Preliminary Concepts (|)

Inductive Definitions, Structural Induction, and
Denotational Semantics

Woosuk Lee

CSE 6049 Program Analysis

Hanyang University, Korea

Some slides are borrowed from https://github.com/prosyslab-classroom/is593-2020-spring/blob/master/slides/lecture2.pdf

https://github.com/prosyslab-classroom/is593-2020-spring/blob/master/slides/lecture2.pdf

Inductive Definitions

Inductive Definitions

¢ Inductive definition (induction) is widely used in the study of
programming languages and computer science in general: e.g.,

e The syntax and semantics of programming languages
e Data structures (e.g., lists, trees, graphs)

¢ Induction is a technique for formally defining a set:
e The set is defined in terms of itself.

e The only way of defining an infinite set by a finite means.

Examples of Inductive Definitions

e Definition of linked lists:

e The empty list is a linked list.

e A single node followed by a linked list is a linked list
e Definition of binary trees

® The empty tree is a binary tree.

¢ A node with two children that are binary trees is a binary tree.

Inference Rules

e An inference rule is of the form:
A

B

@ A: hypothesis (antecedent)

@ B: conclusion (consequent)

@ "if A istrue then B is also true”.

o B: axiom (inference rule without hypothesis)

The hypothesis may contain multiple statements:

A B
C

“If both A and B are true then so is C".

Example

Suppose we want to define a set S of natural numbers which are multiples of 3.

The set S is defined as inference rules as follows:
Definition (.5)

n S
0esS (n+3)eS

Interpret the rules as follows:

“A natural number n is in S iff n € S can be derived from the axiom by
applying the inference rules finitely many times”

For example, 3 € S because we can find a “proof/derivation tree":

0c S t:e aX|omd |
3¢S e second rule

but 1,2,4,--- & S because we cannot find proofs. Note that this

interpretation enforces that S is the smallest set closed under the inference
rules.

Inference Rules

@ What set is defined by the following inductive rules?

T Yy
3 x+y

@ What set is defined by the following inductive rules?

_ _&r L Y
9. () Ty

Inference Rules

@ Define the following set as rules of inference:

S = {a,b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, ...}

@ Define the following set as rules of inference:

S = {a"b"™! | n € N}

Natural Numbers

The set of natural numbers:
N=4{0,1,2,3,...}

Is inductively defined:

n
0 n+1

The inference rules can be expressed by a grammar:
n—0|n+1

Interpretation:
@ 0 is a natural number.

@ If n 1s a natural number then sois n + 1.

Strings

The set of strings over alphabet {a,...,z}, eg., € a, b, ..., z aa, ab,
., az, ba, ... az, aaa, ..., zzz, and so on. Inference rules:

_ o o o
€ aQ box .- ZOY
or simply,
o)
€ miEE{a,...,Z}
In grammar:
a —r €

ra (xe€{a,...,z})

Boolean Values

The set of boolean values:
B = {true, false}.

If a set is finite, just enumerate all of its elements by axioms:

true false

In grammar:
b — true | false

Lists

Examples of lists of integers:
O nil
Q@ 14 . nil
Q@ 3-14 - nil
Q —7-3-14 . nil

Inference rules:
nil n -l

In grammar:
[— nil

| nl (n€Z)

Lists

A proof that —7 -3 - 14 - nil is a list of integers:

nil
14 - nil 1‘;
3-14 - nil
—7-3-14 - nil

€ Z
€ Z
7

€ Z

The proof tree is also called derivation tree or deduction tree.

Binary Trees

Binary tree examples: 1, (1, nil), (1,2), ((1,2),nil), ((1,2),(3,4)).
Inference rules:

t t t1 o
nmE€LZ (tnil) (nilt) (t1,t2)

In grammar:

t > n (neZ)
(t, nil)
(nil, t)
(t,t)

A proof that ((1,2), (3, nil)) is a binary tree:

1 2 3
(1,2) (3, nil)

((1,2), (3, nil))

Expressions

Expression examples: 2, —2, 14+ 2,14 (2% (—3)), etc.
Inference rules:
€ €1 €2 e|1 é€s

e
nneEL —e e + eo €1 * eo (e)

In grammar:
e - n (n€7Z)

Example:

Structural Induction

Structural Induction

A technique for proving properties about inductively defined sets.

