Compositional Semantics-based
Abstract Interpretation

Woosuk Lee

CSE 6049 Program Analysis

UN/y
£
S

9928 Hanyang University, Korea

N 1939

< l

<>




Goal of This Lecture

e How to instantiate abstract interpretation framework

for languages based on a compositional semantics

® [wo instances
® Sign analysis

® |nterval analysis



Language

O O x 3

O

\Y%

X

Fl= ]
<|<|==
n

X

EQE
XQn

skip

C; C

X:=F
input(x)
if(B){C}else{C}

while(B){C}

scalar values

program variables

binary operators

comparison operators

scalar expressions

scalar constant

variable

binary operation

boolean expressions
comparison of a variable with a constant
commands

command that ”"does nothing”
sequence of commands
assignment command
command reading of a value
conditional command

loop command



Step |: Defining Standard Semantics

e Semantic domains
def

ceM=X—V (Memory)

nevVY et 7 (Values = Integers)
® Denotational semantics: |IB| : M — B
|E] . M —V

[xen](c) = feo(o(x),n)

[C] M —- M




Step 2: Defining Concrete (Collecting) Semantics

[skip]
[Co; C1]
[x :=E]

[input(x)]
[i£(B){Co}else{C:}]

[while(B){C}]

[Cle : (M) — Z (M)

M) = M

2M) = [Ci]2([Co
7 (M)

2M) = {olx—n|
7 (M)

7 (M)

Filtering functio
Fp(M)={0ceM||[B]

F-p(M) =10 €M |[B]

|2 (M))
= 10lx—[E](0)]| o€ M}

ceEMneV}

= [Col»(F5(M)) U[C1] (-5 (M)
= T (Uso ([€]» 0 F5) (M))

() = true)

(o) = false}



Loops

® The set of output states of a loop: the infinite union of a
family of sets My, M, M,,...

e where M = the output state after running the loop

body exactly i times

Mi= 7 5 ((IC]70 Fs) (M)



Loops

® As a result, the set of output states of the loop is

UMi=] .75 ((ﬂcﬂﬁoﬁB)i(M))

i>0 i>0

or . .
e Because -5 is continuous,

UM =7 (U (ﬂc]goﬁB)i(M))

i>0 i>0



Loops

o Alternate definition: Let F = |[C|» o %5

My = M;

o M1:MUF(M):MUF(M());

My =M UF(M)UF(F(M))=MUF(MUF(M))

(because F' is continuous)

My = M
M1 MkUF(Mk)



Loops

® Therefore,

[while(B){C}] (M) = 75 (lfpyF)
where F 2 AX. MU [C] » o F5(X)



Step 3-1: Defining Abstract Domains

® Our goal:

Y
g‘z (M) < \ A Abstract Memories
a /4
where

,' Abstract Mem: Var = Abstract Value §



Step 3-1: Defining Abstract Domains

e Abstraction proceeds in two steps:

® For each variable, we collect the values that this variable
may take across a set of states.

®* Ve over-approximate each of these sets of values with one
abstract element per variable using a value abstraction.

® Value abstraction:




Examples of Value Abstractions

=
® Signs abstraction / \
16%
2% < 0]\ /[> O]
= 0]

— {neV|n>0}

— {neV|n<0}

— {0} 1
—

—

Yo |2




Examples of Value Abstractions

e |ntervals abstraction

. NN N N
P(V) == A,

oy \/\/\/\/\/

-3

/\/\/\/\/\
\/\/\/\/\/

-2

0 \\‘//

{neViny<n<n}
{neV |ny<nj}
{neV | n<ni}

Yo . 1

Lol



Step 3-1: Defining Abstract Domains

¢ The order relation in A is defined by the point-wise

extension of =7

YMo* Mi* € A. My C M <= (Vx € X. My*(x) Ty Mi*(x))

® The |least element:

Vx e X. J_A(x) = 1l



Step 3-1: Defining Abstract Domains

e Then,

a: M — (xeX)— ay({ox)|oeMl)

v: M — {oeM|VxeX, o(x) €y (Mi(x))}

Theorem 1 If (V) == A, then 2 (M) = A.

