Abstract Interpretation Framework

Woosuk Lee

CSE 6049 Program Analysis

Abstract Interpretation Framework

 $\begin{array}{ll} \text{real execution} & \llbracket P \rrbracket = \operatorname{fix} F \in D \\ \text{abstract execution} & \llbracket \hat{P} \rrbracket = \operatorname{fix} \hat{F} \in \hat{D} \\ \text{correctness} & \llbracket P \rrbracket \approx \llbracket \hat{P} \rrbracket \\ \text{implementation} & \text{computation of } \llbracket \hat{P} \rrbracket \end{array}$

- The framework requires:
 - ullet a relation between D and \hat{D}
 - a relation between $F \in D \to D$ and $\hat{F} \in \hat{D} \to \hat{D}$
- The framework guarantees:
 - correctness and implementation
 - freedom: any such \hat{D} and \hat{F} are fine.

Abstract Interpretation Framework

abstract execution correctness implementation

real execution
$$\llbracket P \rrbracket = \operatorname{fix} F \in D^*$$
 ract execution $\llbracket \hat{P} \rrbracket = \operatorname{fix} \hat{F} \in \hat{D}^*$ correctness $\llbracket P \rrbracket \approx \llbracket \hat{P} \rrbracket$

A domain of concrete states (e.g., a set of integers)

A domain of abstract states (e.g., a set of intervals)

computation of $\llbracket P \rrbracket$

- The framework requires:
 - ullet a relation between D and D
 - a relation between $F \in D \xrightarrow{F} D$ and $\hat{F} \in \hat{D} \to \hat{D}$
- The framework guarantees:
 - correctness and implementation
 - freedom: any such \hat{D} and \hat{F} are fine.

A function corresponding to one-step real execution

> A function corresponding to one-step abstract execution

Steps

- Step 1: Define standard semantics
- Step 2: Define concrete semantics
- Step 3: Define abstract semantics

Step 1: Define Standard Semantics

- Formalization of a single program execution
- Operational semantics (transitional style)
 - Big-step / small-step
- Denotational semantics (compositional style)
- $State \rightarrow State$

Step 1: Define Standard Semantics

Semantics Style: Compositional vs. Transitional

 Compositional semantics is defined by the semantics of subparts of a program.

$$\llbracket AB \rrbracket = \cdots \llbracket A \rrbracket \cdots \llbracket B \rrbracket \cdots$$

- For some realistic languages, even defining their compositional ("denotational") semantics is a hurdle.
 - goto, exceptions, function calls
- Transitional-style ("operational") semantics avoids the hurdle.

$$[\![AB]\!] = \{s_1 \to s_2 \to \cdots\}$$

Step 2: Define Concrete Semantics

- Formalization of all possible program executions
- Also called collecting semantics
- Simple extension of the standard semantics in general
- $2^{State} \rightarrow 2^{State}$

Traces vs. Reachable States

Transitions of Sets of States

Step 2: Define Concrete Semantics

- ullet Define a semantic domain D, which is a CPO
- Define a semantic function $F: D \to D$, which is **continuous**.
- Then, the concrete semantics is the least fixed point of semantic function

$$\mathit{fix} F = \bigsqcup_{i \in N} F^i(\bot).$$

Plan: define an abstraction that captures fixF

Step 3: Define Abstract Semantics

- Define an abstract domain CPO \hat{D}
 - ullet Intuition: \hat{D} is an abstraction of D
- Define an abstract semantic function $\hat{F}:\hat{D} o\hat{D}'$
 - ullet Intuition: \hat{F} is an abstraction of F
 - \hat{F} must be monotone:

$$\forall \hat{x}, \hat{y} \in \hat{D}. \ \hat{x} \sqsubseteq \hat{y} \implies \hat{F}(\hat{x}) \sqsubseteq \hat{F}(\hat{y})$$

(or extensive: $\forall x \in \hat{D}. \ x \sqsubseteq \hat{F}(x)$)

Plan: define an abstraction that captures $f\!ixF$ by using \hat{F}

Transitions of Abstract States

Sound Static Analysis

 Static analysis is to compute an upper bound of the chain:

$$\bigsqcup_{i \in \mathbb{N}} \hat{F}^i(\hat{\perp})$$

- How can we ensure the abstract semantics soundly subsume the concrete semantics?
 - Abstract interpretation framework guarantees if some requirements are met.