To prove that a proposition P(s) is true for all structures s, prove the
following:

© (Base case) P is true on simple structures (those without
substructures)

@ (Inductive case) If P is true on the substructures of s, then it is
true on s itself. The assumption is called induction hypothesis

(1L.H.).

Example

Let S be the set defined by the following inference rules:

_ L Y
3 T+ vy

Prove that for all x € S, « is divisible by 3.
Proof. By structural induction.

@ (Base case) The base case is when « is 3. Obviously, x is divisible by 3.

@ (Inductive case) The induction hypothesis (I.H.) is
x Is divisible by 3, y Is divisible by 3.

Let € = 3kq1 and y = 3ks. Using |.H., we derive

x + vy is divisible by 3

as follows:
3ki1 +3ky ---by l.H.

3(k1 + k2)

8
+
<

|

Let T' be the set of binary trees:

t1 12
— 7,
leaf (n, tl, tz) nc

Prove that for all such trees, the number of leaves is always one more than the number
of internal nodes.

Proof. Restate the claim more formally:
Ift € T then I(t) = 2(t) + 1
where [(t) and #(t) denote the number of leaves and internal nodes, respectively:
[(leaf) = 1 t(leaf) = O
I(n,t1,12) I(t1) + 1(t2) t(n,ti1,t2) = i(t1) +i(t2) +1
We prove it by structural induction:

@ (Base case): The base case is when t = leaf, where [(t) = 1 and () = O.
@ (Inductive case): The induction hypothesis:

[(t1) = i(t1) + 1, [(t2) = i(t2) + 1
Using I.H., we prove I((n,t1,t2)) = ¢((n,t1,t2)) + 1:

l((’n,tl,tz)) l(tl) —|—l(t2) definition of of [
t(t1) + 1+ i(t2) + 1 by induction hypothesis
t(n,t1,t2) + 1 definition of %

From now on

See how to define a programming language
® A programming language = Syntax + Semantics

e Both are inductively defined.

Syntax

e A grammar specifying how programs should look like
(grammatical structures)

® Parsing : constructing an abstract syntax tree from a text

parsing /|\
my s - SN /N

X

Grammars for Expressions and Programs

® Expressions j terminal

non-terminal

® Simple program commands

C — skip
x =k
if £EC C
C':;C

Grammars for Expressions and Programs
(another version)

® Expressions
E — n (n € Z)

® Simple programs

C — &
=x kB

" ECC
:CC

Abstract vs. Concrete Syntax

e Abstract syntax

® Tree structure (2D) independent of any particular
representation and encoding

e Concrete syntax
® Source text (1D)

® E.g., concrete syntax includes features like parentheses
(for grouping) or commas (for lists) which are not
included in the abstract syntax

Abstract vs. Concrete Syntax

¢ Which one of the followingsis — 1 + 2!

e ((-1) + 2) or -(1 + 2)

e Cannotanswer with: FEF — n (n € Z)
b+ E
- B
e Can answer with : E — n (n € Z)
b+ E
- F
F'— n

()

Abstract vs. Concrete Syntax

® Parsers convert concrete syntax into abstract syntax and
have to deal with ambiguity

® e.g.,associativity and precedence

® From now on,a “program” refers to its abstract syntax.

Denotational
Semantics

Semantics

e About what a program means
® What is the meaning of a program“| + 2" ?

