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Motivation

® Program optimization —
. . Hand-crafted
O TranSfOFm|ng INTO a transformation rules

C

better (e.g., cost) program

o Applying transformation Input =3

rules (e.g., X + 0— X) Optimized

Program

® Rules in prior methods e Application order in prior methods
o Hand-crafted by domain experts © Heuristics by domain experts

o Limited search space o May miss the optimal solutions



Our Solution

Discovering new rules (by Program synthesis) + Systematically applying the rules (by
Term rewriting) + Finding optimal solutions by exhaustive search (by Equality saturation)

When rule discovery | 1. Offline Learning Learned Rules
Is time consuming
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Our Solution

Discovering new rules (by Program synthesis) + Systematically applying the rules (by
Term rewriting) + Finding optimal solutions by exhaustive search (by Equality saturation)

Learned Rules
When rule discovery

Is cheap
: Online learning +
optimization
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Program —_—
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Enabled by Program Synthesis

f Syntactic Constraint: A formal grammar (e.g., |
Ny o : context-free grammar) consisting of SMT
‘~'/ -Specification - | operators, limiting search space |

Syntactic constraint Synthesizer
5 ‘ o
ES%IISXS\HQ\---» |E!Program

f(x) =2x

Semantic constraint

Semantic Constraint: a logical formula over the target |}
function




Case |: Homomorphic Encryption (HE) (1/2)

e Allows computation on encrypted data

® Enables the outsourcing of private data storage/processing

private data

private encrypted data
key ——

encrypted
0 I l I result encrypted result

Homomorphic
Evaluation

decrypted result

3rd Party



Case |: Homomorphic Encryption (HE) (1/2)

e HE Compilers generate HE applications automatically

® Better optimization effect than the SOTA with hand-crafted rules

X2.3 speedup

. Homomorphic
Compiler

Application HE application

Program Term
Synthesis Rewriting



Case 2: Simplifying Obfuscated Code (1/2)

e Obfuscation: transforming programs into complex ones
o Evasion of malware detection & Copyright protection &

® De-obfuscation: simplifying obfuscated programs

Code |

et
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Case 2: Simplifying Obfuscated Code (2/2)

® Success : generating simpler or as simple as original code

® Higher success rate than the SOTA based on handcrafted rules
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Average Success
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Papers

o Case | : Optimizing compiler for homomorphic encryption

o Dongkwon Lee,Woosuk Lee, Hakjoo Oh and Kwangkeun Yi, Optimizing Homomorphic Evaluation Circuits by
Program Synthesis and Time-Bounded Exhaustive Search, ACM TOPLAS 2023

o Dongkwon Lee,Woosuk Lee, Hakjoo Oh and Kwangkeun Yi, Optimizing Homomorphic Evaluation Circuits by
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e Core technology: high-performance program synthesis

o Yongho Yoon,Woosuk Lee, and Kwangkeun Yi, Inductive Program Synthesis via Iterative Forward-Backward
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® Case | : Optimizing compiler for homomorphic encryption

o Dongkwon Lee,Woosuk Lee, Hakjoo Oh and Kwangkeun Yi, Optimizing Homomorphic Evaluation
Circuits by Program Synthesis and Time-Bounded Exhaustive Search, ACM TOPLAS 2023

o Dongkwon Lee,Woosuk Lee, Hakjoo Oh and Kwangkeun Yi, Optimizing Homomorphic Evaluation
Circuits by Program Synthesis and Term Rewriting, ACM PLDI 2020

® (Case 2: Deobfuscation of bit-manipulating code

® | essons from the two cases
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Homomorphic Encrytion (1/2)

Building HE applications

requires

expertise

Application HE developer HE application

complicated suboptimal
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Homomorphic Encrytion (2/2)

Existing Homomorphic Compiler

e Generates HE applications automatically

e Optimization : several hand-written rules still
%

suboptimal

Ed

HE application

Homomorphic
Compiler

Application

Hand-written
rules
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Our Contribution

Automatic, Aggressive HE optimization Framework

¢ Generates HE applications automatically

e Optimization : machine-found rules by program synthesis + applying by term rewriting