Requirement I: about \hat{D} in relation with D

 $m{D}$ and $\hat{m{D}}$ must be related with Galois-connection:

$$D \stackrel{\gamma}{\longleftrightarrow} \hat{D}$$

That is, we have

- ullet abstraction function: $lpha \in D o \hat{D}$
 - lacktriangledown represents elements in $oldsymbol{D}$ as elements of $\hat{oldsymbol{D}}$
- ullet concretization function: $\gamma \in \hat{D} o D$
 - lacktriangle gives the meaning of elements of $\hat{m{D}}$ in terms of $m{D}$
- $\forall x \in D, \hat{x} \in \hat{D}. \ \alpha(x) \sqsubseteq \hat{x} \iff x \sqsubseteq \gamma(\hat{x})$
 - lacktriangledown lpha and γ respect the orderings of D and \hat{D}

Plan: static analysis is computing an upper bound of $\coprod_{i\in\mathbb{N}} \hat{F}^i(\hat{\bot})$

Galois Connection

Example: Sign Abstraction

Example: Sign Abstraction

Sign abstraction:

$$\wp(\mathbb{Z}) \stackrel{\gamma}{ \stackrel{}{ \hookleftarrow} } \{\bot, +, 0, -\top\}$$

where

$$lpha(Z) = egin{cases} oxedsymbol{oxedsymbol{eta}} & oxedsymbol{eta} & oxendsymbol{eta} & oxendsymbol{eta}$$

Example: Interval Abstraction

$$\wp(\mathbb{Z}) \xrightarrow{\gamma} \{\bot\} \cup \{[a,b] \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}\}$$

Example: Interval Abstraction

$$\wp(\mathbb{Z}) \stackrel{\gamma}{\longleftrightarrow} \{\bot\} \cup \{[a,b] \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}\}\}$$
 $\gamma(\bot) = \emptyset$
 $\gamma([a,b]) = \{z \in \mathbb{Z} \mid a \le z \le b\}$
 $\gamma([a,+\infty]) = \{z \in \mathbb{Z} \mid z \ge a\}$
 $\gamma([-\infty,b]) = \{z \in \mathbb{Z} \mid z \le b\}$
 $\gamma([-\infty,+\infty]) = \mathbb{Z}$

Requirement 2: about \hat{F}

 \bullet \hat{F} must be monotonic:

$$\forall x, y \in \hat{D} : x \sqsubseteq y \Rightarrow \hat{F}(x) \sqsubseteq \hat{F}(y)$$

or extensive:

$$\forall x \in \hat{D} : x \sqsubseteq \hat{F}(x).$$

Plan: static analysis is computing an upper bound of $\coprod_{i\in\mathbb{N}} \hat{F}^i(\hat{\bot})$

Requirement 3: \hat{F} in relation with F

• For any $x \in D, \hat{x} \in \hat{D}$, $\hat{\boldsymbol{F}}$ and \boldsymbol{F} must satisfy

$$\alpha(x) \sqsubseteq \hat{x} \implies \alpha(F(x)) \sqsubseteq \hat{F}(\hat{x})$$

- Intuition: the result of one-step abstract execution subsumes that of one-step real execution.
- or, alternatively,

$$lpha \circ F \sqsubseteq \hat{F} \circ lpha$$
 (i.e., $F \circ \gamma \sqsubseteq \gamma \circ \hat{F}$)

Plan: static analysis is computing an upper bound of $\coprod_{i\in\mathbb{N}} \hat{F}^i(\hat{\bot})$

Requirement 3: \hat{F} in relation with F

Intuition: the result of one-step abstract execution (F^{\sharp}) subsumes that of one-step concrete execution (F)

Then: a Correct Static Analysis

static analysis = computing an upper bound of $\coprod_{i\in\mathbb{N}} \hat{F}^i(\hat{\bot})$.