® Meaning = what it “denotes™: 3"
(Denotational semantics)

® Meaning = how to compute the result:“add | into 2

and get 3”
(Operational semantics)

Denotational Semantics

¢ Mathematical meaning of a program (no machine states

or transitions)

® Program semantics is a function from input states to
output states

® The semantics of a program is determined by that of
each component (i.e., compositional)

Semantics of a Simple Language (VWHILE)

C — skip

r .=k

if £ECC
C;C
while £ C

E — n (n € 2Z)
T

E+ FE

- F

e The semantics of C'is a function from memories to memories

® Memory = Function from memory locations to values

Semantic Domain

o A set of objects used to define program semantics (i.e.,
semantic objects)

M e Memory = Var — Value
z € Value = Z
x € Var = ProgramVariable

¢ Meaning of commands [C] € Memory — Memory

® Meaning of expressions [E]| € Memory — 7Z

Denotational Semantics of the Language

[skip| M = M
[x :=E]M = M{zw— [E]M}
[if EC1 Col M = if [E|M # 0 then |[C|M else [Co] M
[C15 Co] M = [Co] ([Ch] M)
[l M = n
[Er+ Ex] M = ([E1] M) + ([E2] M)
-ElM = —([E] M)

e Eg, [x:=7;y:=3{} ={x—T7,y— 3}

e Compositional! (i.e., the semantics of a program is determined by its
sub-components)

Semantics of Loops

e The semantics of

while £ C

[while £ C|M
= if [E|M = 0 then |while E C|([C]|M) else M

® |s it compositional?

Semantics of Loops

® The semantics of
while £ C

[while £ C|M
= if [E|M = 0 then |while E C|([C]|M) else M

® |s it compositional?
% No! Not a definition but just an equation

Semantics of Loops

[while E C]M
= if [E]M # 0 then [while F C|([C]|M) else M

How to denote functions: §
£ A\z. function body }

/j where T is a parameter }
 eg, Ax. x4 1 |

[while F C| = _
AM.if [E]|M # 0 then [while E C|([C]|M) else M.

[while F C] = Fg co([while F C])

m (otherwise)

where [, (X)) = { X([C](m)) ([£](m) # 0)

Semantics of Loops

® Semantics of a loop: a solution of this equation

[while F C| = Fg ¢([while E C])

e Solution: a fixed point of Fr,c

Fixpoint?

fix ' = X such that F(X) =X

flz)=2%—4

least fixed point greatest fixed point

*https://en.wikipedia.org/wiki/Least_fixed_point

Semantics of Loops

® Semantics of a loop: a solution of this equation

[while F C| = Fg ¢([while E C])

e Solution: a fixed point of f'E.c

;(Afenzary — A4érnr0y) (Memory — Aleﬂ@roy)i

[while E C]] = ﬁX FEC *

Memory — Memory i

FE,C(X)—{ X([C1(m)) ([E](m) £ 0)

m (otherwise)

e Compositional ([while E (] is defined using [E]L,ICT)

Exercise

e “Computer science is full of fix points.”
Inductively defined thing = a least fix point:

® N = {0} U {n+1|n € N}
N = fit AX {0} U{n+1jn € X}
® 1list = {nil} U {(0,1)11€ 1list}

list = fir AX . {nil} U {(0,0)|l € X}

Exercise

¢ reach(N) = N U reach(next(N))

reach = fit Af.(AN.N U f(next(N)))

e fac(n) = if n=07? 1 : nxfac(n-1)

fac = fit Af.(An.if n=071: nx f(n—1))

Questions

® Does a solution of the semantic equation always exist?
o |f exists, is it unique!

e How to compute it?

Domain Theory

® Semantics of a program is an element of a domain called CPO
(complete partial ordered set)

® Semantics of a program is the least fix point of a continuous
function.

® Established by Dana Scott in 1970s

e Outline of a Mathematical Theory of Computation, Dana Scott

e Mathematical Concepts in Programming Language Semantics, Dana Scott

¢ Domains and Logics, Dana Scott

http://ropas.snu.ac.kr/~kwang/520/readings/sco70.pdf
http://ropas.snu.ac.kr/~kwang/520/readings/sco72.pdf
http://ropas.snu.ac.kr/~kwang/520/readings/sco89.pdf

Intuitions behind Domain Theory

o (Goal: giving a mathematical meaning to each program
® Problem: what is the meaning of the following program?

while (1) {x :=x + 1} = never terminates!

* Need something to represent an undefined output

(written L), i.e., the result of a computation that never

ends.

