Preliminary Concepts (I)

Inductive Definitions, Structural Induction, and Denotational Semantics

Woosuk Lee

CSE 6049 Program Analysis

Inductive Definitions

Inductive Definitions

- Inductive definition (induction) is widely used in the study of programming languages and computer science in general: e.g.,
 - The syntax and semantics of programming languages
 - Data structures (e.g., lists, trees, graphs)
- Induction is a technique for formally defining a set:
 - The set is defined in terms of itself.
 - The only way of defining an infinite set by a finite means.

Examples of Inductive Definitions

- Definition of linked lists:
 - The empty list is a linked list.
 - A single node followed by a linked list is a linked list
- Definition of binary trees
 - The empty tree is a binary tree.
 - A node with two children that are binary trees is a binary tree.

Inference Rules

An inference rule is of the form:

$$rac{A}{B}$$

- A: hypothesis (antecedent)
- B: conclusion (consequent)
- ullet "if $oldsymbol{A}$ is true then $oldsymbol{B}$ is also true".
- ullet \overline{B} : axiom (inference rule without hypothesis)

The hypothesis may contain multiple statements:

$$\frac{A}{C}$$

"If both $oldsymbol{A}$ and $oldsymbol{B}$ are true then so is $oldsymbol{C}$ ".

Example

Suppose we want to define a set **S** of natural numbers which are multiples of 3.

The set S is defined as inference rules as follows:

Definition (S)

$$\frac{n \in S}{0 \in S} \qquad \frac{n \in S}{(n+3) \in S}$$

Interpret the rules as follows:

"A natural number n is in S iff $n \in S$ can be derived from the axiom by applying the inference rules finitely many times"

For example, $3 \in S$ because we can find a "proof/derivation tree":

$$\overline{ 0 \in S }$$
 the axiom the second rule

but $1, 2, 4, \dots \not\in S$ because we cannot find proofs. Note that this interpretation enforces that S is the smallest set closed under the inference rules.

Inference Rules

• What set is defined by the following inductive rules?

$$\frac{x}{3}$$
 $\frac{x}{x+y}$

• What set is defined by the following inductive rules?

$$rac{x}{()} \qquad rac{x}{(x)} \qquad rac{x}{xy}$$

Inference Rules

• Define the following set as rules of inference:

$$S = \{a,b,aa,ab,ba,bb,aaa,aab,aba,aba,bab,baa,bab,bba,bbb, \ldots\}$$

• Define the following set as rules of inference:

$$S = \{a^n b^{n+1} \mid n \in \mathbb{N}\}$$

Natural Numbers

The set of natural numbers:

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

is inductively defined:

$$\frac{n}{n+1}$$

The inference rules can be expressed by a grammar:

$$n \rightarrow 0 \mid n+1$$

Interpretation:

- 0 is a natural number.
- If n is a natural number then so is n+1.

Strings

The set of strings over alphabet $\{a, \ldots, z\}$, e.g., ϵ , a, b, ..., z, aa, ab, ..., az, ba, ... az, aaa, ..., zzz, and so on. Inference rules:

$$\frac{\alpha}{\epsilon}$$
 $\frac{\alpha}{a\alpha}$ $\frac{\alpha}{b\alpha}$ \cdots $\frac{\alpha}{z\alpha}$

or simply,

$$\frac{\alpha}{\epsilon}$$
 $\frac{\alpha}{x\alpha}$ $x \in \{a, \ldots, z\}$

In grammar:

Boolean Values

The set of boolean values:

$$\mathbb{B} = \{true, false\}.$$

If a set is finite, just enumerate all of its elements by axioms:

$$\overline{true}$$
 \overline{false}

In grammar:

$$b \rightarrow true \mid false$$

Lists

Examples of lists of integers:

- 1 nil
- **2** 14 ⋅ nil
- $\mathbf{3} \cdot \mathbf{14} \cdot \mathsf{nil}$
- $\mathbf{0}$ $-7 \cdot 3 \cdot 14 \cdot \mathsf{nil}$

Inference rules:

$$rac{l}{\mathsf{nil}} \quad rac{l}{n \cdot l} \; n \in \mathbb{Z}$$

In grammar:

$$egin{array}{lll} l &
ightarrow & \mathsf{nil} \ & | & n \cdot l & (n \in \mathbb{Z}) \end{array}$$

Lists

A proof that $-7 \cdot 3 \cdot 14 \cdot \text{nil}$ is a list of integers:

The proof tree is also called derivation tree or deduction tree.

