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Goal of This Lecture

• Learn practical alternatives to the aforementioned 
general, abstract interpretation framework

• For simple languages and properties, there are 
frameworks that are simple yet powerful enough

• But with several limitations



Static Analysis by Proof Construction

• Static analysis = proof construction in a finite proof system

• Finite proof system = a finite set of inference rules for a 
predefined set of judgements

• The soundness corresponds to the soundness of the proof 
system

• The input program is provable => the program satisfies 
the proven judgement.



Example: Type Inference

• A simple ML-like language
Language

E ! n

| x

| E + E

| E � E

| iszero E

| if E then E else E

| let x = E in E

| proc x E

| E E
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TypesTypes

Types are defined inductively:

T ! int
| bool
| T ! T

Examples:

int

bool

int ! int

bool ! int

int ! (int ! bool)

(int ! int) ! (bool ! bool)

(int ! int) ! (bool ! (bool ! int))
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Types of Expressions

• Judgement that says expression E has type t is written as  
 

                               

• Γ is a set of type assumptions for the free variables in E 
(called type environment) 
 

                             

Types of Expressions

In order to compute the type of an expression, we need type environment:

� : Var ! T

Notation:

� ` e : t , Under type environment �, expression e has type t.
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ExamplesExamples

[] ` 3 : int

[x 7! int] ` x : int

[] ` 4 � 3 :

[x 7! int] ` x � 3 :

[] ` iszero 11 :

[] ` proc (x) (x � 11) :

[] ` proc (x) (let y = x � 11 in (x � y)) :

[] ` proc (x) (if x then 11 else 22) :

[] ` proc (x) (proc (y) if y then x else 11) :

[] ` proc (f) (if (f 3) then 11 else 22) :

[] ` (proc (x) x) 1 :

[f 7! int ! int] ` (f (f 1)) :
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Type System
Typing Rules

Inductive rules for assigning types to expressions:

� ` n : int � ` x : �(x)

� ` E1 : int � ` E2 : int
� ` E1 + E2 : int

� ` E1 : int � ` E2 : int
� ` E1 � E2 : int

� ` E : int
� ` iszero E : bool

� ` E1 : bool � ` E2 : t � ` E3 : t
� ` if E1 then E2 else E3 : t

� ` E1 : t1 [x 7! t1]� ` E2 : t2
� ` let x = E1 in E2 : t2

� ` E1 : t1 ! t2 � ` E2 : t1
� ` E1 E2 : t2

[x 7! t1]� ` E : t2
� ` proc x E : t1 ! t2

We say that a closed expression E has type t i↵ we can derive [] ` E : t.
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Example

Program    is typed   

because we can prove  

as follows: 
 

Example 2

[] ` proc (x) (x � 11) : int ! int
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Soundness of Type System

Specialized Frameworks

Example: Type Inference (2/4)
Consider simple types

⌧ ::= int | ⌧ ! ⌧

� ` n : int
x : ⌧ 2 �
� ` x : ⌧

�+ x : ⌧1 ` E : ⌧2
� ` �x.E : ⌧1 ! ⌧2

� ` E1 : ⌧1 ! ⌧2 � ` E2 : ⌧1
� ` E1 E2 : ⌧2

Figure: Proof rules of simple types

Theorem (Soundness of the proof rules)
Let E be a program, an expression without free variables. If ; ` E : ⌧ ,

then the program runs without a type error and returns a value of type ⌧ if

it terminates.
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Automatic Type Inference
Automatic Type Inference

A static analysis algorithm that automatically figures out types of
expressions by observing how they are used.

The algorithm is sound and complete with respect to the type system
design.

I (Sound) If the analysis finds a type for an expression, the expression is
well-typed with the type according to the type system.

I (Complete) If an expression has a type according to the type system,
the analysis is guaranteed to find the type.

The algorithm consists of two steps:
1 Generate type equations from the program text.
2 Solve the equations.

