Abstract Interpretation Framework

Woosuk Lee

CSE 6049 Program Analysis

yﬁum%;
9928 Hanyang University, Korea

N/ 19

<

v
-k.‘.‘-

Abstract Interpretation Framework

real execution [P]=fixF €D

A

abstract execution [P]=fixEF €D

correctness [P] ~ [P]
implementation computation of [P]

® The framework requires:

® 3 relation between /) and D

* arelationbetween F € D —+Dand Fe D — D
® The framework guarantees: 7 i1
® correctness and implementation ~\;\

e freedom:any such D and F' are fine.

.;—a./p

Abstract Interpretation Framework

real execution
abstract execution
correctness
implementation

® The framework requires:

computation of [[]] |

A

® 3 relation between /) and D

e arelation between F € D — D and _e

® The framework guarantees:

® correctness and implementation

A

* freedom:any such D and I are fine.

A

A domain of concrete states §
(e.g., a set of integers) }

1 A domain of abstract states ,'
(e.g., a set of intervals)

§ A function corresponding to |
one-step real execution

D — D

\ A function corresponding to §
§ one-step abstract execution §

Steps

o Step |: Define standard semantics
e Step 2: Define concrete semantics

o Step 3: Define abstract semantics

Step |: Define Standard Semantics

* Formalization of a single program execution
e Operational semantics (transitional style)

e Big-step / small-step
® Denotational semantics (compositional style)

e State — S'tate

Step |: Define Standard Semantics

ACE(t) I Execution
o traces

Possible
F discrete
» | trajectories

. 1

*from Patrick Cousot’s slides

Semantics Style: Compositional vs. Transitional

¢ Compositional semantics is defined by the semantics of sub-

parts of a program.

[AB] = ---[A]---[B]---

®* For some realistic languages, even defining their
M ¢ . 1 3) . o
compositional (“denotational”) semantics is a hurdle.

® goto, exceptions, function calls

® Transitional-style (“operational”) semantics avoids the hurdle.

I[AB]]:{81%SQ%}

Step 2: Define Concrete Semantics

Formalization of all possible program executions
Also called collecting semantics

Simple extension of the standard semantics in general

ZState N QState

Traces vs. Reachable States

Execution
Traces

Reachable
States

Transitions of Sets of States

*from Patrick Cousot’s slides

Step 2: Define Concrete Semantics

® Define a semantic domain D, which is a CPO

® Define a semantic function F : D — D which is continuous.

®* Then, the concrete semantics is the least fixed point of semantic
function

fixF = | | F*(L).

€N

Plan: define an abstraction that captures fiz F’

Step 3: Define Abstract Semantics

e Define an abstract domain CPO D
e [ntuition: D is an abstraction of D

e Define an abstract semantic function F : D — D
e Intuition: F is an abstraction of F

e ' must be monotone:
V&, g € D. &

(or extensive: V& € D. x

L e i

Plan: define an abstraction that captures fizF' by using Ia

Transitions of Abstract States

[E Interval transition

*from Patrick Cousot’s slides

Sound Static Analysis

e Static analysis is to compute an upper bound of the

|| (L)

1N

chain:

® How can we ensure the abstract semantics soundly
subsume the concrete semantics!?

e Abstract interpretation framework guarantees if some
requirements are met.

Requirement |:about D in relation with D

D and D must be related with Galois-connection:

8% ~
D<——=D
(84
That Is, we have
@ abstraction function: o« € D — D
» represents elements in D as elements of D

@ concretization function: v € D — D
» gives the meaning of elements of D in terms of D

oVreD,# €D.alx) i <— x L ~(&)
» « and ~ respect the orderings of D and D

Plan: static analysis is computing an upper bound of | |, Fi(L)

Galois Connection

Example: Sign Abstraction

Example: Sign Abstraction

Sign abstraction:

@(Z) % { | 9 709_T}
where
(L Z — @
+ VzeZ.z>0
a(z) = { 0 Z={0}
— VzeZ. z<0
. I otherwise
(L) = 0
Y(T) = Z
Y(+) = {z€Z|z>0}
v(0) = {0}
(=) = {z€Z|z<0}

Example: Interval Abstraction

o(Z) &= {L}U{[a,b] | a € ZU{—00},b € ZU {+0c0}}

4, [— 00, + 0]
{1,2,---,100}

L]
{1,10,100}

[1,100]

= e
l_

Example: Interval Abstraction

p(2) == {1} U{la,b] | a € ZU {—o0},b € Z U {+00}}

(L) = 0
Y([a,b]) = {z€Z]|a<z<b}
Y([a,+o0]) = {2€Z]|z2>a}
Y([—o0,b]) = {2€Z]|z<b}
Y([—o0,+00]) = Z

Requirement 2: about F

@ " must be monotonic:

V:c,yEﬁ:a:

or extensive:

vz eD:xC F(x).

