
ENE4014: Programming Languages

Lecture 17 — Lambda Calculus

(Origin of Programming Languages)

Woosuk Lee
2024 Spring

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 1 / 38

Questions

Programming languages look very different
I C, C++, Java, OCaml, Haskell, Scala, JavaScript, etc

Are they different fundamentally?

Is there core mechanism underlying all programming languages?

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 2 / 38

Syntactic Sugar

Syntactic sugar is syntax that makes a language “sweet”: it does not
add expressiveness but makes programs easier to read and write.

For example, we can “desugar” the let expression:

let x = E1 in E2
desugar
=⇒ (proc x E2) E1

Exercise) Desugar the program:

let x = 1 in

let y = 2 in

x + y

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 3 / 38

Syntactic Sugar

Q) Identify all syntactic sugars of the language:

E → n
| x
| E + E
| E − E
| iszero E
| if E then E else E
| let x = E in E
| letrec f(x) = E in E
| proc x E
| E E

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 4 / 38

Lambda Calculus (λ-Calculus)

By removing all syntactic sugars from the language, we obtain a
minimal language, called lambda calculus:

e → x variables
| λx.e abstraction
| e e application

Programming language = Lambda calculus + Syntactic sugars

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 5 / 38

Origins of Programming Languages and Computer

In 1935, Church developed λ-calculus as a formal system for mathematical
logic and argued that any computable function on natural numbers can be
computed with λ-calculus (the model of programming languages).

In 1936, Turing independently developed Turing machine and argued that
any computable function on natural numbers can be computed with the
machine (the model of computers)1.

Turing machine and lambda calculus appeared as byproducts of a

mathematicians dream.
1http://ropas.snu.ac.kr/~kwang/4190.310/15/book-ch2.pdf (in Korean)

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 6 / 38

http://ropas.snu.ac.kr/~kwang/4190.310/15/book-ch2.pdf

What Mathematicians Dreamed About

Hillberts Entscheidungsproblem (1928 @ICM):

“Is there an algorithm to decide whether a given first-order statement
is provable from the axioms using the inference rules? ”

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 7 / 38

cf) Peano Arithmetic

Vocabulary:
Σ = {0, 1,+, ·,=}

Axioms:

∀x. ¬(x+ 1 = 0)

∀x, y. x+ 1 = y + 1 =⇒ x = y

∀x. x+ 0 = x

∀x, y. x+ (y + 1) = (x+ y) + 1

∀x. x · 0 = 0

∀x, y. x · (y + 1) = x · y + x
...

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 8 / 38

cf) Peano Arithmetic

Theorem (Fermats Last Theorem)

∀x, y, z, n. x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ n > 2 =⇒ xn + yn 6= zn

Proposed by Fermat in 1637.

Completely proved by Wiles in 1995.

Can we automate the proof search? (Hillberts problem)

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 9 / 38

Godels Incompleteness Theorems (1931)

A complete and consistent set of axioms for all mathematics is impossible.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 10 / 38

Direct Proofs by Turing and Church

In 1936, Alonzo Church and Alan Turing directly showed that a general
solution to the decision problem is impossible.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 11 / 38

Overview of Turing Machines (Turings Definition of Computation)

Examples:

A machine to write the sequence 001011011101111011111 . . .

A machine to add 2 and 3: given a tape “*11*111*”, writes
“*11*111*11111*”.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 12 / 38

Overview of Turing Machines

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 13 / 38

Universal Turing Machine

The culmination of Turings work.

UTM is a Turing machine that can simulate an arbitrary Turing machine
on an arbitrary input.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 14 / 38

Turing’s Proof

Turing reduced the halting problem for Turing machines to the
decision problem.

H: the Turing machine that solves the halting problem

A: the Turing machine that solves the decision problem

A =⇒ H

H is logically impossible.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 15 / 38

Church’s Proof

Church proved that there is no function which decides for two given
lambda calculus expressions whether they are equivalent or not.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 16 / 38

Church-Turing Thesis

A surprising fact is that the classes of λ-calculus and Turing machines
can compute coincide even though they were developed independently.

Church and Turing proved that the classes of computable functions
defined by λ-calculus and Turing machine are equivalent.

In other words, Turing machine and lambda calculus are equally
powerful.

A function is λ-computable if and only if Turing computable.

