Course Overview

Woosuk Lee

2021 Spring Semester

CSE 6049 Program Analysis

yﬁUNlp‘%;
9928 Hanyang University, Korea

N/ 19

<

v
-k..'.‘-

About Me

Instructor:Woosuk Lee (0|4, woosuk@hanyang.ac.kr)

Research Area: Program Analysis, Program Synthesis

Homepage: http://psl.hanyang.ac.kr

Office: Rm403, 3rd Engineering Building

Office Hours: Thu 10:00 - 12:00

mailto:woosuk@hanyang.ac.kr
http://psl.hanyang.ac.kr

Course Information

Course website: http://psl.hanyang.ac.kr/courses/cse6049 202 1s/

Time: Monday 16:00 — 19:00
TA: Baljiniam Bassan Ochir (shortly Baska)

¢ Email: bbumbuul@yahoo.com

Textbook: Xavier Rival and Kwangkeun Yi, Introduction to Static
Analysis: an Abstract Interpretation Perspective, MIT Press, 2020.

http://psl.hanyang.ac.kr/courses/cse6049_2021s/
mailto:bbumbuul@yahoo.com

Why Take This Course!?

® |earn principled approaches for estimating SW
behaviors

® | earn how to build specialized tools for software
diagnosis

e Can be applied to improve reliability, security,
performance, etc.

History of SWV Bugs
— The Ariane Rocket Disaster (1996)

https://voutu.be/PK ygulapgA?t=80s

https://youtu.be/PK_yguLapgA?t=80s
https://www.youtube.com/watch?v=PK_yguLapgA

History of SWV Bugs
— The Ariane Rocket Disaster (1996)

e Caused due to numeric overflow error

o Attempt to fit 64-bit format data into | 6-bit space

o Cost
e $100M for loss of mission
® Multi-year set back to the Ariane program

e Read more at : http://www.around.com/ariane.html

http://www.around.com/ariane.html

History of SWV Bugs
— Heartbleed (2014)

A security bug in the
OpenSSL cryptography
library

Released: 2012 Feb

Discovered: 2014 April

Due to buffer-overflow
error

) Heartbeat - Normal usage

Server, send me S
this 4 letter word erver

Client

if you are there:

"bird"
/

bird]

J

W Heartbeat - Malicious usage

Server, send me

Client

this 500 letter

word if you are

there: "bird"

_

J

bird. Server server

master key is
31431498531054.
User Carol wants
to change
password to

"password 123"...
iy

History of SWV Bugs

Boeing 747 Max Crashes
Nissan Airbag Malfunction (2014) — 350 people died

— | Million Vehicles Recalled

e (1998) NASA’s Mars climate orbiter lost in space. Cost: $125 million

e (2000) Accidents in radiation therapy system. Cost: 8 patients died

e (2007) Air control system shutdown in LA airport. Cost: 6,000 passengers
stranded

. . . Countless software projects failed in history.

Damage of SWV Bugs

e According to CISION PR Newswire (2020. 05), SW bugs
cost $ 61 Billion loss in productivity annually.

o According to Software Fails Watch (Tricentis, 2017), SW
bugs lead to $ |.7 Trillion revenue lost.

https://www.prnewswire.com/news-releases/study-software-failures-cost-the-enterprise-software-market-61b-annually-301066579.html
https://www.tricentis.com/news/tricentis-software-fail-watch-finds-3-6-billion-people-affected-and-1-7-trillion-revenue-lost-by-software-failures-last-year/

Million Lines of Code

Avg APK Size (MBs)

Why Software Fails!?

NN
a o

e e i =~ TN SR N
N & v @ O N B

o @ o

o N B

1 10KkLOC

0.01 1.00 1.1.0 1.2.0 1.3.0 2.0.0 2.1.0 2.2.0 2.3.0 24.0 250 26.0 3.0 4.0 5.0
Kernel Version

Avg. Size of Android Apps

Size of Linux Kernel

28MLOC

10M+ New Developers
6 44M+ New Repositories
87M+ New Pull Requests
in 2019

Jan, 2013 Jan, 2014 Jan, 2015 Jan, 2016 Jan, 2017

From https://qithub.com/prosyslab-classroom/is593-2020-spring/blob/master/slides/lecturel.pdf

https://github.com/prosyslab-classroom/is593-2020-spring/blob/master/slides/lecture1.pdf

SW Complexity

less-382 (23,822 LOC)

. i X .

s mea 270

156 it sin) Cowring 450 etk 780 comple_porcrn_1105.

DL/ e

o compl_10 o
p— o
it CEED s it
eS80 e sl vew st 55 (ot adavns e et Cloe_fle_391
=X /A
e G mgechu n.de e ahtie) Clnk_ie $96) Crrmo_mevags i o re_pos ok eS8
ot 362 Cdelird 463 - e inden S 7 i i o et

Program Analysis

¢ Body of work to discover useful facts about programs
® Broadly classified into three kinds:

® Dynamic (execution time)

® Static (compile-time)

® Hybrid (combines dynamic and static)

Dynamic Analysis

® |nfer facts of program by monitoring its runs
e Examples:

® Purify: array bound checking

® Eraser:datarace detection

® Valgrind: memory leak detection

Static Program Analysis
(focus of this course)

A general method for
automatic and sound approximation of
sw run-time behaviors

before the execution SW MRl SW MRl SW PET

“before” : statically, without running sw

“automatic’: sw analyzes sw

“sound”: all possibilities into account

“approximation”: cannot be exact

“general”: for any source language and property

» C, C++, C#, F#, Java, JavaScript, ML, Scala, Python, JVM, Dalvik,
x86, Excel, etc

» “buffer-overrun?”, “memory leak?”, “type errors?”, “x =y at line 27",
“memory use < 2K7", etc

Various Static Analysis Tools

Domain-specific
Verification

ilsmdé_i: ,();LACM.;;(

Windows Device Driver
Microsoft

Astree

Airbus Controller
ENS / Absint

General-purpose
Bug-finding

{) coverity

Stanford / Synopsys

O Sparron PonSpace

Facebook SNU / Fasoo.com

TECHNOLOGIES

Mathworks

9 CODESONAR J U Ll n

GrammaTech

Semmle / Github

JuliaSoft

Course Obijective: Theory

Abstract Interpretation: A powerful theoretical framework
for designing correct static analysis

o “framework’ : correct static analysis comes out, reusable

o “powerful” :all static analyses are understood in this
framework

o “simple” : prescription is simple

* “eye-opening’ :any static analysis is an abstract interpretation

Course Objective: Practice

Programming assignments

® 4 main + | pre-requisite

® You will write static analyzers in OCaml (https://ocaml.org)

e Simple, safe, realistic and high-level programming language

® Submit yours to TA via email

https://ocaml.org

