Write a function that removes the first occurrence of an element from a
list:

remove_first 2 [1; 2; 3];;

- : int list = [1; 3]

remove_first 2 [1; 2; 3; 2];;

- : int list = [1; 3; 2]

remove_first 4 [1;2;3];;

- : int list = [1; 2; 3]

remove_first [1; 2] [[1; 2; 3]; [1; 2]; [2; 3]];;

- : int list list = [[1; 2; 3]; [2; 3]]

let rec remove_first a l =

match l with

| [] -> []

| hd::tl -> (* ... *)

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 9 / 25

Exercise 5: insert

Write a function that inserts an element to a sorted list:

insert 2 [1;3];;

- : int list = [1; 2; 3]

insert 1 [2;3];;

- : int list = [1; 2; 3]

insert 3 [1;2];;

- : int list = [1; 2; 3]

insert 4 [];;

- : int list = [4]

let rec insert a l =

match l with

| [] -> [a]

| hd::tl -> (* ... *)

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 10 / 25

Exercise 6: insertion sort

Write a function that performs insertion sort:

let rec sort l =

match l with

| [] -> []

| hd::tl -> insert hd (sort tl)

cf) Compare with “C-style” non-recursive version:

for (c = 1 ; c <= n - 1; c++) {

d = c;

while (d > 0 && array[d] < array[d-1]) {

t = array[d];

array[d] = array[d-1];

array[d-1] = t;

d--;

}

}

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 11 / 25

cf) Imperative vs. Functional Programming

Imperative programming focuses on describing how to accomplish the
given task:

int factorial (int n) {

int i; int r = 1;

for (i = 0; i < n; i++)

r = r * i;

return r;

}

Imperative languages encourage to use statements and loops.

Functional programming focuses on describing what the program
must accomplish:

let rec factorial n =

if n = 0 then 1 else n * factorial (n-1)

Functional languages encourage to use expressions and recursion.

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 12 / 25

Is Recursion Expensive?

In C and Java, we are encouraged to avoid recursion because function
calls consume additional memory.

void f() { f(); } /* stack overflow */

This is not true in functional languages. The same program in ML
iterates forever:

let rec f () = f ()

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 13 / 25

Tail-Recursive Functions

More precisely, tail-recursive functions are not expensive in ML. A recursive
call is a tail call if there is nothing to do after the function returns.

let rec last l =

match l with

| [a] -> a

| _::tl -> last tl

let rec factorial a =

if a = 1 then 1

else a * factorial (a - 1)

Languages like ML, Scheme, Scala, and Haskell do tail-call optimization,
so that tail-recursive calls do not consume additional amount of memory.

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 14 / 25

cf) Transforming to Tail-Recursive Functions

Non-tail-recursive factorial:

let rec factorial a =

if a = 1 then 1

else a * factorial (a - 1)

Tail-recursive version:

let rec fact product counter maxcounter =

if counter > maxcounter then product

else fact (product * counter) (counter + 1) maxcounter

let factorial n = fact 1 1 n

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 15 / 25

Higher-Order Functions

Higher-order functions are functions that manipulate procedures; they
take other functions or return functions as results.

Higher-order functions provide a powerful tool for building
abstractions and allow code reuse.

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 16 / 25

Abstractions

A good programming language provides powerful abstraction
mechanisms (i.e. the means for combining simple ideas to form more
complex ideas). E.g.,

I variables: the means for using names to refer to values
I functions: the means for using names to refer to compound operations

For example, suppose we write a program that computes
23 + 33 + 43.

I Without functions, we have to work at the low-level:

2*2*2 + 3*3*3 + 4*4*4
I Functions allow use to express the concept of cubing and write a

high-level program.

let cube n = n * n * n

in cube 2 + cube 3 + cube 4

Every programming language provides variables and functions.

Not all programming languages provide mechanisms for abstracting
same programming patterns.

Higher-order functions serve as powerful mechanisms for this.

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 17 / 25

Example 1: map

Three similar functions:

let rec inc_all l =

match l with

| [] -> []

| hd::tl -> (hd+1)::(inc_all tl)

let rec square_all l =

match l with

| [] -> []

| hd::tl -> (hd*hd)::(square_all tl)

let rec cube_all l =

match l with

| [] -> []

| hd::tl -> (hd*hd*hd)::(cube_all tl)

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 18 / 25

Example 1: map

The code pattern can be captured by the higher-order function map:

let rec map f l =

match l with

| [] -> []

| hd::tl -> (f hd)::(map f tl)

With map, the functions can be defined as follows:

let inc x = x + 1

let inc_all l = map inc l

let square x = x * x

let square_all l = map square l

let cube x = x * x * x

let cube_all l = map cube l

Or, using nameless functions:

let inc_all l = map (fun x -> x + 1) l

let square_all l = map (fun x -> x * x) l

let cub_all l = map (fun x -> x * x * x) l

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 19 / 25

Example 2: fold

Two similar functions:

let rec sum l =

match l with

| [] -> 0

| hd::tl -> hd + (sum tl)

let rec prod l =

match l with

| [] -> 1

| hd::tl -> hd * (prod tl)

sum [1; 2; 3; 4];;

- : int = 10

prod [1; 2; 3; 4];;

- : int = 24

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 20 / 25

Example 2: fold

The code pattern can be captured by the higher-oder function fold:

let rec fold f l a =

match l with

| [] -> a

| hd::tl -> f hd (fold f tl a)

let sum lst = fold (fun x y -> x + y) lst 0

let prod lst = fold (fun x y -> x * y) lst 1

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 21 / 25

Exercises

Re-write the following functions in one-line using fold:

let rec length l =

match l with

| [] -> 0

| hd::tl -> 1 + length tl

let rec reverse l =

match l with

| [] -> []

| hd::tl -> (reverse tl) @ [hd]

let rec is_all_pos l =

match l with

| [] -> true

| hd::tl -> (hd > 0) && (is_all_pos tl)

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 22 / 25

Functions as Returned Values

Functions can be returned from the other functions. For example, let f
and g be two one-argument functions. The composition of f after g is
defined to be the function x 7→ f(g(x)).
In OCaml:

let compose f g = fun x -> f(g(x))

What is the value of the expression?

((compose square inc) 6)

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 23 / 25

Functions as Returned Values

Maps can be created by using function composition.

let empty_map = fun x -> raise (Failure "not exist!") ;;

val empty_map : ’a -> ’b = <fun>

let add_map (k,v) map =

fun x -> if (k = x) then v else (map x) ;;

val add_map : ’a * ’b -> (’a -> ’b) -> ’a -> ’b = <fun>

let m = (compose (add_map (1, "one")) (add_map (2, "two")))

empty_map ;;

val m : int -> string = <fun>

m 1 ;;

- : string = "one"

m 2 ;;

- : string = "two"

m 3 ;;

Exception: Failure "not exist!".

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 24 / 25

Summary

Two mechanisms play key roles for writing concise and readable code in
programming:

Recursion provides a powerful problem-solving strategy.

Higher-order functions provide a powerful means for abstractions.

Woosuk Lee ENE4014 2024 Spring, Lecture 4 March 2, 2024 25 / 25