This equivalence has led mathematicians and computer scientists to
believe that these models are “universal”: A function is computable if
and only if λ-computable if and only if Turing computable.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 17 / 38

Impact of λ-Calculus

λ-calculus had immense impacts on programming languages.

It has been the core of functional programming languages (e.g., Lisp,
ML, Haskell, Scala, etc).

Lambdas in other languages:
I Java8

(int n, int m) -> n + m

I C++11
[](int x, int y) { return x + y; }

I Python
(lambda x, y: x + y)

I JavaScript
function (a, b) { return a + b }

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 18 / 38

Syntax of Lambda Calculus

e → x variables
| λx.e abstraction
| e e application

Examples:

x y z
λx.x λx.y λx.λy.x

x y (λx.x) z x λy.z ((λx.x) λx.x)

Conventions when writing λ-expressions:
1 Application associates to the left, e.g., s t u = (s t) u
2 The body of an abstraction extends as far to the right as possible, e.g.,
λx.λy.x y x = λx.(λy.((x y) x))

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 19 / 38

Bound and Free Variables

An occurrence of variable x is said to be bound when it occurs inside
λx, otherwise said to be free.

I λy.(x y)
I λx.x
I λz.λx.λx.(y z)
I (λx.x) x

Expressions without free variables is said to be closed expressions or
combinators.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 20 / 38

Evaluation

To evaluate λ-expression e,

1 Find a sub-expression of the form:

(λx.e1) e2

Expressions of this form are called “redex” (reducible expression).

2 Rewrite the expression by substituting the e2 for every free
occurrence of x in e1:

(λx.e1) e2 → [x 7→ e2]e1

This rewriting is called β-reduction

Repeat the above two steps until there are no redexes.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 21 / 38

Evaluation

λx.x

(λx.x) y

(λx.x y)

(λx.x y) z

(λx.(λy.x)) z

(λx.(λx.x)) z

(λx.(λy.x)) y

(λx.(λy.x y)) (λx.x) z

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 22 / 38

Substitution

The definition of [x 7→ e1]e2:

[x 7→ e1]x = e1
[x 7→ e1]y = y

[x 7→ e1](λy.e2) = λz.[x 7→ e1]([y 7→ z]e2) (new z)
[x 7→ e1](e2 e3) = ([x 7→ e1]e2 [x 7→ e1]e3)

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 23 / 38

Evaluation Strategy

In a lambda expression, multiple redexes may exist. Which redex to
reduce next?

λx.x (λx.x (λz.(λx.x) z)) = id (id (λz.id z))

redexes:
id (id (λz.id z))

id (id (λz.id z))

id (id (λz.id z))

Evaluation strategies:
I Normal order
I Call-by-name
I Call-by-value

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 24 / 38

Normal order strategy

Reduce the leftmost, outermost redex first:

id (id (λz.id z))

→ id (λz.id z))

→ λz.id z
→ λz.z
6→

The evaluation is deterministic.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 25 / 38

Call-by-name strategy

Follow the normal order reduction, not allowing reductions inside
abstractions:

id (id (λz.id z))

→ id (λz.id z))

→ λz.id z
6→

The call-by-name strategy is non-strict (or lazy) in that it evaluates
arguments that are actually used.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 26 / 38

Call-by-value strategy

Reduce the outermost redex whose right-hand side has a value (a term
that cannot be reduced any further):

id (id (λz.id z))

→ id (λz.id z))

→ λz.id z
6→

The call-by-value strategy is strict in that it always evaluates arguments,
whether or not they are used in the body.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 27 / 38

Compiling to Lambda Calculus (with Normal Order Strategy)

Consider the source language:

E → true
| false
| n
| x
| E + E
| iszero E
| if E then E else E
| let x = E in E
| letrec f(x) = E in E
| proc x E
| E E

Define the translation procedure from E to λ-calculus.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 28 / 38

Compiling to Lambda Calculus (with Normal Order Strategy)