• Such an upper bound \hat{A} is correct:

$$\alpha(\operatorname{fix} F) \sqsubseteq \hat{\mathcal{A}}, \quad \text{that is,}$$
 $\operatorname{fix} F \sqsubseteq \gamma \hat{\mathcal{A}}$

Theorem[fixpoint-transfer]

ullet Analysis result $\hat{\mathcal{A}}$ subsumes the real executions $f\!ixF$

How to Compute an Upper Bound of

$$\bigsqcup_{i\in\mathbb{N}} \hat{F}^i(\hat{\perp})$$

• If abstract domain \hat{D} is finite (i.e., all chains are finite), we can directly compute

$$igsqcup_{i\in\mathbb{N}}\hat{F}^i(\hat{oldsymbol{\perp}}).$$

The computation always terminate.

• Otherwise, we compute a finite chain $\hat{X}_0 \sqsubseteq \hat{X}_1 \sqsubseteq \hat{X}_2 \sqsubseteq \dots$ such that

$$igsqcup_{i\in\mathbb{N}}\hat{F}^i(\hat{ot})\sqsubseteq\lim_{i\in\mathbb{N}}\hat{X}_i$$

Abstract Domain

Basic Upward/Downward Fixpoint Iteration

Widening: Overshooting via Extrapolation

Refining the Widened Result

Narrowing

Widening

ullet We can define a finite chain with an widening operator abla

$$\hat{X}_0 = \hat{oxed}$$
 $\hat{X}_{i+1} = \left\{egin{array}{ll} \hat{X}_i & ext{if } \hat{F}(\hat{X}_i) \sqsubseteq \hat{X}_i \\ \hat{X}_i igtriangledown \hat{F}(\hat{X}_i) & ext{o.w.} \end{array}
ight.$ Stop if a is real

Stop if a postfix is reached

gfp \hat{F}

 $\text{lfp } \hat{F} = \hat{F}^w(\bot)$

• Conditions on ∇ :

 $\bullet \ \forall a,b \in \hat{D}. \ (a \sqsubseteq a \bigtriangledown b) \ \land \ (b \sqsubseteq a \bigtriangledown b)$

ullet For all increasing chains $(x_i)_i$, the increasing chain $(y_i)_i$ defined as

$$y_i = \left\{egin{array}{ll} x_0 & ext{if } i=0 \ y_{i-1}igtriangledown x_i & ext{if } i>0 \end{array}
ight.$$

eventually stabilizes (i.e., the chain is finite).

Widening

- Then
 - $\hat{X}_0 \sqsubseteq \hat{X}_1 \sqsubseteq \cdots \sqsubseteq \hat{X}_n$ is a finite chain.
 - Its limit is correct:

$$\bigsqcup_{i\in\mathbb{N}}(\hat{F}^i(\hat{\perp}))\sqsubseteq \lim_{i\in\mathbb{N}}(\hat{X}_i).$$

Theorem [widen's safety]

Narrowing

• We can define a finite chain with a narrowing operator \triangle :

$$\hat{Y}_0 = \hat{A} \text{ s.t. } \hat{A} \in \text{postfp}(\hat{F})$$

 $\hat{Y}_{i+1} = \hat{Y}_i \triangle \hat{F}(\hat{Y}_i)$

Conditions

•
$$\forall a, b \in \hat{D}$$
. $a \supseteq b \implies a \supseteq a \triangle b \supseteq b$

- \forall decreasing chain $\{a_i\}_i$: chain $y_0 = a_0, y_{i+1} = y_i \triangle a_{i+1}$ is finite
- Then
 - $\{\hat{Y}_i\}_i$ is a finite chain.
 - Its limit is still correct:

$$\bigsqcup_{i\in\mathbb{N}}(\hat{F}^i(\hat{\perp}))\sqsubseteq \lim_{i\in\mathbb{N}}(\hat{Y}_i).$$

Theorem [narrow's safety]

Why Above Prescription Is Correct?

