Specialized Static Analysis Framework:
Datalog Analysis

Woosuk Lee

CSE 6049 Program Analysis

yﬁUNlp‘%;
9928 Hanyang University, Korea

N 19

<

v
-k."‘-

Some slides are borrowed from http://rightingcode.org/slides/7.pdf

http://rightingcode.org/slides/7.pdf

Goal of This Lecture

® | earn practical alternatives to the aforementioned
general, abstract interpretation framework

e For simple languages and properties, there are
frameworks that are simple yet powerful enough

e But with several limitations

Static Analysis by Monotonic Closure

Static analysis = setting up initial facts then collecting new facts by a
kind of chain reaction

» has rules for collecting initial facts

» has rules for generating new facts from existing facts
the initial facts immediate from the program text
the chain reaction steps simulate the program semantics
the universe of facts are finite for each program
analysis accumulates facts until no more possible

Representative Example: Pointer Analysis

Reasoning about any real programs needs pointer reasoning: e.g.,

x = 1;
y = 23
*p = 3;
*q=4,

What is the value of x + y after the last statement?
@ p = &x and q = &y
@ p = &x and q # &y
@ p # &x and g = &y
@ p £ &x and q # &y

Pointer Analysis

® Static program analysis that computes the set of memory
locations (objects) that a pointer variable may point to at
runtime.

® One of the most important static analyses: all interesting
questions on program reasoning eventually need pointer
analysis.

e E.g., control-flows, data-flows, types, information-flows, etc

Example: (Flow-insensitive) Pointer Analysis

p = C program
C = statement
L :=R assignment
C;C sequence
L = X \ *X target to assign to
R := n|x|*x|&x value to assign

@ Goal: estimate all “points-to’ relations between variables that can
occur during executions

@ a — b: variable a can point to (can have the address of) variable b

Rules

® The analysis globally collects the set of possible points-
to facts that can happen during the program execution.

e Starting from the empty set, we apply rules of the
following form to add new facts to the global set.

and the current solution set "i
has i7 .. ik, |

| If program text has :
I componentC

- 1 Then, add 7 to the "
solution set :

e This collection terminates when no more addition is
possible.

Rules for Pointer Analysis

The initial facts that are obvious from the program text are collected by

this rule:
r = &y

r —1Y

The chain-reaction rules are as follows for other cases of assignments:

T =Y Y—=z T = XYy Y—>z Z—W
T — 2 T — W
Xr = Yy T —W Y — =2 Xr = XYy T —wW Y—>2 Z—>U
w — 2 w — v
r = &Yy T — W

w —1Y

Rules for Pointer Analysis

The initial facts that are obvious from the program text are collected by

this rule:
r = &y

r —1Y

The chain-reaction rules are as follows for other cases of assignments:

r =Y Y—=z T o= XYy Y —z Z—w
T — z T — W

kX 1= T — W — 2z = Xy I — W Sz z—ouv
J J | J J ,
W — 2 W — U s.‘

*x :=*y — Syntactic sugar:
‘ Can be transformed to .
{t:=*y;*x:=tforanewtempvart}

*x := &y — Syntactic sugar:
Can be transformed to

; t := &y; *x := t for a new temp var t |

Example

Example (Pointer analysis steps)

X (= &a; y 1= &x;
while B

Xy = &b ;
XX = *y

@ Initial facts are from the first two assignments:
X —>a, y—X
@ From y — x and the while-loop body, add

X — b

@ From the last assignment:

fromx —aand y —» %, add a — a
fromx —-bandy — x,add b — Db
fromx —a,y—>x,andx —>b,adda —Db
froomx - b,y > x,and x — a,add b — a

General Algorithm

@ let R be the set of the chain-reaction rules
o let X be the initial fact set
@ let Facts be the set of all possible facts

Y,

1>0

Then, the analysis result is

where
YO — X07

Y1 Y such that Y; Fp Y.

Or, equivalently, the analysis result is the least fixpoint

L) o' (0)

i>0
of monotonic function ¢ : p(Facts) — p(Facts) :

¢(X) = Xg U (Y such that X Fr Y).

Static Analysis by Monotonic Closure as Datalog

We can express the rules in Datalog.
Datalog: a declarative logic programming language

Not Turing-complete: Subset of Prolog, or SQL with
recursion => efficient algorithms to evaluate Datalog
programs

Originated as query language for databases

Later applied in many other domains: program analysis,
data mining, network, security, ...