Intuitions behind Domain Theory

® There is an ordering between elements of the domains
of computation.

e e.g., Type int is more specific than type double

® e.g., any value is more informative than L (i.e., no

information)

® The higher an element is within the order, the more
information it contains.

Partial Order

Definition (Partial Order). A binary relation L is a partial order on a set D
If it has:

1. reflexivity: a L a forall a € D
2. Antisymmetry: a £ b and b C a implies a =b
3. Transitivity: a £ b and b C ¢ implies a L ¢

A set D with a partial order C is called a partially ordered set (D, C), or
simply poset.

| Powerset: @, 00, 1 2 (). 2 (2, x|

+ Example 1: (p({z,y,2}),) + Example 2: (Z,C)

e Example 3: (N, <) e Example 4: (N + {+o0}, <)

Least Upper Bound

Definition (Least Upper Bound). For a partial ordered set (D,C) and
subset X C D, d € D is an upper bound of X iff

Vr e X. x C d.

An upper bound d is the least upper bound of X iff for all upper bounds
Y of X, d C y. The least upper bound of X is denoted by L|X.

e Example 1: (p({z,y,2}), <) « Example 2: (Z,,C)

e Example 3: (N, <) e Example 4: (N + {+o0}, <)

Chain

Definition (Chain). Let (D, C) be a partial ordered set. A subset X C D is
called chain if X is totally ordered:

\V/ZL‘l,ZEQ c X.x1 L xo0r 9 C 2q.

« Example 1: (p({z,y,z2}),C) » Example 2: (Z.,C)

A @O D

1

« Example 3: (N, <) « Example 4: (N + {+o0}, <)

CPO

Definition (CPO). A poset (D,C) is a CPO (complete partial order) if
every chain X of D has | |X € D.

Lemma. If poset (D, LC) is a CPO, it has the least element L = _l(l)

Monotone and Continuous Functions

Definition (Monotone Function). Given two partially ordered sets 1)1 and D,
a function f: Dy — D5 is monotone if it preserves orders between any two
elements in D,

Ve,yc Di. 2 Ey = f(x) C f(y)

{ Intuition: the more accurate the input, the more accurate the output]

Definition (Continuous Function). Given two partially ordered sets D, and D,
a function f: Dy — Dy is continuous if it preserves least upper bounds of
chains:

Vchain X C Dy. | | f(x) = f(| | X).

reX

{ Intuition: the function of the limit is the same as the limit of the functions

RS e

Continuous Functions

 Not continuous i

i Continuous |

Ve. lim f(x) = f(lim x)

r—rC r—>C

Non-continuous Function

f : D1 — DQ
| | x R f(z)
+
F(L]X)
\
\
\
\

a chain X C D

Properties of Continuous Functions

Lemma 1. If a function f is continuous, f is monotone.

Proof. We will show that for any elements a and b such that a C b, f(a) C f(b).

fb) = flalb) (- aC D)
= f(a)U f(b) (by continuity of f)
d f(a) (by definition of LJ)

Properties of Continuous Functions —
Fixed points

Definition (Fixed Point). Let (D, C) be a partial ordered set. A fixed point of a
function f : D — D is an element x such that f(z) = x. We write 1fpf for the

least fixed point of f such that

f(fpf) =lfpf and Vde D. f(d)=d = lfpf Cd

Theorem (Kleene Fixed Point). Let f : D — D be a continuous function on a
CPO D. Then f has the least fixed point lfpf and

ifpf =] | fi(L)

i>0

Proof

lfpf = | | f'(L)

i>0

 Plans: It is enough to show the following two things:

(1) There exists the chain L C f(L1) C f?(L) . and

its least upper bound | | (1) in D

i>0

N

(2) The least upper bound | | /(1) is the least fixed point of f

i>0

Proof

(1) There exists the chain L. C f(1)C f*(L)C--- and
its least upper bound | | f(1) in D

i>0

Groof. We show by induction that Vn € N. f™(L) C f"*H(L): \
e LLC f(L1) (L is the least element of the CPO)

(L) Cfrri(l) = (L) C f**2?(L) (by monotonicity of f)

By definition of CPO, least upper bounds of all chains are also in the CPO.
Therefore, the least upper bound | | /(1) of the above chain is in D.