Fixpoint Transfer Theorem

Theorem (fixpoint transfer)

Let CPOs D and \hat{D} are Galois-connected. Function $F:D\to D$ is continuous. $\hat{F}:\hat{D}\to\hat{D}$ is either monotonic or extensive. Either $\alpha\circ F\sqsubseteq\hat{F}\circ\alpha$ or $\alpha\ f\sqsubseteq\hat{f}$ implies $\alpha(F\ f)\sqsubseteq\hat{F}\ \hat{f}$. Then,

$$\alpha(\operatorname{fix} F) \sqsubseteq \bigsqcup_{i \in \mathbb{N}} \hat{F}^i(\hat{\perp}).$$

Why Above Prescription Is Correct?

Widening/Narrowing Theorems

Theorem (widen's safety)

Let $\hat{F}: \hat{D} \to \hat{D}$ be monotonic over CPO \hat{D} . Let widening operator $\nabla: \hat{D} \times \hat{D} \to \hat{D}$ satisfies the widending conditions. Then the widened chain $\{\hat{X}_i\}_i$ is finite and its limit satisfies $\lim_{i \in \mathbb{N}} \hat{X}_i \supseteq \bigsqcup_{i \in \mathbb{N}} \hat{F}^i(\hat{\bot})$.

Theorem (narrow's safety)

Let $\hat{F}: \hat{D} \to \hat{D}$ be monotonic over CPO \hat{D} . Let narrowing operator $\triangle: \hat{D} \times \hat{D} \to \hat{D}$ satisfies the narrowng conditions. If $\hat{F}(\hat{A}) \sqsubseteq \hat{A}$ then the narrowed chain $\{\hat{Y}_i\}_i$ is finite and its limit satisfies $\lim_{i \in \mathbb{N}} \hat{Y}_i \supseteq \bigsqcup_{i \in \mathbb{N}} \hat{F}^i(\hat{\bot})$.

Properties of Galois Connections

$$D \stackrel{\gamma}{\longleftrightarrow} \hat{D}$$

Theorem 1. $\alpha(\perp) = \hat{\perp}$

Proof. $\alpha(\bot) \sqsubseteq \hat{\bot}$ because $\bot \sqsubseteq \gamma(\hat{\bot})$. By the definition of $\hat{\bot}$, $\hat{\bot} \sqsubseteq \alpha(\bot)$. Therefore, $\alpha(\bot) = \hat{\bot}$.

Theorem 2. $id \sqsubseteq \gamma \circ \alpha$

Proof. $\alpha(x) \sqsubseteq \alpha(x)$. By the definition of galois connection, $x \sqsubseteq \gamma(\alpha(x))$.

Theorem 3. $\alpha \circ \gamma \sqsubseteq id$

Proof. $\gamma(\hat{x}) \sqsubseteq \gamma(\hat{x})$. By the definition of galois connection, $\alpha(\gamma(\hat{x})) \sqsubseteq \hat{x}$.

Properties of Galois Connections

Theorem 4. γ is monotone.

Proof. Suppose $\hat{x} \sqsubseteq \hat{y}$. Because $\alpha \circ \gamma \sqsubseteq id$, $\alpha \circ \gamma(\hat{x}) \sqsubseteq \hat{y}$. By the definition of galois connection, $\gamma(\hat{x}) \sqsubseteq \gamma(\hat{y})$.

Theorem 5. α is monotone.

Proof. Suppose $x \sqsubseteq y$. Then $x \sqsubseteq \gamma \circ \alpha(y)$ because $id \sqsubseteq \gamma \circ \alpha$. By the definition of galois connection, $\alpha(x) \sqsubseteq \alpha(y)$.

Properties of Galois Connections

Theorem 6. α is continuous.