Benefits of Using Datalog

® Separates analysis design from implementation

® Analysis designer can focus on “what” rather than
“how”

® By leveraging powerful, off-the-shelf solver engines

® many implementations: Souffle, Bddbddb, Paddle,
Logicblox, ...

Syntax of Datalog

@ A Datalog program is a sequence of constraints:
P ::=c

@ A constraint consists of a head of a literal and a body of a list of

literals:
cii=1:-1

A constraint represents a horn clause (a disjunction of literals with at
most one positive, unnegated, literal):

IV -liyV—alagVeeeVAl, < <1 NIgN---NI,
@ A literal is a relation with arguments:
[::= r(a)

where an argument is either a variable or constant.

Syntax of Datalog: Example

Input Relations:
edge(n:N, m:N)

Output Relations:
path(n:N, m:N)

Rules:
path(x, X).
path(x, z) :- path(x, y), edge(y, z).

Syntax of Datalog: Example

Input Relations:

edge(n:N, m:N) —— | . .. :
—__ Arelation is similar to a table in a

| database. A tuplein a relation is

Output Relations: similar to a row in a table.

path(n:N, m:N)

Rules:
path(x, x).
path(x, z) :- path(x, y), edge(y, z).

Syntax of Datalog: Example

Input Relations:

edge(n:N, m:N) edge

& "
Output Relations: /‘1\’ ‘f‘z\ :> 0
path(n:N, m:N) ~ M

p «q/ 0

N 7D

"__:_3_/" '_f_/" 2
Rules:
path(x, X). 2

path(x, Z) . " path(x, Y), edge(y: Z)-

Syntax of Datalog: Example

Input Relations:
edge(n:N, m:N)

Deductive rules that hold universally
Output Relations:

path(n:N, m:N)

(i.e., variables like x, y, z can be
Rules:

replaced by any constant). Specify
/ “if ... then ... ” logic.
path(x, x). 7~

path(x, Z) . " path(x, Y), edge(yJ Z).

Syntax of Datalog: Example

Input Relations:
edge(n:N, m:N)

(If TRUE,) there is a path
from each node to itself.

Output Relations: 7

path(n:N, m:N) If there is path from node x to y,
and there is an edge fromy to z,

A then there is path from x to z.

Rules:

path(x, x)./ e
path(x, Z) . " path(x, Y): edge(yJ Z)°

Syntax of Datalog: Example

Input Relations:

edge(n:N, m:N) path:= { (x, x) | x € N }
do
Output Relations: path :=path u { (x, z) | 3y eN:
path(n:N, m:N) (x, y) € path and (y, z) € edge }
until path relation stops changing
Rules:
path(x, Xx).

path(x, Z) . path(x, Y), edge(yJ Z)°

Syntax of Datalog: Example

Input Relations:
edge(n:N, m:N)

Output Relations:
path(n:N, m:N)

Rules:
path(x, x).

W

3 \g
/‘#' i’\
(3) 4)
>/ _/

Input Tuples:
edge(0, 1), edge(9,
edge(2, 4)

Output Tuples:

path(@, 0), path(1,
path(3, 3), path(4,
path(0, 2), path(2,
path(@, 3), path(o,

2), edge(2,

1), path(2,
4), path(e,
3), path(2,

3),

path(x, Z) . - path(x, y)) edge(yJ Z)°

Syntax of Datalog: Example

Input Relations:
edge(n:N, m:N)

Output Relations:
path(n:N, m:N)

Rules:
path(x, x).

©
© B
G

Input Tuples:
edge(0, 1), edge(0,
edge(2, 4)

Output Tuples:

path(e, 0), path(1,
path(3, 3), path(4,
path(e, 2), path(2,
path(e, 3), path(e,

2), edge(2,

1), path(2,
4), path(e,
3), path(2,

3),

path(x, z) :- path(x, y), edge(y, z).

Syntax of Datalog: Example

Input Relations:
edge(n:N, m:N)

Output Relations: (7 j &

path(n:N, m:N) U j[.ﬁﬁ

Rules:
path(x, x).

Input Tuples:
edge(0, 1), edge(9,
edge(2, 4)

Output Tuples:

path(e, 0), path(1,
path(3, 3), path(4,
path(@, 2), path(2,
path(o, 3), path(9,

2), edge(2,

1), path(2,
4), path(e,
3), path(2,

3),

2),
1),

path(x, z) :- path(x, y), edge(y, z).

Syntax of Datalog: Example

Input Relations:
edge(n:N, m:N)

Output Relations: ./“"./\
path(n:N, m:N) Y

Rules:
path(x, x).