Woosuk Lee ENE4014 2021 Spring, Lecture 13 March 1, 2021 3 / 11



Generating Type Equations

Generating Type Equations

For every subexpression and variable, introduce type variables and derive
equations between the type variables.
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Type Equations
Type Equations

Type equations are conjunctions of “type equalities”: e.g.,

t0 = tf ! t1
t1 = tx ! t4
t3 = int
t4 = int
t2 = int
tf = int ! t3
tf = tx ! t4

Type equations (TyEqn) are defined inductively:

TyEqn ! ;
| T

.
= T ^ TyEqn
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ExampleExample 1

proc ( f|{z}
tf

) proc ( x|{z}
tx

) ((f 3)| {z }
t3

� (f x)| {z }
t4| {z }

t2

)

| {z }
t1| {z }

t0

t0 = tf ! t1
t1 = tx ! t4
t3 = int
t4 = int
t2 = int
tf = int ! t3
tf = tx ! t4

Woosuk Lee ENE4014 2021 Spring, Lecture 13 March 1, 2021 5 / 11



Example
Example 2

proc ( f|{z}
tf

) (f 11| {z }
t1

)

| {z }
t0

t0 = tf ! t1
tf = int ! t1
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Example
Example 3

if x|{z}
tx

then (x � 1)| {z }
t1

else 0

| {z }
t0

tx = bool
t1 = t0
int = t0
tx = int
t1 = int
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Generating Type Equations
Deriving Type Equations

Algorithm for generating equations:

V : (Var ! T ) ⇥ E ⇥ T ! TyEqn

V(�, e, t) generates the condition for e to have type t in �:

� ` e : t i↵ V(�, e, t) is satisfied.

Examples:
I V([x 7! int], x+1,↵) = ↵

.
= int

I V(;, proc (x) (if x then 1 else 2),↵ ! �) =
↵

.
= bool ^ �

.
= int

To derive type equations for closed expression E, we call V(;, E,↵),
where ↵ is a fresh type variable.
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Generating Type EquationsDeriving Type Equations

V(�, n, t) = t
.
= int

V(�, x, t) = t
.
= �(x)

V(�, e1 + e2, t) = t
.
= int ^ V(�, e1, int) ^ V(�, e2, int)

V(�, iszero e, t) = t
.
= bool ^ V(�, e, int)

V(�, if e1 e2 e3, t) = V(�, e1, bool) ^ V(�, e2, t) ^ V(�, e3, t)

V(�, let x = e1 in e2, t) = V(�, e1,↵) ^ V([x 7! ↵]�, e2, t) (new ↵)

V(�, proc (x) e, t) = t
.
= ↵1 ! ↵2 ^ V([x 7! ↵1]�, e,↵2)

(new ↵1,↵2)

V(�, e1 e2, t) = V(�, e1,↵ ! t) ^ V(�, e2,↵) (new ↵)
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Example

Example

V(;, (proc (x) (x)) 1,↵)
= V(;, proc (x) (x),↵1 ! ↵) ^ V(;, 1,↵1) new ↵1

= ↵1 ! ↵
.
= ↵2 ! ↵3 ^ V([x 7! ↵2], x,↵3) ^ ↵1

.
= int new ↵2,↵3

= ↵1 ! ↵
.
= ↵2 ! ↵3 ^ ↵2

.
= ↵3 ^ ↵1

.
= int
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Finding a Solution of Type Equations
Finding a Solution of Type Equations

Find the values of type variables that make all the equations true.

proc ( f
|{z}
tf

) proc ( x|{z}
tx

) ((f 3)
| {z }

t3

� (f x)
| {z }

t4| {z }
t2

)

| {z }
t1| {z }

t0

Equations Solution
t0 = tf ! t1 t0 = (int ! int) ! (int ! int)
t1 = tx ! t2 t1 = int ! int
t3 = int t2 = int
t4 = int t3 = int
t2 = int t4 = int
tf = int ! t3 tf = int ! int
tf = tx ! t4 tx = int