Proof. We show that for any chain S in D,

$$\alpha(\bigsqcup_{x \in S} x) = \bigsqcup_{x \in S} \alpha(x).$$

- (\supseteq): Because α is monotone, $\alpha(\bigsqcup_{x \in S} x) \supseteq \bigsqcup_{x \in S} \alpha(x)$.
- (\sqsubseteq) : $\bigsqcup_{x \in S} x \sqsubseteq \gamma(\bigsqcup_{x \in S} \alpha(x))$ because

$$\bigsqcup_{x \in S} x \sqsubseteq \bigsqcup_{x \in S} \gamma(\alpha(x)) \qquad (id \sqsubseteq \gamma \circ \alpha)$$

$$\bigsqcup_{x \in S} \gamma(\alpha(x)) \sqsubseteq \gamma(\bigsqcup_{x \in S} \alpha(x)) \quad (\gamma \text{ is monotone})$$

By the definition of galois connection, $\alpha(\bigsqcup_{x\in S} x) \sqsubseteq \bigsqcup_{x\in S} \alpha(x)$.

Compositional Constructions of Galois Connections

- ullet Suppose $A \stackrel{\gamma_A}{\longleftrightarrow} \hat{A}$ and $B \stackrel{\gamma_B}{\longleftrightarrow} \hat{B}$. Then,
- $A \times B \xrightarrow{\gamma_{A \times B}} \hat{A} \times \hat{B}$
 - with $\alpha_{A\times B}=\lambda\langle a,b\rangle$. $\langle \alpha_A(a),\alpha_B(b)\rangle$
- $A + B \stackrel{\gamma_{A+B}}{\underset{\alpha_{A+B}}{\longleftarrow}} \hat{A} + \hat{B}$
 - with $\alpha_{A+B} = \lambda x$. $\begin{cases} \alpha_A(x) & (x \in A) \\ \alpha_B(x) & (\text{otherwise}) \end{cases}$

Compositional Constructions of Galois Connections

•
$$A \to B \xrightarrow{\alpha_{A \to B}} \hat{A} \to \hat{B}$$

• with $\alpha_{A\to B}=\lambda f. \ \alpha_B\circ f\circ \gamma_{\hat{A}}$

Compositional Constructions of Galois Connections

Theorem 7. If $A \stackrel{\gamma_A}{\longleftrightarrow} \hat{A}$ and $B \stackrel{\gamma_B}{\longleftrightarrow} \hat{B}$, then $A \to B \stackrel{\gamma_{A \to B}}{\longleftrightarrow} \hat{A} \to \hat{B}$ where $\alpha_{A \to B} = \lambda f$. $\alpha_B \circ f \circ \gamma_{\hat{A}}$ and $\gamma_{\hat{A} \to \hat{B}} = \lambda \hat{f}$. $\gamma_{\hat{B}} \circ \hat{f} \circ \alpha_A$.

Proof. We will show

$$\forall f \in A \to B, \hat{f} \in \hat{A} \to \hat{B}. \ \alpha_{A \to B}(f) \sqsubseteq \hat{f} \iff f \sqsubseteq \gamma_{\hat{A} \to \hat{B}}(\hat{f}).$$

• Case (\Rightarrow) : for $f \in A \to B$, $\hat{f} \in \hat{A} \to \hat{B}$, $\alpha_{A\to B}(f) \sqsubseteq \hat{f}$.

$$\alpha_{B} \circ f \circ \gamma_{\hat{A}} \sqsubseteq \hat{f}$$

$$\gamma_{\hat{B}} \circ \alpha_{B} \circ f \circ \gamma_{\hat{A}} \sqsubseteq \gamma_{\hat{B}} \circ \hat{f}$$

$$f \circ \gamma_{\hat{A}} \sqsubseteq \gamma_{\hat{B}} \circ \hat{f}$$

$$f \circ \gamma_{\hat{A}} \subseteq \gamma_{\hat{B}} \circ \hat{f}$$

$$f \circ \gamma_{\hat{A}} \circ \alpha_{A} \sqsubseteq \gamma_{\hat{B}} \circ \hat{f} \circ \alpha_{A}$$

$$f \sqsubseteq \gamma_{\hat{B}} \circ \hat{f} \circ \alpha_{A}$$

$$(f \text{ monotone}, id \sqsubseteq \gamma_{\hat{A}} \circ \alpha_{A})$$

• Case (\Leftarrow) : similar to the above case.