P2y

Input Tuples:

edge(0, 1), edge(0,

edge(2, 4)

Output Tuples:

path(e, 0), path(1,
path(3, 3), path(4,
path(e, 2), path(2,
path(e, 3), path(9,

2), edge(2,

1), path(2,
4), path(o,
3), path(2,

path(x, z) :- path(x, y), edge(y, z).

Formal Semantics of Datalog

A Datalog program denotes a set of ground literals:

[P] € p(G)

where G is the set of ground literals (literals without variables).
A Datalog rule I :- 17, ...,1, denotes the function:

fi-t11,..0,.(X)={o(lo) | o(lx) € X for1 <k <n}

where o Is a variable substitution.

The semantics of P is defined as the least fixed point of Flp:

[P] = lfpFp where Fp(X) =X U |] fo(X)
ceP

The semantics is monotone:

P, C P, = [P1] C [P2]

Program as Relations

® A program can be represented by a set of input relations:
X := &y — new(x:X, vy:X)

Yy — assign(x:X, y:X)

°
X
|

o x := *y — load(x:X, y:X)

¢ *X := y — store(x:X, y:X)

where X is the set of variables

Target Properties as Relations

¢ Points-to facts can be represented as output relations

® X - vy — polnts(x:X, y:X)

Datalog Rules

X = &y
o Datalog rule for X =y

® points(x, y) :— new(x, Vy).

X:=y y—2Z
o Datalog rule for X —z

® points(x, z) :—- assign(x, y), points(y, z).

Datalog Rules

X = *y Y—Z I —W
e Datalog rule for =W

® points(x, w) :- load(x, y), points(y, z),

points(z, w).

¥X =y X—=W y—Z
o Datalog rule for W — 7z

® points(w, z) :—- store(x, y), points(x, w),
points(y, z).

Extended Language for Functions

Statement C 1=

y := f(x) function call

return X return from call

Function F f(x) = C function definition

Program P = F'C

Inter-procedural Pointer Analysis

| | Parameter passing and |
P~{ return can be treated as |
assignments. '

Inter-procedural Pointer Analysis

Input Relations:
® new (x:X, vy:X)

| £ (v) f

u = Vy

® ass51gn (x:X, y:X)

return u;;”i ¢ load(x:X, y:X)

¢ store (x:X, y:X)

® arg(f:F, v:X)

® ret(f:F, u:X)

® call(y:X, £:F, x:V)
Output Relations:

® points (x:X, y:X)

Inter-procedural Pointer Analysis

Rules:

® polints(x, y) :— new(x, V).

® points(w, z) :—- store(x, vy), polints(x, w),
polints(y, z).

{ o points(x, w) :- load(x, y), polnts(y, 2z),
points(z, w).

i o points(w, z) :- store(x, y), polnts(x, w),
| poilints (y, z).

® points (v, h) :jcqll(_J £, x), arg(f, v),
s e po1lnts (x, h) .

Wild card, ,:

. ‘ 1 o -
tdon’t care”] ® Points(y, h) :- call(y, £,), ret(f, u),
3 5 points(u, h).

Context Sensitivity

& hi V.= X
o : u=v
z = & h2; Y
y = u

y = f(x); /////
w= f(z);
f(v) { N V =z

u = v; Sy =y

return u; W= u , ,
} u Vv

Context Sensitivity

VvV = X | y
x = & hil; viu= vy
z = & h2; _
y = f(x); 1 b= \
w = f(z); Imprecision!
f(v) { \ vV =z
u=v; Sl v'/ N
return u; W= u

Context Sensitivity

& h: i \Ll—l
X = 3 Ul = vi V
z= & h2; | _
i:y:f(x),/ y 4 |
I w = f(z);
f(v) { \\vj=z
} return u; W= U]

Achieves context sensitivity by inlining procedure calls

Varying the Context-Sensitivity

e Context-sensitivity can be achieved by inlining function
calls.

e However, we cannot inline recursive function calls.

® Cloning-Based Context-Sensitive Pointer Alias Analysis Using
Binary Decision Diagrams, PLDI’'04

Limitation

Not powerful enough for arbitrary language

@ sound rules?

» error prone for complicated features of modern languages
» e.g. function call/return, function as a data, dynamic method dispatch,
exception, pointer manipulation, dynamic memory allocation, ...

@ accuracy problem

» consider program a set of statements, with no order between them
rules do not consider the control flow

the analysis blindly collects every possible facts when rules hold
accuracy improvement by more elaborate rules, but no systematic way
for soundness proof

\4

\4

\4