Plan: static analysis is computing an upper bound of | |, _x Fi(L)

Requirement 3: F in relation with F

e ForanyzeD,2e D F and F must satisfy

a(x) E 2 = a(F(x)) C F(2)

® |ntuition: the result of one-step abstract execution subsumes
that of one-step real execution.

® or, alternatively,

aoFC Foa (e, FoyLC~olkF)

Plan: static analysis is computing an upper bound of | |, _x Fi(L)

Requirement 3: F in relation with F

Then:a Correct Static Analysis

static analysis = computing an upper bound of | | Fi(L).

@ Such an upper bound A is correct:

afixF) C A, thatis,
firFF = ~A

Theorem|fixpoint-transfer]

@ Analysis result A subsumes the real executions fix F

How to Compute an Upper Bound of gFi(L)

A

e |f abstract domain D is finite (i.e., all chains are finite), we can
directly compute

| | F*(1).

€N

The computation always terminate.

® Otherwise, we compute a finite chain X, C X; C X, C ...
such that

| | F*(1) C lim X;
. 1EN
1EN

Abstract Domain

N
postfp() ={re D[z F(z)}

- J

efp I \

fp(F) ={z € D| F(z) = }]

The ideal -
result
{ R

lfp F

g/[prefp(ﬁ) —{zeD|zC F(az)}]

T

Basic Up%/vard/ Downward Fixpoint Iteration

(T)s A
F(7) postfp(F) = {z € D |z 3 F(x)}

v - J

gfp F \

fp(F) ={z € D| F(z) = }]

N

Ifp F' = F™(|L) /

A J/{prefp()—{xGD]xIIF()}]

® (L)

Widenigg: Overshooting via Extrapolation

o)
pOStfp() — {Qj e D ‘ r F(>}

J

E\reﬁning the Widened Result

\

postfp(F)—{:EED\ij()}
~ J

lfp F = V(L /

g/[prefp()={zeD|zC F(z)}]

Narrowing
T

%postfp y={zeD|xzIF(x)}

N

lfp F= (L /

g/[prefp()={zeD|zC F(z)}]

Widening

¢ We can define a finite chain with an widening operator V

; Stop if a postfix
} isreached §

e Conditions on V :

o Va,be D.(aCa<syb) N (bC a<yb)

@ For all increasing chains (x;);, the increasing chain (y;); defined as

o o ife=20
Ji = Yi—1 V Tj ifz>0

eventually stabilizes (i.e., the chain is finite).

Widening

® Then

A A

* X,C X,LC-..-C X, is a finite chain.

e |ts limitis correct:

[|(7(1) E lim(X5).
€N

Theorem [widen’s safety]

Narrowing

¢ We can define a finite chain with a narrowing operator A:
Yy = A s.t. A € postfp(F)
Vi = VAE(Y)

e Conditions

-Va,beﬁ.a;b —> aq Jal\b b

® Vdecreasing chain{a;}; : chainyg = ag, yir1 = y;Na;i1is finite
e Then

e {Yi}; is a finite chain.

e |ts limit is still correct:

AN A

(F'(1)) E lim(Y)).

1€N

Theorem [narrow’s safety]

Why Above Prescription Is Correct?

Fixpoint Transfer Theorem
Theorem (fixpoint transfer)

Let CPOs D and D are Galois-connected. Function F : D — D is continuous.
F : D — D is either monotonic or extensive. Either o F C F o o or « fC f

implies o(F f) T F f. Then,

a(firF) C |_| (1

1€N

Why Above Prescription Is Correct?