Binary Trees

Binary tree examples: 1, (1, nil), (1, 2), ((1, 2), nil), ((1, 2), (3, 4)). Inference rules:

$$\overline{n} \,\, n \in \mathbb{Z} \qquad rac{t}{(t,\mathsf{nil})} \qquad rac{t}{(\mathsf{nil},t)} \qquad rac{t_1}{(t_1,t_2)}$$

In grammar:

$$egin{array}{cccc} t &
ightarrow & n & (n \in \mathbb{Z}) \ & | & (t, \mathsf{nil}) \ & | & (\mathsf{nil}, t) \ & | & (t, t) \end{array}$$

A proof that ((1,2),(3,nil)) is a binary tree:

$$rac{\overline{1}}{(1,2)} rac{\overline{3}}{(3,\mathsf{nil})} \ rac{\overline{3}}{((1,2),(3,\mathsf{nil}))}$$

Expressions

Expression examples: 2, -2, 1+2, 1+(2*(-3)), etc. Inference rules:

$$\overline{n} \ n \in \mathbb{Z} \qquad \frac{e}{-e} \qquad \frac{e_1}{e_1 + e_2} \qquad \frac{e_1}{e_1 * e_2} \qquad \frac{e}{(e)}$$

In grammar:

$$egin{array}{ccccc} e &
ightarrow & n & (n \in \mathbb{Z}) \ & | & -e \ & | & e+e \ & | & e*e \ & | & (e) \end{array}$$

Example:

$$egin{array}{c} rac{\overline{3}}{-3} \ \hline 2 & \overline{(-3)} \ \hline 2*(-3) \ \hline 1 & \overline{(2*(-3))} \ \hline 1+(2*(-3)) \ \end{array}$$

Structural Induction

Structural Induction

A technique for proving properties about inductively defined sets.

To prove that a proposition P(s) is true for all structures s, prove the following:

- $oldsymbol{0}$ (Base case) $oldsymbol{P}$ is true on simple structures (those without substructures)
- ② (Inductive case) If P is true on the substructures of s, then it is true on s itself. The assumption is called *induction hypothesis* (I.H.).

Example

Let S be the set defined by the following inference rules:

$$\frac{x}{3}$$
 $\frac{x}{x+y}$

Prove that for all $x \in S$, x is divisible by 3. **Proof.** By structural induction.

- ullet (Base case) The base case is when $oldsymbol{x}$ is $oldsymbol{3}$. Obviously, $oldsymbol{x}$ is divisible by $oldsymbol{3}$.
- (Inductive case) The induction hypothesis (I.H.) is

 $oldsymbol{x}$ is divisible by $oldsymbol{3}$, $oldsymbol{y}$ is divisible by $oldsymbol{3}$.

Let $x=3k_1$ and $y=3k_2$. Using I.H., we derive

x+y is divisible by 3

as follows:

$$x + y = 3k_1 + 3k_2 \cdots$$
 by I.H.
= $3(k_1 + k_2)$

Example

Let T be the set of binary trees:

$$rac{t_1}{\mathsf{leaf}} \qquad rac{t_1}{(n,t_1,t_2)} \,\, n \in \mathbb{Z}$$

Prove that for all such trees, the number of leaves is always one more than the number of internal nodes.

Proof. Restate the claim more formally:

If
$$t \in T$$
 then $l(t) = i(t) + 1$

where l(t) and i(t) denote the number of leaves and internal nodes, respectively:

$$egin{array}{lll} l({\sf leaf}) &=& 1 & i({\sf leaf}) &=& 0 \ l(n,t_1,t_2) &=& l(t_1)+l(t_2) & i(n,t_1,t_2) &=& i(t_1)+i(t_2)+1 \end{array}$$

We prove it by structural induction:

- (Base case): The base case is when t = leaf, where l(t) = 1 and i(t) = 0.
- (Inductive case): The induction hypothesis:

$$l(t_1) = i(t_1) + 1, \qquad l(t_2) = i(t_2) + 1$$

Using I.H., we prove $l((n, t_1, t_2)) = i((n, t_1, t_2)) + 1$:

$$egin{array}{lll} l((n,t_1,t_2))&=&l(t_1)+l(t_2)&& ext{definition of of }l\ &=&i(t_1)+1+i(t_2)+1& ext{by induction hypothesis}\ &=&i(n,t_1,t_2)+1& ext{definition of }i \end{array}$$

From now on

See how to define a programming language

- A programming language = Syntax + Semantics
- Both are inductively defined.

