Preliminary Concepts (3)

Operational Semantics, Interpreters

Woosuk Lee

CSE 6049 Program Analysis

G UN/y
£
S

9928 Hanyang University, Korea

N 1939

< l

\ /
-‘\‘,..'t.-

Two Styles of Definitions of Semantics

e Denotational semantics: The meaning is modeled by
mathematical objects that represent the effect of executing the
program. About the result (not about how the result is obtained)

® So-called compositional style

e Operational semantics: The meaning is specifed by the
computation steps executed on a machine. About how the result

is obtained

® So-called transitional style

Operational Semantics

® concerning how to execute programs and not merely
what the execution results are.

o Big-step operational semantics describes how
overall results of executions are obtained.

o Small-step operational semantics describes how
individual steps of computations take place.

® |nductively defined, thus may not be compositional

Semantic Domains in Operational Semantics

® Ordinary sets; no need to be CPOs

e SUT,S+T,SxT,83T

fin

SET={flfeS —T,5 CS}

fin

e Not to confuse — with —

The WHILE Language

C — skip

r .= F

if ECC
C:C
while F C

E — n (n € Z)
T

B+ B

- B

Semantics as Proofs

¢ Semantic domain

M € Memory = Var 33 Val
v € Val = Z

® Program semantics: proofs using a set of inference rules

MEC = M

: Execution of C with memory M will result in

another memory M’

.Ml—eiv

: Execution of E given memory M will result in v

Big-step Operational Semantics

MFEskip=M

MEFE=wv
Mtz :=F= M{zxw— v}

M|_01:>M1 M1|_CQZ>M2
M|—Cl;02:>M2

Big-step Operational Semantics

MFE=0 MFCy= M
MEiIfEC, Cy= M’

MFE=v MFC, =M
M|_ifE0102:>M/

v # 0

M&EFE =20
MFwhile EC = M

MFE=v MFC= M MlkwhileECngv#O
M+ while E C' = M,

Big-step Operational Semantics

MENn=n

M&Ex= M(x)

MFE{=v1 MFEy= v
ME E{+ FEy = v1 + v9

MEE =
MF-E= —v

Semantics as Proofs

More precise interpretation of the evaluation rules:

The inference rules define a set S of triples (M, e, v). For readability,
the triple was written by M - e = v in the rules.

We say an expression e has semantics w.r.t. M iff there is a triple
(M,e,v) € S for some value v.

That is, we say an expression e has semantics w.r.t. M iff we can
derive M I e = v for some value v by applying the inference rules.

We say an initial expression e has semantics if {} - e = v for some v.

Example

C’Ie:tac:=1;y:=x+1

IFC={x— 1,y — 2}

Example

C’Ie:ta:':=1;y:=$+1

{x—1lFx=1 {x—1}F1=1
D-1=1 {x—1}Fx+1=2

IFx:=1={x— 1} {x—=1}Fy:i=x+1={z— 1,y— 2}

IFC={x— 1,y — 2}

Exercise

{}Fax:=1;if (z) v :

ly:=—1=7

Exercise

{} 2z :=2;while (z) z ===

Execution Types

® We say the execution of a command C on a memory M

e Terminates iff there is a memory M’ such that
MEC=M

® | oops otherwise

Examples

{}Fx:=1;while (z) x:=x+1 =7

Semantic Equivalence

e We say C1and C2 are semantically equivalent

(denoted C1 = (%) if the following is true for all
memories M, M’

MECi =M <— MFECy= M’

e Example:

e vwhilex C =if (z) (C;while xz (') skip

Implementing Big-step Interpreter in OCaml

type var = string

type exp =
| Int of 1nt (* n *)
| Var of var (* x *)
| Plus of exp * exp (* el + eZ2 *)
| Minus of exp (* -e *)

type cmd =
| Assign of var * exp (¥* x :=e *)
| Skip (* skip *)
| Seq of ecmd * cmd (* cl; c2 *)
| If of exp * cmd * cmd (* 1f e cl c2 *)
| While of exp * cmd (* while e c *)