\ y

Proof

(2) The least upper bound | | (1) is the least fixed point of f

i>0

The proof consists of two parts:

(2-1) L1 is a fixed point of f

i>0

(2-2) | | F(1) is smaller than all the other fixed points

i>0

Proof

(2-1) U is a fixed point of f

i>0

Groof
/

_

(

n>0

ff(4L)) =

fr L)

(by continuity of f)

~

Proof

(2-2) LI/(1) is smaller than all the other fixed points

i>0

(Proof. Suppose d is a fixed point, i.e., d = f(d). We show that\
any element f*(L) is smaller than d by induction:
vn e N. f*(L) Cd.

e 1 LCd (L is the least element of the CPO)
fM(L)Cd = f*"(L)C f(d)=d (by monotonicity of f)

Because all the elements f*(L) are smaller than (, their least
upper bound | | (1) is also smaller than d. Therefore

i>0 .
| | Fi(L) =1fpf

N Y

Analogy

https://en.wikipedia.org/wiki/Fixed-point_iteration

Example (While)

e while (x < 10) x := x + 1

| B B [while (x < 10) x :=x + 1]([z := = + 1](m)) if [x < 10](m) = true
[vhile (x < 10) x:=x+1] = Am. {m if [x <10](m) = false
[while (x < 10) x := x + 1] = IfpF where F(X) = Am. {i([[:c =t 1)m) i %z z 12% E:g i ?:iie

IfpF = LUF(L)UF*(L)uU---

Example (While)

X ([z := x4+ 1](m)) if [x < 10](m)
m if [x < 10](m)

[x :=x + 1] (m) if [< 10]([x = x + 1](m)) = false X < 10)(m) =true

. if [x < 10](m) = false

({J_([[X =x+1]%(m)) if [x < 10]([x := x + 1](m)) = true
Am. £

\

Constructions of CPOs

e |f Sis aset, and D; and D, are CPOs, then the followings are CPQOs
e Liftedset: D =S,
e Cartesian product: D = D; x D>
e Separated sum: D = D; + D>

e Function: D = D; — D>

Lifted CPO

o D:SJ_

Forany set S,let D =S5+ {Ll} where L is an element not in S.
Then (D,C) is a CPO where

dCd < (d=d)V(d=1)

e Why CPQO?

Cartesian product

o =D X D>
Given two CPOs (D1,51) and (D2,Cs), (D,C) is a CPO where
D =Dy x Dy ={(dy,ds) | dy € D1 N dy € D5}
(d1,d2) C (dy,dy) <= (d1 Ty dj) A (d2 E2 d)

e Why CPQO?

Separated Sum

D =D+ Dy

Given two CPOs (D1,C;) and (D2,Cs), (D,C) is a CPO where
D =Dy +Dy={(di,1) | dy € D1} U{(dy,2) | dy € Dy} U{L}
(di,1) C (dy,1) < di E1 d;

(d2,2) C (d5,2) <= da Lo dy

mnon =

e Why CPQO?

Function

D = D1 — D2
Given two CPOs (D1,C1) and (D2,Cs), (D,C) is a CPO where

D =Dy — Dy={f]|f: Dy — Dy is a continuous function}

fCf < Vdi € Dy. f(d1) Co f'(dy)

e Why CPO?

Proof. Let say we have a chain in D whichis fo C 1 E---C f, C---. We will
show that the least upper bound |_|Z.20 fiisin D.

Vx € Dl. f()(.’l?) EQ fl (.ZE) EQ fg(a?) EQ R (by definition of E)
Vi. fi(z) Co | ;>0 fi(@) (by definition of lub)

We define | |, fi to be Az. | |.~, fi(x). Here, | |.~, fi(x) is in Dy because
Dy is a CPO. Therefore, | |;5 f; is an element of D. O

Summary

Language = syntax + semantics
Syntax and semantics are inductively defined.

Structural induction is a technique for proving interesting properties
of inductively defined sets.

Denotational semantics describes mathematical meaning of programs

e Semantics is the least fix point of a continuous function