Oly (04




Examples of Memory Abstractions

e |he best abstraction of {G(), 01,09, 63}:

e With the signs abstraction:

M x—=[>0 y—=T z—][<0)

e With the intervals abstraction:

M x—[2535] y—[-7.8] z~—[—12,-9]




Step 3-2: Defining Abstract Semantics

analyze p

pre Apre > dpost =[]’ (@pre)
A ([p],) = P B
If < then ©
Ny, N,
run p , /
(0} O O
([p] »)

Our Goal:

Theorem 3.6 (Soundness) For all command C and all abstract state M*, [[C]]?@(M %) terminates,
and:

(] (v(MY) C ¥([CT, (MP))



Skip

e Bottom element

e For any command C, [C| £ (0) = 0

o [Clp(L) =1
e Skip command

[skip]*,(M*) = M



Sequence

e Concrete semantics:

o P0:P1l# (M) = [pi]2(lpol 2 (M))

o Thus, [Co:C1]5, (M%) = [C1]",([Col'» (MP))



Abstract Interpretation of Expressions

IIEW A — Ay

n]f(MY) = ¢y (n)
<]t (MP) = M(x)
[Eo0E\[*(M*) = fL([Eo]*(MP),[E1]F(MF))

o 0y :V — Ay:a function that returns an abstraction for

a given value (e.g., o~ (3)=[>0])

° fﬁ) : Ay x Ay — Ay approximation of the operator Jo



Abstract Interpretation of Expressions

e Soundness condition:

for all ny,n € Ay, {fo(no,n1) | no € vy (nh) and ny € vy (n})} C vy (f2 (nh,n?))



Addition for Signs Abstraction

....................................................................................................................................................

.....................................................................................................................................................

....................................................................................................................................................




Subtraction for Signs Abstraction

....................................................................................................................................................

.....................................................................................................................................................

....................................................................................................................................................




Abstract Operations for Intervals

. f Az, 2| + Y1, y2] = [T+, @2 + y2]
° fE [331,282] _ [ylva] — [581 — Y2, T2 _yl]

i

[5131,1132] ‘ [yl,yz] — [min{xlylaxly%33291’$292}amax{$lyla$1923517291:5823/2}]

More cases involving positive/negative infinity ...



Example (Interval Operations)

e Suppose we have an abstract memory M® such that

M*(x) = [10,20] and M*(y) = [8,9].

[x + 2%y — 6] (M?)

5 ([x+2%y]H(ME), [6]%(M?))

£ ([=]F (MY, [2 % y]F (M%) — [6,6

Mt (x) + fE([2]F(M*), [y]* (M*)) — (6.6
10,20] + [2,2] % [8,9] — [6, 6]

20,32




Soundness

Theorem 3.2 (Soundness of the abstract interpretation of expressions) For all expression E,
for all non relational abstract element M *and for all memory state ¢ such that o € y(M u), then:

[E](0) € V([E] (M*))



Assighments

e Concrete semantics:

[x:=E]»(M) = {o[x— [E](0)] | 0 € M}

o
e Abstract semantics:

[x := E]*,(M*) = M*[x > [E]*(MP)]

® |nput statement:

. [input(x)[%,(M*) = MP[x = T ]



Example

e Suppose we consider x :=x+2*xy—6

M*(x) = [10,20] and M*(y) = [8,9].

[x:=x+2xy—6] (M) = {x — [20,32],y — [8,9]}



Conditionals

e Concrete semantics:

o [if(B){Cojelse Ci}]»(M)=[Eo]»(F5(M)) U [E1]7(F-p(M))

e Abstract semantics: Join operator

o [1£(5){Co}e1so(C:}1E, (%) = [Col, (F5(M7)) L2 [C Ty (2 (M)

§ Abstract filtering §




Abstract Filtering

e Abstract filtering function should satisfy the following
soundness condition:

for all condition B, and for all abstract state M*, %5 (y(M*)) C y(.F g (M"))

e A trivial example: ﬁ’g (MF) = TF



Examples of Abstract Filtering

® With the signs abstract domain

LgZ:LO(Mﬂ)

<

(

(yeX)— L

\ Mz — [<0]]

if M#(x) =[>0] or [=0] or L
if M¥(x) or T

|
S,

e With the intervals abstract domain if M*(x) = [a,b]

Fi_, (MY

(yeX)— L
M*[x — [a,n]
M?

ifa>n
ta<n<b
ftb<n



Analysis of Flow Joins

e The concrete semantics computes the union of the results of
both branches.