(*x :=10; y :=1; while (x) (y =y +y; X :=x - 1%)
let pgm =
Seq (Assign ("x", Int 10),
Seq (Assign ("y", Int 1),
While (Var "x",
Seq (Assign("y", Plus (Var "y", Var "y")),
Assign("x", Plus (Var "x", Minus (Int 1))))
D))

Implementing Big-step Interpreter in OCaml

module Mem = struct
type t = (var * 1int) list
let empty = []
let rec lookup m x =

match m with
| [] -> raise (Failure (x A "is not bound in state"))

| (y,v) ::m'" -> 1f x =y then v else lookup m' x
let update m x v = (x,v)::m
end

let rec eval_e : exp -> Mem.t -> 1int
= fun em ->
match e with
| Int n -> n
| Var x -> Mem.lookup m x
| Plus (el, e2) -> (eval_e el m) + (eval_e eZ2 m)
| Minus e' -> -1 * (eval_e e' m)

Implementing Big-step Interpreter in OCaml

let rec eval_c : cmd -> Mem.t -> Mem.t
= fun cm ->
match c with
Assign (x, e) -> Mem.update m x (eval_e e m)
Skip -> m
Seq (cl, c2) -> eval_c c2 (eval_c cl1 m)
If (e, cl1, c2) ->
eval_c (1f (eval_e e m) <> 0 then cl else c2) m
| While (e, ¢c) ->
1f (eval_e e m) <> 0 then

eval_c (While (Ce,c)) (eval_c c m)
else m

let =

print_int (Mem.lookup (eval_c pgm Mem.empty) "y");
print_newline ()

Small-step Operational Semantics

e Another alternative is to define semantics as a transition
system

o S :the set of states

o (—) C S XS .transition relation

® |n our case, a state is a pair of a command and a
memory (C, M)
(C,m) — (C",m')

“Execution of C from m
will result in C'" and m'.”

Small-step Operational Semantics

® Semantics of expressions is defined as a function:

|E]| : Memory — Val

[n](M) = n
|z](M) = M(x)
[Er+E:](M) = [E](M)+ [Ex](M)
[—-E](M) = —[E](M)

Small-step Operational Semantics

(C1,m) — (C1,m")

(C1; Co,m) — (C1; Coym’) [E](M) # 0
(if F Cy Co, M) — (C1, M)
(skip; Co,m) — (Cy, m) [E](M) =0

<if E Cl CQ,M> — <CQ,M>
[E](m) = n

(x :=F,m) — (skip,m{x — n})

SN ‘ <1f B then else Skip7 m>

Exercise

r:=1,y:=x+1

Exercise

|
|
[—

r:=1if (x)y:=1y:

Exercise

x := 2;while (z) z :=x + (—1)

Implementing Small-Step Interpreter in
OCam|

type conf =
| NonTerminated of cmd * Mem.t
| Terminated of Mem.t

let rec eval_e : exp -> Mem.t -> 1int
= fun em ->
match e with
| Int n -> n
| Var x -> Mem.lookup m x
| Plus (el, e2) -> (eval_e el m) + (eval_e e2 m)
| Minus e' -> -1 * (eval_e e' m)

let rec next : conf -> conf
= fun conf ->
match conf with
| Terminated _ -> raise (Failure "impossible")
| NonTerminated (c, s) ->
(match ¢ with
| Assign (x, e) -> Terminated (Mem.update s x (eval_e e s))
| Skip -> Terminated s
| Seq (cl, c2) -> (
match (next (NonTerminated (cl,s))) with

Implementing Small-Step Interpreter in
OCam|

| NonTerminated (c', s') -> NonTerminated (Seq (c', c2), s')
| Terminated s' -> NonTerminated (c2, s')
)
| If (e, cl1, c2) ->
1f (eval_e e s) <> 0 then NonTerminated (cl, s)
else NonTerminated (c2, s)
| While (e, ¢c) ->
NonTerminated (If (e, Seq (c, While (e, c)), Skip), s)
)

let rec next_trans : conf -> Mem.t
= fun conf ->
match conf with
| Terminated s -> s
| _ -> next_trans (next conf)
let _ =
print_int (Mem.lookup (next_trans (NonTerminated (pgm,Mem.empty))) "y");
print_newline ()