Syntax

Syntax

- A grammar specifying how programs should look like (grammatical structures)
- Parsing: constructing an abstract syntax tree from a text

Grammars for Expressions and Programs

Expressions

Simple program commands

$$C \rightarrow \text{skip}$$

$$\mid x := E$$

$$\mid \text{if } E \ C \ C$$

$$\mid C \ ; C$$

Grammars for Expressions and Programs (another version)

Expressions

$$E \rightarrow n \qquad (n \in \mathbb{Z})$$

$$| + E E$$

$$| - E$$

Simple programs

Whatever terminals you want!

$$C \rightarrow \&$$

$$\mid = x E$$

$$\mid ? E C C$$

$$\mid ; C C$$

Abstract vs. Concrete Syntax

- Abstract syntax
 - Tree structure (2D) independent of any particular representation and encoding
- Concrete syntax
 - Source text (ID)
- E.g., concrete syntax includes features like parentheses (for grouping) or commas (for lists) which are not included in the abstract syntax

Abstract vs. Concrete Syntax

• Which one of the followings is -1 + 2?

$$\bullet (\langle -1 \rangle + 2) \quad \text{or} \quad -\langle 1 + 2 \rangle$$

• Cannot answer with : $E \to n \qquad (n \in \mathbb{Z})$ $\mid E + E \mid -E$

Abstract vs. Concrete Syntax

- Parsers convert concrete syntax into abstract syntax and have to deal with ambiguity
 - e.g., associativity and precedence
- From now on, a "program" refers to its abstract syntax.

Denotational Semantics

Semantics

- About what a program means
- What is the meaning of a program "I + 2"?
 - Meaning = what it "denotes": "3"
 (Denotational semantics)
 - Meaning = how to compute the result: "add I into 2 and get 3"

(Operational semantics)

• • •

Different approaches for different purposes and languages

Denotational Semantics

- Mathematical meaning of a program (no machine states or transitions)
- Program semantics is a function from input states to output states
- The semantics of a program is determined by that of each component (i.e., compositional)

Semantics of a Simple Language (WHILE)

$$\begin{array}{ccccc} C & \to & \mathrm{skip} \\ & \mid & x := E \\ & \mid & \mathrm{if} \ E \ C \ C \\ & \mid & C; C \\ & \mid & \mathrm{while} \ E \ C \\ \end{array}$$

$$\begin{array}{cccccc} E & \to & n & (n \in \mathbb{Z}) \\ & \mid & x \\ & \mid & E + E \\ & \mid & -E \end{array}$$

- The semantics of C is a function from memories to memories
- Memory = Function from memory locations to values

Semantic Domain

 A set of objects used to define program semantics (i.e., semantic objects)

$$M \in Memory = Var \rightarrow Value$$

 $z \in Value = \mathbb{Z}$
 $x \in Var = Program Variable$

- ullet Meaning of commands $[\![C]\!] \in Memory o Memory$
- Meaning of expressions $[\![E]\!] \in Memory \to \mathbb{Z}$

Denotational Semantics of the Language

- E.g., [x:=7;y:=3]{} = $\{x \mapsto 7, y \mapsto 3\}$
- Compositional! (i.e., the semantics of a program is determined by its sub-components)

Semantics of Loops

The semantics of

while
$$E C$$

• Is it compositional?

Semantics of Loops

The semantics of

while
$$E C$$

- Is it compositional?
 - No! Not a definition but just an equation

Semantics of Loops

$$[\![\mathtt{while}\ E\ C]\!]M$$

$$=if \ \llbracket E \rrbracket M \neq 0 \ then \ \llbracket \text{while} \ E \ C \rrbracket (\llbracket C \rrbracket M) \ else \ M$$

How to denote functions:

 λx . function body

where x is a parameter e.g., $\underline{\lambda x. \ x+1}$

$$[\![\mathtt{while} \ E \ C]\!] =$$

 $\lambda M.if [E]M \neq 0 then [while E C]([C]M) else M.$

 $\llbracket \mathtt{while} \ E \ C \rrbracket = F_{E,C}(\llbracket \mathtt{while} \ E \ C \rrbracket)$

where
$$F_{E,C}(X) = \begin{cases} X(\llbracket C \rrbracket(m)) & (\llbracket E \rrbracket(m) \neq 0) \\ m & (otherwise) \end{cases}$$