[1£(B){Co}else{C1}]»(M) = [Eol (5 (M) U]

e The analysis should over-approximate unions of concrete states.

Y(ME) U y(M?) C y(M] L M)

1

¢ Given the join operator i the value abstract domain, we
define the join operator for abstract memories as follows:

for all variable x, (M{, LIF M?)(x) = M (x) LI, M’ (x)



Analysis of Flow Joins

® Example (join operator for intervals)
ao, bo] L, [a1,b1] = [min(ag,a), max(bg,b;)]

g, bo] L, [ar,4+e0) = [min(ag,ay),+oo)

o If M. = [x—1[0,3:y~[6,7):z— [4,8]
M;

x—[5,6];y = [0,2];2z—[6,9]

e Then MjLIM; =[x+ [0,6];y — [0,7);z+ [4,9]

Theorem 3.4 (Soundness of abstract join) Ler Mg and ME be two abstract states. Then:

Y(ME) U y(MP) C y(ME L M)



Final abstract state: {x+> [,y — [0, +o0)}



Loops

e Concrete semantics:

[while(B){C}]» (M) = F-p (U ([¢]= OﬁB)i(M))

>0

o Alternatively,
[while(B){C}]»(M) = 75 (pyF)
where F 2 AX. MU[C]» o F5(X)

e Abstract semantics:
[while(B){C}]’,(M*) = FF, (Ifpy: F?)
where F* 2 A X% M* LF [C], o ZL(XF)



Abstract lterations

while(x < 100){

N\

- O  \O

{x —
{x —
{x —

{x —
{x —
{x —
{x —

0,49
0,50
0,50
0,50

0,0]}
0,1]}
0,2]}

Y Sy



Abstract Semantics

IC

[skip]

[Co: C1]

[x:= E]

[input(x)]
[if(B){Co}else{C}]
l[while(B){C}]

7]
[x]

|[Eqg ® Eq]

=
/N N
=

.
<
i wn

o
N s e v v N N N N NN

s
|_

S

e Y N N N
= = A

AR
S

= 0y (n)

Mt (x)

2 ([Eo] (MY), [E1]F(M?))
1

M?

= [ci]'H([Col'p(MP))

MF[x = [E]H(MF)]

= Mﬂ[X — Tn//]

[Col’H (ZE(MY) LE [C1]F,
FF 5 (Ifp,,: F*) where F* 2

(FF 5 (Mh))
AXE MELE[CT, 0 ZE(XP)



Soundness Theorems

Theorem 3.1 (Approximation of compositions) Let Fy, F| : (M) — &2 (M) be two monotone
functions, and F, : : Fljj : A — A be two functions that over-approximate them, that is such that Fooy C

Yo FOjj and Fi1oy C yo Flﬁ. Then, Fyo F| can be over-approximated by FOjj o Flﬁ.



Soundness Theorems

Theorem 3.1 (Approximation of compositions) Let Fy, F| : (M) — &2 (M) be two monotone
functions, and F, : : Fljj : A — A be two functions that over-approximate them, that is such that Fooy C

Yo FOjj and Fi1oy C yo Flﬁ. Then, Fyo F| can be over-approximated by FOjj o Flﬁ.

Proof.
if M* € A, then Fj o y(M*) C yo Fltt (A) (by the soundness assumption on F)

Fyo Fy o y(M*) C Fyoyo Fj (M?) (Fp is monotone)

FooFioy(MF) Cy oF(f OFF (MF) (by the soundness hypothesis on Fp)



Soundness Theorems

Theorem 3.2 (Soundness of the abstract interpretation of expressions) Forall expression E,
for all non relational abstract element M " and for all memory state o such that ¢ € y(M jj), then:

[E](0) € Y([E]* (M%)



Soundness Theorems

Theorem 3.2 (Soundness of the abstract interpretation of expressions) Forall expression E,
for all non relational abstract element M " and for all memory state o such that ¢ € y(M jj), then:

[E](0) € Y([E]* (M%)

« Case of constant expressions:

We assume E is the constant expression defined by the value n. Then, [E](c) = n, and [E]*(M*) = ¢4 (n).
By definition of the operation ¢y of the value abstract domain (as stated in Section 3.3.1), n € y(¢y (n)),
which concludes this case.