Static type systems find such a solution using unification algorithm.
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Finding a Solution of Type Equations
Example 1

The calculation is split into equations to be solved and substitution found

so far. Initially, the substitution is empty:

Equations Substitution

t0 = tf ! t1
t1 = tx ! t2
t3 = int

t4 = int

t2 = int

tf = int ! t3
tf = tx ! t4
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Finding a Solution of Type Equations
Example 1

Consider each equation in turn. If the equation’s left-hand side is a

variable, move it to the substitution:

Equations Substitution

t1 = tx ! t2 t0 = tf ! t1
t3 = int

t4 = int

t2 = int

tf = int ! t3
tf = tx ! t4
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Finding a Solution of Type Equations

Example 1

Move the next equation to the substitution and propagate the information

to the existing substitution (i.e., substitute the right-hand side for each

occurrence of t1):

Equations Substitution

t3 = int t0 = tf ! (tx ! t2)
t4 = int t1 = tx ! t2
t2 = int

tf = int ! t3
tf = tx ! t4
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Finding a Solution of Type Equations
Example 1

Same for the next three equations:

Equations Substitution

t4 = int t0 = tf ! (tx ! t2)
t2 = int t1 = tx ! t2
tf = int ! t3 t3 = int

tf = tx ! t4

Equations Substitution

t2 = int t0 = tf ! (tx ! t2)
tf = int ! t3 t1 = tx ! t2
tf = tx ! t4 t3 = int

t4 = int

Equations Substitution

tf = int ! t3 t0 = tf ! (tx ! int)
tf = tx ! t4 t1 = tx ! int

t3 = int

t4 = int

t2 = int
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Finding a Solution of Type Equations
Example 1

Consider the next equation tf = int ! t3. The equation contains t3,
which is already bound to int in the substitution. Substitute int for t3 in

the equation. This is called applying the substitution to the equation.

Equations Substitution

tf = int ! int t0 = tf ! (tx ! int)
tf = tx ! t4 t1 = tx ! int

t3 = int

t4 = int

t2 = int

Move the resulting equation to the substitution and update it.

Equations Substitution

tf = tx ! t4 t0 = (int ! int) ! (tx ! int)
t1 = tx ! int

t3 = int

t4 = int

t2 = int

tf = int ! int
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Finding a Solution of Type Equations
Example 1

Apply the substitution to the equation:

Equations Substitution

int ! int = tx ! int t0 = (int ! int) ! (tx ! int)
t1 = tx ! int

t3 = int

t4 = int

t2 = int

tf = int ! int

If neither side of the equation is a variable, simplify the equation by

yielding two new equations:

Equations Substitution

int = tx t0 = (int ! int) ! (tx ! int)
int = int t1 = tx ! int

t3 = int

t4 = int

t2 = int

tf = int ! int
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Finding a Solution of Type Equations
Example 1

Switch the sides of the first equation and move it to the substitution:

Equations Substitution

int = int t0 = (int ! int) ! (int ! int)
t1 = int ! int

t3 = int

t4 = int

t2 = int

tf = int ! int

tx = int

The final substitution is the solution of the original equations.
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Finding a Solution of Type Equations

Example 4

proc ( f|{z}
tf

) (iszero (f f)| {z }
t2| {z }

t1

)

| {z }
t0

t0 = tf ! t1
t1 = bool

t2 = int

tf = tf ! t2
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Finding a Solution of Type Equations
Example 4

Solving as usual, we encounter a problem:

Equations Substitution

tf = tf ! int t0 = tf ! bool

t1 = bool

t2 = int

There is no type tf that satisfies the equation, because the

right-hand side of the equation is always larger than the left.