E: the translation result of E in λ-calculus

true = λt.λf.t
false = λt.λf.f

0 = λs.λz.z
1 = λs.λz.(s z)
n = λs.λz.(sn z)
x = x

E1 + E2 = (λn.λm.λs.λz.m s (n s z)) E1 E2

iszero E = (λm.m (λx.false) true) E

if E1 then E2 else E3 = E1 E2 E3

let x = E1 in E2 = (λx.E2) E1

letrec f(x) = E1 in E2 = let f = Y (λf.λx.E1) in E2

proc x E = λx.E

E1 E2 = E1 E2

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 29 / 38

Correctness of Compilation

Theorem

For any expression E,
[[E]] = [[E]]

where [[E]] denotes the value that results from evaluating E.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 30 / 38

Examples: Booleans

if true then 0 else 1 = true 0 1
= (λt.λf.t) 0 1
= 0
= λs.λz.z

Note that

[[if true then 0 else 1]] = [[if true then 0 else 1]]

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 31 / 38

Church Booleans

Logical “and”:
and = λb.λc.(b c false)

and true true = true
and true false = false
and false true = false
and false false = false

Logical “or”:
or = λb.λc.(b true c)

or true true = true
or true false = true
or false true = true
or false false = false

Logical “not”:
not = λb.(b false true)

not true = false
not false = true

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 32 / 38

Pairs

Using booleans, we can encode pairs of values.

pair v w : create a pair of v and w
fst p : select the first component of p

snd p : select the second component of p

Definition:
pair = λf.λs.λb.b f s

fst = λp.p true
snd = λp.p false

Example:

fst (pair v w) = fst ((λf.λs.λb.b f s) v w)
= fst (λb.b v w)
= (λp.p true) (λb.b v w)
= (λb.b v w) true
= true v w
= v

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 33 / 38

Church Numerals

1 + 2 = (λn.λm.λs.λz.m s (n s z)) 1 2
= λs.λz.(2 s (1 s z))
= λs.λz.(2 s (λs.λz.(s z) s z))
= λs.λz.(2 s (s z))
= λs.λz.((λs.λz.(s (s z))) s (s z))
= λs.λz.(s (s (s z)))
= 3

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 34 / 38

Church Numerals

Multiplication:

E1 × E2 = (λm.λn.m (+ n) 0 E1 E2

Example:
1× 2 = (λm.λn.m (+ n) 0) 1 2

= 1 (+ 2) 0
= (λs.λz. s z) (+ 2) 0
= (+ 2) 0
= (λm.λs.λz.m s (2 s z)) 0
= λs.λz.(0 s (2 s z))
= λs.λz.((λs.λz.z) s (2 s z))
= λs.λz.2 s z
= λs.λz.((λs.λz.s (s z)) s z)
= λs.λz.s (s z) = 2

Power (nm):
λm.λn.m (× n) 1

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 35 / 38

Recursion

For example, the factorial function

f(n) = if n = 0 then 1 else n ∗ f(n− 1)

is encoded by

fact = Y (λf.λn.if n = 0 then 1 else n ∗ f(n− 1))

where Y is the Y-combinator (or fixed point combinator):

Y = λf.(λx.f (x x))(λx.f (x x))

Then, fact n computes n!.

Recursive functions can be encoded by composing non-recursive
functions!

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 36 / 38

Recursion

Let F = λf.λn.if n = 0 then 1 else n ∗ f(n− 1) and
G = λx.F (x x).

fact 1
= (Y F) 1
= (λf.((λx.f(x x))(λx.f(x x))) F) 1
= ((λx.F (x x))(λx.F (x x))) 1
= (G G) 1
= (F (G G)) 1
= (λn.if n = 0 then 1 else n ∗ (G G)(n− 1)) 1
= if 1 = 0 then 1 else 1 ∗ (G G)(1− 1))
= if false then 1 else 1 ∗ (G G)(1− 1))
= 1 ∗ (G G)(1− 1)
= 1 ∗ (F (G G))(1− 1)
= 1 ∗ (λn.if n = 0 then 1 else n ∗ (G G)(n− 1))(1− 1)
= 1 ∗ if (1− 1) = 0 then 1 else (1− 1) ∗ (G G)((1− 1)− 1)
= 1 ∗ 1

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 37 / 38

Summary

Programming language = Lambda calculus + Syntactic sugars

λ-calculus is a minimal programming language.
I Syntax: e→ x | λx.e | e e
I Semantics: β-reduction

Yet, λ-calculus is Turing-complete.

Woosuk Lee ENE4014 2024 Spring, Lecture 17 March 2, 2024 38 / 38