« Case of expressions made of a variable:

We assume E is the expression made of the reading of variable x. Then, [E](c) = o(x), and [E]*(M*?) =
M*(x). By assumption, ¢ € y(M?*), thus, 6(x) € y(M*(x)), which concludes this case.

« Case of expressions made of a binary operator applied to two sub-expressions: We assume that £ is of the
form Eg © E1, where Eqg and E| are sub-expressions and ® is a binary operator. We assume the theorem
holds for Ey and E; since we are carrying out the proof by induction over the structure of expressions.
Therefore the inductive hypothesis entails that for all i € {0,1}, [Ei] (o) € y([E;]*(M*?)). Then, [E](c) =
fo([Eo](o),[E1](c)) and [E]*(M*?) = f®([[E0]] “{(MP), [E1]F(MY)). By the induction hypothesis and by
definition of the soundness of the operatlon of the value abstract domain f@ (as stated in Section 3.3.1), we
have [ ([Eo](0),[E1](0)) € }/(f@([[EO]]ﬁ(Mﬁ) [E1]%(M*"))). This concludes the proof of this case.



Soundness Theorems

Theorem 3.3 (Soundness of the abstract interpretation of conditions) For all expression B,
for all non relational abstract element M *and for all memory state ¢ such that 6 € y(M ti), then:

if [B](0) = true, then o € y(FL(M"))



Soundness Theorems

Theorem 3.3 (Soundness of the abstract interpretation of conditions) For all expression B,
for all non relational abstract element M *and for all memory state ¢ such that 6 € y(M ti), then:

if [B](0) = true, then o € y(FL(M"))

Proof. Let B be a condition expression. Let M* be an abstract state and o € y(M*"), such that [B](c) =
true. By definition, the operation .7 g of the value abstract domain is assumed to be sound, thus, .Zg (y(M*)) C
}/(ﬁg (M*)), where Z5(M) = {c € M | [B](c) = true}. Since [B](c) = true, ¢ belongs to .%5(M). This
concludes the proof.



Soundness Theorems

Theorem 3.4 (Soundness of abstract join) Let Mg and ME be two abstract states. Then:

Y(ME) U y(ME) C yp(ME Lt MF)



Soundness Theorems

Theorem 3.4 (Soundness of abstract join) Let Mg and ME be two abstract states. Then:

Y(ME) U y(ME) C yp(ME Lt MF)

Proof. We take advantage of the symmetry of both U and LI so that we simply prove that Y(M, jj) C y(M; o
M ti). Let o € y(M, jj). To prove that o € y(M, FLEM jj) we need to establish that, for all variable x, we have
o(x) € vy (M} LF M) (x )) By definition of LI, (Mh LF MY (x) = M{(x) %, M!(x). The soundness of LI,

guarantees that o (x) € }/(M (%) I_Ijj Mﬁ( )), which concludes the proof.



Soundness Theorems

Theorem 2 (Soundness) For all command C and all abstract state M 7

(€] (Y(M?)) C y([CT%, (M)



Case where C is a skip statement.

Then [C] 2 (y(M?)) = y(M*) = (|]C‘]]ti (M*)), so the property trivially holds.

Case where C is a sequence. We assume the property holds for Cop and C; and prove it for C. Under this
assumption Theorem 3.1 applies and proves the property.

Case where C 1s an assignment x := E;

Let 6 € y(M*). We need to prove that o[x — [E](0)] € [x := E]]?@(Mﬁ) = M*[x — [E]*(M?)]. By sound-
ness of the analysis of expressions (Theorem 3.2), we obtain that [E](c) € ¥y ([E]*(M*)). By definition of
Y, that implies the result of the analysis of the assignment is sound.

Case where C is an input statement input(x):

This case 1s similar to that of a standard assignment; indeed, the only difference 1s that, in the concrete, x
may get assigned any value, whereas in the abstract, it gets mapped to T . We observe that T describes
any possible value, so that the argument provided for regular assignment commands applies here in the same
way.

Case where C is the condition statement 1f(B){Co}else{C;}:

We assume the property holds for Cy and € and prove it for C:

[Clo(v(MF)) = [Colo(F5(y(M))) U [C1] o (Fp (v(MF)))

C [Col o (MF500) U [en] o (r(F5 (45)

by soundness of .%* and monotonicity of [[.]
C AICT5(F5 () UAICTp (725 (1))

by soundness of [[C‘O]] and [C] & (induction hypothesis)
C el (FE ) U I (72 0)

by soundness of L/

= y([C]F(M?))