Semantics of Loops

Semantics of a loop: a solution of this equation

$$\llbracket \mathtt{while} \ E \ C \rrbracket = F_{E,C}(\llbracket \mathtt{while} \ E \ C \rrbracket)$$

• Solution: a **fixed point** of $F_{E,C}$

Fixpoint?

fixF = X such that F(X) = X

*https://en.wikipedia.org/wiki/Least_fixed_point

Semantics of Loops

Semantics of a loop: a solution of this equation

[while
$$E[C] = F_{E,C}([while E[C]])$$

ullet Solution: a fixed point of $F_{E,C}$

$$(Memory \rightarrow Memroy) \rightarrow (Memory \rightarrow Memroy)$$

[while
$$E[C] = \operatorname{fix} F_{E,C}$$

$$Memory \rightarrow Memory$$

$$F_{E,C}(X) = \begin{cases} X(\llbracket C \rrbracket(m)) & (\llbracket E \rrbracket(m) \neq 0) \\ m & (otherwise) \end{cases}$$

ullet Compositional ($\llbracket \mathtt{while} \ E \ C \rrbracket$ is defined using $\llbracket E \rrbracket$, $\llbracket C \rrbracket$)

Exercise

"Computer science is full of fix points."
 Inductively defined thing = a least fix point:

 $\bullet \quad \mathbb{N} = \{0\} \cup \{n+1 \mid n \in \mathbb{N}\}$

$$N = fix\lambda X.\{0\} \cup \{n+1|n\in X\}$$

• list = $\{\text{nil}\} \cup \{(0,1)|1 \in \text{list}\}$

$$list = fix \lambda X. \{ nil \} \cup \{ (0, l) | l \in X \}$$

Exercise

• reach(N) = N \cup reach(next(N))

$$reach = fix \lambda f.(\lambda N.N \cup f(next(N)))$$

• fac(n) = if n=0? 1 : n*fac(n-1)

$$fac = fix\lambda f.(\lambda n.if\ n = 0?\ 1:\ n \times f(n-1))$$

Questions

- Does a solution of the semantic equation always exist?
- If exists, is it unique?
- How to compute it?

Domain Theory

- Semantics of a program is an element of a domain called CPO (complete partial ordered set)
- Semantics of a program is the least fix point of a continuous function.
- Established by Dana Scott in 1970s
 - Outline of a Mathematical Theory of Computation, Dana Scott
 - Mathematical Concepts in Programming Language Semantics, Dana Scott
 - Domains and Logics, Dana Scott

Intuitions behind Domain Theory

- Goal: giving a mathematical meaning to each program
- Problem: what is the meaning of the following program?

while (1)
$$\{x := x + 1\}$$
 rever terminates!

• Need something to represent an undefined output (written \bot), i.e., the result of a computation that never ends.

Intuitions behind Domain Theory

- There is an ordering between elements of the domains of computation.
 - e.g., Type int is more specific than type double
 - e.g., any value is more informative than \bot (i.e., no information)
- The higher an element is within the order, the more information it contains.

Partial Order

Definition (Partial Order). A binary relation \sqsubseteq is a **partial order** on a set D if it has:

- 1. reflexivity: $a \sqsubseteq a$ for all $a \in D$
- 2. Antisymmetry: $a \sqsubseteq b$ and $b \sqsubseteq a$ implies a = b
- 3. Transitivity: $a \sqsubseteq b$ and $b \sqsubseteq c$ implies $a \sqsubseteq c$

A set D with a partial order \sqsubseteq is called a **partially ordered set** (D, \sqsubseteq) , or simply **poset**.

Powerset: $\{\{\}, \{x\}, \{y\}, \{z\}, \{x,y\}, \{y,z\}, \{x,z\}, \{x,y,z\}\}\}$

• Example 1: $(\wp(\{x,y,z\}),\subseteq)$

• Example 3: (N, ≤)

• Example 2: (**Z**_⊥, **□**)

• Example 4: $(\mathbb{N} + \{+\infty\}, \leq)$

Graphical representations of partial orders are called Hasse diagrams.