Best Abstract Semantics

• Let $f \in A \to B$ be a concrete semantic function and

$$A \xrightarrow{\gamma_{A^{\sharp}}} A^{\sharp} \qquad \qquad B \xrightarrow{\gamma_{B^{\sharp}}} B^{\sharp}$$

- $f^{\sharp} \in A^{\sharp} \to B^{\sharp}$ is a monotone abstract semantic function. Then, the "best" (most precise) abstract semantic function is $f^{\sharp} = \alpha_B \circ f \circ \gamma_{A^{\sharp}}$
- Why? we can show
 - $f \circ \gamma_{A^\#} \sqsubseteq \gamma_{B^\#} \circ f^\#$
 - For any $g \in A^{\#} \to B^{\#}$, if $f \circ \gamma_{A^{\#}} \sqsubseteq \gamma_{B^{\#}} \circ g^{\#}$, then $f^{\#} \sqsubseteq g^{\#}$

Soundness Proofs

Fixpoint Transfer Theorems

Theorem (Fixpoint Transfer 1). Let \mathbb{D} and \mathbb{D}^{\sharp} be related by Galois connection $\mathbb{D} \stackrel{\gamma}{\longleftrightarrow} \mathbb{D}^{\sharp}$. Let $F: \mathbb{D} \to \mathbb{D}$ be a continuous function and $F^{\sharp}: \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ be a monotone or extensive function such that $F \circ \gamma \sqsubseteq \gamma \circ F^{\sharp}$. Then,

$$\mathbf{lfp}F \sqsubseteq \gamma(\bigsqcup_{i \ge 0} F^{\sharp i}(\bot^{\sharp})).$$

Fixpoint Transfer Theorem

Theorem (Fixpoint Transfer 1). Let \mathbb{D} and \mathbb{D}^{\sharp} be related by Galois connection $\mathbb{D} \stackrel{\gamma}{\longleftrightarrow} \mathbb{D}^{\sharp}$. Let $F: \mathbb{D} \to \mathbb{D}$ be a continuous function and $F^{\sharp}: \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ be a monotone or extensive function such that $F \circ \gamma \sqsubseteq \gamma \circ F^{\sharp}$. Then,

$$\mathbf{lfp}F \sqsubseteq \gamma(\bigsqcup_{i \ge 0} F^{\sharp i}(\bot^{\sharp})).$$

Proof. First we prove $\forall n \in \mathbb{N}$. $F^n(\bot) \sqsubseteq \gamma(F^{\sharp n}(\bot^{\sharp}))$ by induction. The base case is trivial. The inductive case is as follows:

$$F^{n+1}(\bot) = F \circ F^{n}(\bot)$$

$$\sqsubseteq F \circ \gamma(F^{\sharp n}(\bot^{\sharp})) \qquad \text{(by induction hypothesis and monotonicity of } F)$$

$$\sqsubseteq \gamma \circ F^{\sharp} \circ F^{\sharp n}(\bot^{\sharp}) \qquad \qquad \text{(by assumption } F \circ \gamma \sqsubseteq \gamma \circ F^{\sharp})$$

$$= \gamma(F^{\sharp n+1}(\bot^{\sharp}))$$

 $\{F^i(\perp)\}_i$ is a chain because F is continuous (so monotone). Then, the least upper bound of the chain $\bigsqcup_{i\geq 0} F^i(\perp)$ exists because $\mathbb D$ is a CPO. $\{F^{\sharp i}(\perp^{\sharp})\}_i$ is a chain because F^{\sharp} is monotone or extensive. Then, $\{\gamma(F^{\sharp i}(\perp^{\sharp}))\}_i$ is also a chain because γ is monotone. Therefore, the least upper bound of the chain $\bigsqcup_{i\geq 0} \{\gamma(F^{\sharp i}(\perp^{\sharp}))\}_i$ exists.