Case where C is the while loop while(B){C}:
[while(B){C}H .z (V(M*)) = F 5 (Upyu F)
where F 2 AX. y(M*)U[C]» o F5(X). And,
[while(B){C}],(M*) = F ,(lp,: F*)

where F* £ A X! M* L/f [[C]]Ej@ o FL(XY).
For any M*, F(y(M*)) C y(F*(M?")) because
F(y(M") = y(MF)U[C]p o Fp(v(M))
YFHMP)) = y(MFLF[CTS, 0 F5 (M)
(M) U y([[C’]]Ei@ o F} (M*)) (By Theorem 3.4 (Soundness of join))

U

By induction hypothesis .%# g and HC]]?@ are sound. By Theorem 3.1 (Approximation of
compositions),
[Clz 0 Fs oy Cyo[Cl, o Fi.

Therefore, [€] 5 o Z5 (v(M?)) C Y([C]%, 0 F5(M?)) and F (y(M?)) C y(F*(M)).
From the fixpoint transfer theorem,

IfpF C y(lfpF*)

Because 3533 is sound (i.e., #_ 5oy C yo EEB), Fp(Up, oy F) C vo 9EB (Ifp,,: F*)
which concludes the proof.
[]



What If Loops are Unbounded?

My = {x—[=0]}
x :=0: M = {x—[>0]}
while(x > 0){ M; = {x—[>0]}

x:=x+1

{x—[0,n]|}

S
||



What If Bounded Loops Require Too Many Iterations!?

x = 0;
while (x < 1000000) {

X = x + 1

i Needs | million iterations to reach a fixpoint for |

{the intervals abstract domain



Widening

e A widening operator over an abstract domain A is a

binary operator V, such that

e For all abstract elements 40,41, we have

Y(ap) U y(ar) € y(ao V a1)

o For all sequence (@n)neN of abstract elements, the

/ . . .
sequence (@n)neN defined below is ultimately stationary

/
ag

/
an—l—l

ao

/
a, V dp



Abstract Iterations with Widening

abs_iter(F*! M*) abs_iter(F*! M*")
R+ M*; R« MY
repeat repeat
T < R; T < R;

R < RLF F*(R); R < RV F!(R);
untilR=T untilR=T

return T; return T;

(a) Iteration with a finite height domain (b) Iteration with widening and a domain
with possibly infinite height

[while(B){C}]},(M?) = .Z',(abs_iter([C]’, 0.7k, M"))



Widening for Intervals

S o

g ) g ]

& &

a,b
c,d

(c<a?—o00:a),(b<d?




What If Loops are Unbounded? (Revisited)

x :=0;
while(x > 0){

x:=x+1
}

How Mf was computed?

{x—[0,0]} V{x+—T]I, 1]}

={x+—[0, +o0] }



What If Bounded Loops Require Too Many
Iterations? (Revisited)

x + = 0y
t _
while (x < 1000000) { Mg = {x—[0,0]}
M; = {x—][0,+)}
X 1= x + 1 Mg —  {x— [0,+00)}

® |mprecision occurs: the desirable result is

{x —> [0, 10000007}

e Need to refine the widened result



Narrowing for Intervals

oo
|

o -

& &
|
I

(0= —o00%¢ : a), (b= +00?d : b)



What If Bounded Loops Require Too Many
Iterations? (Revisited)

X =
while

X

0;
(x < 1000000)

x + 1

{

{x —
{x —
{x —

0, 4-o0] }
0, 1000000

0, 1000000



Abstract Iterations with Widening & Narrowing

abs_iter(F* M*)
R+ ij;
abs_iter(F* M") repeat
R < MF; T < R;
repeat R+ RV F!R);
T <+ R; untilR=T

R < R LI FI(R): ‘repeat
untilR = T ! TR .
return T; ; R+ RA FiR); \'.

(a) Iteration with a finite height domain untilR=T
return T; o
(b) Iteration with widening & narrowing
and a domain with possibly infinite height

[while(B){C}]’,(M!) = ZF,(abs_iter([C]",o.Zf, M"))



Soundness

® The widening and narrowing operators for intervals
satisfy the safety conditions for widening and narrowing.

¢ By the theorems [Widen’s safety] and [Narrow’s safety],
the soundness is guaranteed.