Least Upper Bound

Definition (Least Upper Bound). For a partial ordered set (D, \sqsubseteq) and subset $X \subseteq D$, $d \in D$ is an **upper bound** of X iff

$$\forall x \in X. \ x \sqsubseteq d.$$

An upper bound d is the **least upper bound** of X iff for all upper bounds y of X, $d \subseteq y$. The least upper bound of X is denoted by $\mid X$.

Intuition: union of multiple pieces of information e.g., Set union (U)

• Example 1: $(\wp(\{x,y,z\}),\subseteq)$

• Example 3: (\mathbb{N}, \leq)

• Example 2: (**Z**_⊥, **□**)

• Example 4: $(\mathbb{N} + \{+\infty\}, \leq)$

Chain

Definition (Chain). Let (D, \sqsubseteq) be a partial ordered set. A subset $X \subseteq D$ is called **chain** if X is totally ordered:

$$\forall x_1, x_2 \in X. \ x_1 \sqsubseteq x_2 \text{ or } x_2 \sqsubseteq x_1.$$

• Example 1: $(\wp(\lbrace x, y, z \rbrace), \subseteq)$

Example 3: (N, ≤)

Example 2: (Z_⊥, ⊆)

• Example 4: $(\mathbb{N} + \{+\infty\}, \leq)$

CPO

Definition (CPO). A poset (D, \sqsubseteq) is a **CPO** (complete partial order) if every chain X of D has $\bigsqcup X \in D$.

Lemma. If poset (D,\sqsubseteq) is a CPO, it has the **least element** $\bot = \bigsqcup \emptyset$

Monotone and Continuous Functions

Definition (Monotone Function). Given two partially ordered sets D_1 and D_2 , a function $f:D_1 \to D_2$ is **monotone** if it preserves orders between any two elements in D_1

$$\forall x, y \in D_1. \ x \sqsubseteq y \implies f(x) \sqsubseteq f(y)$$

Intuition: the more accurate the input, the more accurate the output

Definition (Continuous Function). Given two partially ordered sets D_1 and D_2 , a function $f:D_1 \to D_2$ is **continuous** if it preserves least upper bounds of chains:

$$\forall chain \ X \subseteq D_1. \ \bigsqcup_{x \in X} f(x) = f(\bigsqcup X).$$

Intuition: the function of the limit is the same as the limit of the functions

Continuous Functions

Not continuous

$$\forall c. \lim_{x \to c} f(x) = f(\lim_{x \to c} x)$$

Analogy

Non-continuous Function

Properties of Continuous Functions

Lemma 1. If a function f is continuous, f is monotone.

Proof. We will show that for any elements a and b such that $a \sqsubseteq b$, $f(a) \sqsubseteq f(b)$.

$$f(b) = f(a \sqcup b)$$
 $(\because a \sqsubseteq b)$
= $f(a) \sqcup f(b)$ (by continuity of f)
 $\supseteq f(a)$ (by definition of \sqcup)

Properties of Continuous Functions — Fixed points

Definition (Fixed Point). Let (D, \sqsubseteq) be a partial ordered set. A **fixed point** of a function $f:D\to D$ is an element x such that f(x)=x. We write $\mathbf{lfp}f$ for the **least fixed point** of f such that

$$f(\mathbf{lfp}f) = \mathbf{lfp}f$$
 and $\forall d \in D. \ f(d) = d \implies \mathbf{lfp}f \sqsubseteq d$

Theorem (Kleene Fixed Point). Let $f:D\to D$ be a continuous function on a CPO D. Then f has the **least fixed point** $\mathbf{lfp}f$ and

$$\mathbf{lfp}f = \bigsqcup_{i \ge 0} f^i(\bot)$$

$$\perp \sqcup f(\perp) \sqcup f(f(\perp)) \sqcup \cdots$$

$$\mathbf{lfp}f = \bigsqcup_{i>0} f^i(\bot)$$

- Plans: It is enough to show the following two things:
 - (1) There exists the chain $\bot \sqsubseteq f(\bot) \sqsubseteq f^2(\bot) \sqsubseteq \cdots$ and its least upper bound $\bigsqcup_{i \geq 0} f^i(\bot)$ in D
 - (2) The least upper bound $\bigsqcup_{i\geq 0} f^i(\bot)$ is the least fixed point of f