Widening /Narrowing Theorems
Theorem (widen’s safety)

Let F: D — D be monotonic over CPO D. Let widening operator
vV D x D — D satisfies the widending conditions. Then the widened chain
{X;}; is finite and its limit satisfies lim;cy X; L en F(1).

Theorem (narrow'’s safety)

Let F: D — D be monotonic over CPO D. Let narrowing operator
A : D x D — D satisfies the narrowng conditions. If F (A) C A then the
narrowed chain {Y;}; is finite and its limit satisfies lim;ey Y; J Lien F(1).

More Properties of Galois Connections

Properties of Galois Connections

’7 A

D

D
84

A

Theorem 1. a(l)= 1

Proof. a(L) T 1 because L T ~(L1). By the definition of 1, 1 T a(L).

Therefore, a(L) = L.

Theorem 2. id C vyo«

Proof. a(x) C a(x). By the definition of galois connection, x C v(«a(x)).

Theorem 3. ao~vy C id

Proof. v(z) E v(2). By the definition of galois connection, a(vy(2)) C Z.

Properties of Galois Connections

Theorem 4. v is monotone.

Proof. Suppose & C ¢. Because a o~ C id, ao~(z) C y. By the definition of
galois connection, v(z) C (7).
[]

Theorem 5. « s monotone.

Proof. Suppose x C y. Then x C v o a(y) because id C v o a. By the definition
of galois connection, a(x) C a(y). []

Properties of Galois Connections

Theorem 6. o 1s continuous.

Proof. We show that for any chain .S in D,

oz(u T) = Ll a(x).

reS reS

e (J): Because « is monotone, o(| |,.q) =2 a(x).

— zeS
e (O): e Ev(U,eq@(z)) because
[res 2 E Lpes v(a(z)) (id E v oa)

[pesv(a(@)) Ev(yes a(x)) (v is monotone)

By the definition of galois connection, a(| |..¢x) E | |, cg a(z).

Compositional Constructions of Galois Connections

A ¥ A
e Suppose A < A c A and B ¢ ; s B . Then,
A B
YA X B A A
* AXx B+ c A X B
XAX B
e with aaxp = Xa,b). (aa(a),ap(d))
 YA4+B A~
° 14—Flg\ >14—Flg
QAL B

(x € A)

_ (x)
o with (A+B =AT. <\ ap(x) (otherwise)

Compositional Constructions of Galois Connections

* with aaqap=Af.apofoy;

Compositional Constructions of Galois Connections

Theorem 7. [fA#flandB%B, thenA—>B<%:_>B >121—>ZA3
8" apB A B

where aoasp = Af. apo fovy; and v; . p :)\f. ”yéofoozA.

Proof. We will show
VfeA—>B,feA— B asa,sg(f)Tf <= fCTv;i.5(f)
e Case (=): for fe A B, fe A— B, asp(f)C

apofory Cf

”yBgOOdBOfO”yA Efyéof (’Yé monotone)
foviEvgoef (id Evpoap)
fovzoaaLygofoay

fCypofoau (f monotone,id C vy; 0a4)

e Case («<=): similar to the above case.

Best Abstract Semantics

e let f € A — B be a concrete semantic function

and

VAt
A+——= A’ B +—— B!

QA B

e ' ¢ A* - B* is a monotone abstract semantic function.
Then, the”best” (most precise) abstract semantic
function is fu — Qg O [0 Yt

e Why! we can show

o fovyax Cygs o f7
e For any g € A" — B% if fo~y,e C vg# 0 g7, then f7 C g

Soundness Proofs

Fixpoint Transfer Theorems

Theorem (Fixpoint Transfer 1). Let D and D* be related by Galois connection
D % DE. Let F: D — D be a continuous function and F* : D} — D¥ be a

@87
monotone or extensive function such that F o~y C ~vo F*. Then,

IfpF Cy(| | F#(LF).
i>0

Fixpoint Transfer Theorem

Theorem (Fixpoint Transfer 1). Let D and D* be related by Galois connection
D % DE. Let F: D — D be a continuous function and F* : D} — D¥ be a

@87
monotone or extensive function such that F o~y C ~vo F*. Then,

IfpF Cy(| | F#(LF).
i>0

Proof. First we prove vn € N. F*(1) C y(F*(L*)) by induction. The base case is trivial. The inductive case is

as follows:
F'" 1) =FoF"(1)