$$\mathbf{lfp}F = \bigsqcup_{i \ge 0} F^i(\bot) \sqsubseteq \bigsqcup_{i \ge 0} \gamma(F^{\sharp i}(\bot^{\sharp}))$$

$$\sqsubseteq \gamma(\bigsqcup_{i > 0} (F^{\sharp i}(\bot^{\sharp}))) \qquad \text{(by monotonicity of } \gamma)$$

Widening's Safety

Theorem (Widening's Safety). Let \mathbb{D}^{\sharp} be a CPO, $F^{\sharp}: \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ be a monotone function, and $\nabla: \mathbb{D}^{\sharp} \times \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ be a widening operator. Then, chain $\{Y_i^{\sharp}\}_i$ eventually stabilizes and

$$\bigsqcup_{i\geq 0} F^{\sharp i}(\perp^{\sharp}) \sqsubseteq Y_{\lim}^{\sharp}$$

where Y_{\lim}^{\sharp} is the greatest element of the chain.

Widening's Safety

Theorem (Widening's Safety). Let \mathbb{D}^{\sharp} be a CPO, $F^{\sharp}: \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ be a monotone function, and $\nabla: \mathbb{D}^{\sharp} \times \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ be a widening operator. Then, chain $\{Y_i^{\sharp}\}_i$ eventually stabilizes and

$$\bigsqcup_{i\geq 0} F^{\sharp i}(\perp^{\sharp}) \sqsubseteq Y_{\lim}^{\sharp}$$

where Y_{\lim}^{\sharp} is the greatest element of the chain.

Proof. First we prove chain $\{Y_i^{\sharp}\}_i$ is finite. According to the second condition on widening operator, it is enough to show that chain $\{F^{\sharp}(Y_i^{\sharp})\}_i$ is increasing. The chain is increasing because 1) $F^{\sharp}(Y_{i+1}^{\sharp})$ is either $F^{\sharp}(Y_i^{\sharp})$ or $F^{\sharp}(Y_i^{\sharp})$ or $F^{\sharp}(Y_i^{\sharp})$, 2) $Y_i^{\sharp} \sqsubseteq Y_i^{\sharp} \nabla F^{\sharp}(Y_i^{\sharp})$ according to the first condition on widening, and 3) F^{\sharp} is monotone.

Second, we prove $\bigsqcup_{i\geq 0} F^{\sharp i}(\perp^{\sharp}) \sqsubseteq Y^{\sharp}_{\lim}$. It is enough to show that $\forall i\in\mathbb{N}.\ F^{\sharp i}(\perp^{\sharp})\sqsubseteq Y^{\sharp}_{i}$ that can be proven by induction. The base case is trivial. The inductive case is as follows:

$$F^{\sharp i+1}(\perp^{\sharp}) = F^{\sharp}(F^{\sharp i}(\perp^{\sharp}))$$

$$\sqsubseteq F^{\sharp}(Y_i^{\sharp}) \qquad \text{(by induction hypothesis and monotonicity of } F^{\sharp})$$

If $F^{\sharp}(Y_i^{\sharp}) \sqsubseteq Y_i^{\sharp}$, then $Y_{i+1}^{\sharp} = Y_i^{\sharp}$ by definition. Therefore, $F^{\sharp i+1}(\bot^{\sharp}) \sqsubseteq Y_{i+1}^{\sharp}$.