(1) There exists the chain $\bot \sqsubseteq f(\bot) \sqsubseteq f^2(\bot) \sqsubseteq \cdots$ and its least upper bound $| | | f^i(\bot) |$ in D

Proof. We show by induction that $\forall n \in \mathbb{N}. \ f^n(\bot) \sqsubseteq f^{n+1}(\bot) :$

- $\bot \sqsubseteq f(\bot)$ (\bot is the least element of the CPO) $f^n(\bot) \sqsubseteq f^{n+1}(\bot) \Longrightarrow f^{n+1}(\bot) \sqsubseteq f^{n+2}(\bot)$ (by monotonicity of f)

By definition of CPO, least upper bounds of all chains are also in the CPO. Therefore, the least upper bound $\coprod f^i(\bot)$ of the above chain is in D.

- (2) The least upper bound $\bigsqcup_{i\geq 0} f^i(\bot)$ is the least fixed point of f The proof consists of two parts:
 - (2-1) $\bigsqcup_{i\geq 0} f^i(\perp)$ is a fixed point of f
 - (2-2) $\bigsqcup_{i\geq 0} f^i(\bot)$ is smaller than all the other fixed points

(2-1) $\bigsqcup_{i\geq 0} f^i(\perp)$ is a fixed point of f

Proof.

$$f(\bigsqcup_{n\geq 0} f^n(\bot)) = \bigsqcup_{n\geq 0} f(f^n(\bot))$$
 (by continuity of f)
$$= \bigsqcup_{n\geq 0} f^{n+1}(\bot)$$

$$= \bigsqcup_{n\geq 0} f^n(\bot)$$

(2-2) $\coprod f^{i}(\bot)$ is smaller than all the other fixed points

Proof. Suppose d is a fixed point, i.e., d = f(d). We show that any element $f^i(\perp)$ is smaller than d by induction:

$$\forall n \in \mathbb{N}. \ f^n(\bot) \sqsubseteq d.$$

- $\bot \sqsubseteq d$ (\bot is the least element of the CPO) $f^n(\bot) \sqsubseteq d \implies f^{n+1}(\bot) \sqsubseteq f(d) = d$ (by monotonicity of f)

Because all the elements $f^i(\perp)$ are smaller than $\ d$, their least upper bound $\coprod f^i(\bot)$ is also smaller than d. Therefore

$$\bigsqcup_{i\geq 0} f^i(\bot) = \mathbf{lfp} f$$

Analogy

Example (While)

• while (x < 10) x := x + 1

$$[\![\mathtt{while} \; (\mathtt{x} < \mathtt{10}) \; \mathtt{x} := \mathtt{x} + \mathtt{1}]\!] = \lambda m. \begin{cases} [\![\mathtt{while} \; (\mathtt{x} < \mathtt{10}) \; \mathtt{x} := \mathtt{x} + \mathtt{1}]\!] ([\![x := x + \mathtt{1}]\!] (m)) & \text{if} \; [\![\mathtt{x} < \mathtt{10}]\!] (m) = \mathtt{true} \\ m & \text{if} \; [\![\mathtt{x} < \mathtt{10}]\!] (m) = \mathtt{false} \end{cases}$$

$$[\![\mathtt{while} \ (\mathtt{x} < \mathtt{10}) \ \mathtt{x} := \mathtt{x} + \mathtt{1}]\!] = \mathbf{lfp} \mathcal{F} \ \mathtt{where} \ \mathcal{F}(X) = \lambda m. \begin{cases} X([\![x := x+1]\!](m)) & \text{if} \ [\![\mathtt{x} < \mathtt{10}]\!](m) = \mathtt{true} \\ m & \text{if} \ [\![\mathtt{x} < \mathtt{10}]\!](m) = \mathtt{false} \end{cases}$$

$$\mathbf{lfp}\mathcal{F} = \bot \sqcup \mathcal{F}(\bot) \sqcup \mathcal{F}^2(\bot) \sqcup \cdots$$

Example (While)

$$\mathcal{F}(X) = \lambda m. \begin{cases} X(\llbracket x := x+1 \rrbracket(m)) & \text{if } \llbracket \mathbf{x} < \mathbf{10} \rrbracket(m) = \mathtt{true} \\ m & \text{if } \llbracket \mathbf{x} < \mathbf{10} \rrbracket(m) = \mathtt{false} \end{cases}$$