C Fo~(F*™(L*) (by induction hypothesis and monotonicity of F)
C yo Ffo Fin(LH (by assumption F o~ C v o F¥)

= (P (L)
{F'(1)}: is a chain because F is continuous (so monotone). Then, the least upper bound of the chain I;J)Fi(i)
exists because D is a CPO. {F¥ (L")}, is a chain because F! is monotone or extensive. Then, {v(F* (1)} is

also a chain because 7 is monotone. Therefore, the least upper bound of the chain L{1(F* (L)} exists.
i>0
IfpF = | | F/(L) 2| |v(F¥ (L)

i>0 i>0

C ~(J (Fﬁi(J_H))) (by monotonicity of)

Widening’s Safety

Theorem (Widening’s Safety). Let D* be a CPO, F* : D* — D* be a monotone
function, and vV : D¥ x Df — D! be a widening operator. Then, chain {Y;ﬁ}z
eventually stabilizes and

| | F¥ (L% C v

lim
1 >0

where Y.

s the greatest element of the chain.

Widening’s Safety

Theorem (Widening’s Safety). Let D* be a CPO, F* : D* — D* be a monotone
function, and vV : D¥ x Df — D! be a widening operator. Then, chain {Yzﬁ}z

eventually stabilizes and
|| P (L5 E Y,
i>0

where Yhﬁm 1s the greatest element of the chain.

Proof. First we prove chain {Yf}i is finite. According to the second condition on widening operator, it is
enough to show that chain {Fﬁ(Yf)}i is increasing. The chain is increasing because 1) Fﬁ(Yiﬂl) is either
FiYH) or FEYAVFYH (YD), 2) Y{ C YPvF!(Y?#) according to the first condition on widening, and 3) F* is

monotone.
Second, we prove | | F¥(1%) C Y, . Itis enough to show that Vi € N. F¥ (L) C Y that can be proven by
>0

induction. The base case is trivial. The inductive case is as follows:
Fﬁi+1(J_1i) _ Fﬁ(Fﬂi(J_ti))

C F jj(Yijj) (by induction hypothesis and monotonicity of F*#)
if FY(Y}) C Y/, then Y}, =Y} by definition. Therefore, F¥**+!(1*) C Y}, .
If Fﬁ(Yiﬂ)] YZ-jj , then Yijj_H = Yf Y Fﬁ(Y;-ﬁ) by definition. According to the first condition on widening,

Fi(YH C Y} v FY(Y?). Therefore, FF 7 (L% C Y/, .

Narrowing’s Safety

Theorem (Narrowing’s Safety). Let D* be a CPO, F* : D* — DF be a monotone
function, and A\ : D¥ x D¥ — D* be a narrowing operator. Then, chain {Zf},,,

eventually stabilizes and
|| F(h c 2z,
i>0

where Z?

i 48 the least element of the chain.

Narrowing’s Safety

Theorem (Narrowing’s Safety). Let D be a CPO, F* : D! — D* be a monotone
function, and A : DF x Df — D¥ be a narrowing operator. Then, chain {Zf},,,
eventually stabilizes and

| | Fo(h C 2zt
1 >0
where Zﬁm 15 the least element of the chain.

Proof. First we prove chain {Zf}i is finite. According to the second condition on narrowing operator, it is
enough to show that chain {F*(Z")}, is decreasing. The chain is decreasing if Vi € N. Zf] Fﬂ(Zf), because

i 2 F(Z])
— 7Z' 3 (2 A FY(ZY) 2 FH(ZP) (by the first condition on narrowing)
— Fi(Zh 3 FYZP AR (ZD)) (by monotonicity of F*)
— Fﬂ(Z) 3 Fti(Zti 1) (by definition of Zfﬂ)

We prove Vi € N. ZZ-# 3 F#%(1) by induction. The base case is trivial be-
cause F'79(1) = L. The inductive step is as follows: By IH, we have ZZ-# -
F#%(1). We need to show that Z,Zil 3 F#iT1(1). Because F7 is monotone, we
have F#(Z7) C F#41(1). Because F#(Z7) C Z7, ZF ANF#(Z7) 3 F#(ZF)
by the first condition of the narrowing operator. Therefore, F#T1(1) C F#(Z7) C

ZENF#(ZEYC ZF .