If $F^{\sharp}(Y_i^{\sharp}) \supset Y_i^{\sharp}$, then $Y_{i+1}^{\sharp} = Y_i^{\sharp} \vee F^{\sharp}(Y_i^{\sharp})$ by definition. According to the first condition on widening, $F^{\sharp}(Y_i^{\sharp}) \sqsubseteq Y_i^{\sharp} \vee F^{\sharp}(Y_i^{\sharp})$. Therefore, $F^{\sharp i+1}(\bot^{\sharp}) \sqsubseteq Y_{i+1}^{\sharp}$.

Narrowing's Safety

Theorem (Narrowing's Safety). Let \mathbb{D}^{\sharp} be a CPO, $F^{\sharp}: \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ be a monotone function, and $\triangle: \mathbb{D}^{\sharp} \times \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ be a narrowing operator. Then, chain $\{Z_i^{\sharp}\}_i$ eventually stabilizes and

$$\bigsqcup_{i\geq 0} F^{\sharp i}(\perp^{\sharp}) \sqsubseteq Z_{\lim}^{\sharp}$$

where Z_{\lim}^{\sharp} is the least element of the chain.

Narrowing's Safety

Theorem (Narrowing's Safety). Let \mathbb{D}^{\sharp} be a CPO, $F^{\sharp}: \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ be a monotone function, and $\triangle: \mathbb{D}^{\sharp} \times \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ be a narrowing operator. Then, chain $\{Z_i^{\sharp}\}_i$ eventually stabilizes and

$$\bigsqcup_{i>0} F^{\sharp i}(\perp^{\sharp}) \sqsubseteq Z_{\lim}^{\sharp}$$

where Z_{\lim}^{\sharp} is the least element of the chain.

Proof. First we prove chain $\{Z_i^{\sharp}\}_i$ is finite. According to the second condition on narrowing operator, it is enough to show that chain $\{F^{\sharp}(Z_i^{\sharp})\}_i$ is decreasing. The chain is decreasing if $\forall i \in \mathbb{N}$. $Z_i^{\sharp} \supseteq F^{\sharp}(Z_i^{\sharp})$, because

$$Z_{i}^{\sharp} \supseteq F^{\sharp}(Z_{i}^{\sharp})$$

$$\Longrightarrow Z_{i}^{\sharp} \supseteq (Z_{i}^{\sharp} \bigtriangleup F^{\sharp}(Z_{i}^{\sharp})) \supseteq F^{\sharp}(Z_{i}^{\sharp}) \quad \text{(by the first condition on narrowing)}$$

$$\Longrightarrow F^{\sharp}(Z_{i}^{\sharp}) \supseteq F^{\sharp}(Z_{i}^{\sharp} \bigtriangleup F^{\sharp}(Z_{i}^{\sharp})) \qquad \text{(by monotonicity of } F^{\sharp})$$

$$\Longrightarrow F^{\sharp}(Z_{i}^{\sharp}) \supseteq F^{\sharp}(Z_{i+1}^{\sharp}) \qquad \text{(by definition of } Z_{i+1}^{\sharp})$$

We prove $\forall i \in \mathbb{N}$. $Z_i^{\#} \supseteq F^{\#i}(\bot)$ by induction. The base case is trivial because $F^{\#0}(\bot) = \bot$. The inductive step is as follows: By IH, we have $Z_i^{\#} \supseteq F^{\#i}(\bot)$. We need to show that $Z_{i+1}^{\#} \supseteq F^{\#i+1}(\bot)$. Because $F^{\#}$ is monotone, we have $F^{\#}(Z_i^{\#}) \sqsubseteq F^{\#i+1}(\bot)$. Because $F^{\#}(Z_i^{\#}) \sqsubseteq Z_i^{\#}, Z_i^{\#} \triangle F^{\#}(Z_i^{\#}) \supseteq F^{\#}(Z_i^{\#})$ by the first condition of the narrowing operator. Therefore, $F^{\#i+1}(\bot) \sqsubseteq F^{\#}(Z_i^{\#}) \sqsubseteq Z_i^{\#} \triangle F^{\#}(Z_i^{\#}) \sqsubseteq Z_{i+1}^{\#}$.