 \perp

$$\textbf{0 iter} \quad -\mathcal{F}(\bot) = \lambda m. \begin{cases} \bot(\llbracket \mathtt{x} := \mathtt{x} + \mathtt{1} \rrbracket(m)) & \text{if } \llbracket \mathtt{x} < \mathtt{10} \rrbracket(m) = \mathtt{true} \\ m & \text{if } \llbracket \mathtt{x} < \mathtt{10} \rrbracket(m) = \mathtt{false} \end{cases}$$

$$-\mathcal{F}^2(\bot) = \lambda m. \begin{cases} \mathcal{F}(\bot)(\llbracket \mathtt{x} := \mathtt{x} + \mathtt{1} \rrbracket(m)) & \text{if } \llbracket \mathtt{x} < \mathtt{10} \rrbracket(m) = \mathtt{true} \\ m & \text{if } \llbracket \mathtt{x} < \mathtt{10} \rrbracket(m) = \mathtt{false} \end{cases}$$

0,1,2 iters
$$-\mathcal{F}^3(\bot) = \cdots$$

Constructions of CPOs

- If S is a set, and D_1 and D_2 are CPOs, then the followings are CPOs
 - Lifted set : $D=S_{\perp}$
 - Cartesian product : $D = D_1 \times D_2$
 - Separated sum : $D = D_1 + D_2$
 - Function : $D=D_1 \rightarrow D_2$

Lifted CPO

• $D=S_{\perp}$

For any set S, let $D=S+\{\bot\}$ where \bot is an element not in S. Then (D,\sqsubseteq) is a CPO where

$$d \sqsubseteq d' \iff (d = d') \lor (d = \bot)$$

• Why CPO?

Cartesian product

•
$$D = D_1 \times D_2$$

Given two CPOs (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) , (D, \sqsubseteq) is a CPO where

$$D = D_1 \times D_2 = \{ (d_1, d_2) \mid d_1 \in D_1 \land d_2 \in D_2 \}$$

$$(d_1, d_2) \sqsubseteq (d'_1, d'_2) \iff (d_1 \sqsubseteq_1 d'_1) \land (d_2 \sqsubseteq_2 d'_2)$$

Why CPO?

Separated Sum

$$D = D_1 + D_2$$

Given two CPOs (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) , (D, \sqsubseteq) is a CPO where $D = D_1 + D_2 = \{(d_1, 1) \mid d_1 \in D_1\} \cup \{(d_2, 2) \mid d_2 \in D_2\} \cup \{\bot\}$ $(d_1, 1) \sqsubseteq (d'_1, 1) \iff d_1 \sqsubseteq_1 d'_1$ $(d_2, 2) \sqsubseteq (d'_2, 2) \iff d_2 \sqsubseteq_2 d'_2$

Why CPO?

Function

$$D=D_1\to D_2$$

Given two CPOs (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) , (D, \sqsubseteq) is a CPO where

$$D = D_1 \rightarrow D_2 = \{f \mid f : D_1 \rightarrow D_2 \text{ is a continuous function}\}$$

$$f \sqsubseteq f' \iff \forall d_1 \in D_1. \ f(d_1) \sqsubseteq_2 f'(d_1)$$

Why CPO?

Proof. Let say we have a chain in D which is $f_0 \sqsubseteq f_1 \sqsubseteq \cdots \sqsubseteq f_n \sqsubseteq \cdots$. We will show that the least upper bound $\bigsqcup_{i>0} f_i$ is in D.

$$\forall x \in D_1. \ f_0(x) \sqsubseteq_2 f_1(x) \sqsubseteq_2 f_2(x) \sqsubseteq_2 \cdots$$
 (by definition of \sqsubseteq) $\forall i. \ f_i(x) \sqsubseteq_2 \bigsqcup_{i>0} f_i(x)$ (by definition of lub)

We define $\bigsqcup_{i\geq 0} f_i$ to be λx . $\bigsqcup_{i\geq 0} f_i(x)$. Here, $\bigsqcup_{i\geq 0} f_i(x)$ is in D_2 because D_2 is a CPO. Therefore, $\bigsqcup_{i>0} f_i$ is an element of D.

Summary

- Language = syntax + semantics
- Syntax and semantics are inductively defined.
- Structural induction is a technique for proving interesting properties of inductively defined sets.
- Denotational semantics describes mathematical meaning of programs
 - Semantics is the least fix point of a continuous function