If we ever deduce an equation of the form t = . . . t . . . where the

type variable t occurs in the right-hand side, we must conclude that

there is no solution. This is called occurrence check.
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Unification Algorithm
Unification Algorithm

For each equation in turn,

Apply the current substitution to the equation.

If the equation is always true (e.g. int = int), discard it.

If the left- and right-hand sides are contradictory (e.g. bool = int),

the algorithm fails.

If neither side is a variable (e.g. int ! t1 = t2 ! bool), simplify the

equation, which eventually generates an equation whose left- or

right-hand side is a variable.

If the left-hand side is not a variable, switch the sides.

If the left-hand side variable occurs in the right-hand side, the

algorithm fails.

Otherwise, move it to the substitution and substitute the right-hand

side for each occurrence of the variable in the substitution.
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Substitutions
Substitution

Solutions of type equations are represented by substitution:

S 2 Subst = TyVar ! T

Applying a substitution to a type:

S(int) = int

S(bool) = bool

S(↵) =

⇢
t if ↵ 7! t 2 S
↵ otherwise

S(T1 ! T2) = S(T1) ! S(T2)
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Example

Example

Applying the substitution

S = {t1 7! int, t2 7! int ! int}

to to the type (t1 ! t2) ! (t3 ! int):

S((t1 ! t2) ! (t3 ! int))
= S(t1 ! t2) ! S(t3 ! int)
= (S(t1) ! S(t2)) ! (S(t3) ! S(int))
= (int ! (int ! int)) ! (t3 ! int)
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Unification Algorithm
Unification

Update the current substitution with equality t1
.
= t2.

unify : T ⇥ T ⇥ Subst ! Subst

unify(int, int, S) = S
unify(bool, bool, S) = S

unify(↵,↵, S) = S

unify(↵, t, S) =

⇢
fail ↵ occurs in t
extend S with ↵

.
= t otherwise

unify(t,↵, S) = unify(↵, t, S)
unify(t1 ! t2, t01 ! t02, S) = let S0 = unify(t1, t01, S) in

let S00 = unify(S0(t2), S0(t02), S
0) in

S00

unify( , , ) = fail
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Unification Algorithm
Solving Equations

unifyall : TyEqn ! Subst ! Subst

unifyall(;, S) = S
unifyall((t1

.
= t2) ^ u, S) = let S0 = unify(S(t1), S(t2), S)

in unifyall(u, S0)

Let U be the final unification algorithm:

U(u) = unifyall(u, ;)
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Automatic Type Inference

typeof : E ! T

The final type inference algorithm that composes equation derivation (V)

and equation solving (U):

typeof(E) =
let S = U(V(;, E,↵)) (new ↵)
in S(↵)
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ExampleExamples

typeof((proc (x) x) 1)

typeof(let x = 1 in proc(y) (x + y))
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Correctness of Automatic Type Inference

Specialized Frameworks

Example: Type Inference (4/4)

Algorithm
given a program E, V (;, E,↵) returns type equations.

V (�, n, ⌧) = {⌧ .
= int}

V (�, x, ⌧) = {⌧ .
= �(x)}

V (�,�x.E, ⌧) = {⌧ .
= ↵1 ! ↵2} [ V (�+ x : ↵1, E,↵2) (new ↵i)

V (�, E1 E2, ⌧) = V (�, E1,↵ ! ⌧) [ V (�, E2,↵) (new ↵)

solving the equations is done by the unification procedure

Theorem (Correctness of the algorithm)
Solving the equations ⌘ proving in the simple type system

More precise analysis?
need new sound proof rules (e.g.,polymorphic type systems)
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Limitations

• For target languages that lack a sound static type system, we have to invent it. 

• Design a finite proof system

• Prove the soundness of the proof system

• Design its algorithm that automates proving

• Prove the correctness of the algorithm

• What if the unification procedure is not enough?

• For some properties, the algorithm can generate constraints that are 
unsolvable by the unification procedure

• For some conventional imperative language, sound and precise-enough static 
type systems are elusive. 