X2.3 speedup

. Homomorphic
Compiler

Application HE application

Program Term
Synthesis Rewriting
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e Offline Learning via Program Synthesis + Online Optimization via Term Rewriting

1. Offline Learning Training HE Applications Learned ()pt. Patterns

Training . el @]]
grams
Input Rule-based Optimization
—p > P —
Program E via Term-Rewriting >
@ Optimized

: . e . . . o HE Application
2. Online Optimization Unoptimized HE Application

Synthesm-based
Rule Learner

>
HE

Compiler
Front-end
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Simple HE Scheme

 Based on approximate common divisor problem e For ciphertexts y; < Enc,(y;), the following

® p :integer as a secret key holds
® ¢ :random integer Dec, () + pp) = py + py
e r( < |p|) : random noise for security Decp(/ﬁ X /Q) = Uy X Wy
Enc,(u € {0,1}) = pg + 2r + u e The scheme can evaluate all boolean circuits
P , dximZ,=1{0,1} are equal to XOR
Dec, (c) = (cmodp)mod2 as + an 2 ’ 9
| it S ionit and AND

Dec,(Enc,(1)) = Decpgpcf —I—/}/ +u)=pu
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Performance Hurdle : Growing Noise

e Noise increases during homomorphic operations.

o Foru, =pqg, +2r,+ u,

py + 1y = p(q; + @) 26’;_ +f) "(//tl //tz)double inrease

E X //E = p(pq1ga + ) H2Qryr, + 1 + ropty) + (4 X pp)| quadratic increase

noise

e if (noise > p) then incorrect results

18



Multiplicative Depth : a Decisive Performance Factor

The I.na.xnn.um numbér of sequential —
multiplications from input to output
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depth 4
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What is HE optimization?

¢ Finding a new circuit that has smaller mult. depth

y
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HE optimization via Synthesis

Program Synthesis
, Desired
+ >

21
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depth 4

same semantics

HE optimization via Synthesis

+
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HE optimization via Synthesis

iy

depth 4

same semantics

+

ds

do A ds
di N dq
do A dy

Ll Ll

ds ® ds
dy ® dy
di ® d;

Program Synthesis

dy
d
do
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HE optimization via Synthesis

Program Synthesis
, Desired
+ >

j“-jD\ 5 = 6 jD
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same semantics depth-restricting syntax optimized HE circuit
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HE optimization via Synthesis

+
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depth 4 do =

same semantics
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di ® d,
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Hurdle : Synthesis Scalability
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Solutionl : Synthesis via Localization
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Solutionl : Synthesis via Localization

B et

D =
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Solutionl : Synthesis via Localization
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Solutionl : Synthesis via Localization

D=
ET=N

; -
EDatp" jj )

)

PR Ny
),

' Optimizing
Synthesis

_>

30



Solutionl : Synthesis via Localization

)
)

Optimizing
Synthesis

_>

scalable




Solutionl : Synthesis via Localization

Dt
= — 1 - .
- -
1 - D, B,
1 N - D
ID Replace

_>

| "} ,' Optimizing
N —jD——L , | Synthesis
)
-

32



Solution 2: Learning Successtul Synthesis Patterns

e Offline Learning

o (Collect successtul synthesis patterns

¢ Online Optimization

o Applying the patterns by term rewriting

33



Oftline Learning to Collect Opt. Patterns

@] 1) Di} ) ) Collected

Bs Opt. Patterns

1 e )
— p

Training
HE Applications

¢ 5




Oftline Learning to Collect Opt. Patterns

g

Training
HE Applications

Collected
Opt. Patterns
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Oftline Learning to Collect Opt. Patterns

Training |
HE Applicati |
PPHCATIONS @ Collected
Opt. Patterns
o “}—DL | Optimizing
o | , | Synthesis
o : } | _>
A s Iy
| B
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Oftline Learning to Collect Opt. Patterns

Training | D_L
HE Applications T D Collected
if Opt. Patterns
- D
D g
i( g __j: S Optimizing
t —D_\_} Synthesis
_ﬂ ‘ _>
Y
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Oftline Learning to Collect Opt. Patterns
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Oftline Learning to Collect Opt. Patterns

Training DI}
HE Applications YN
1/
e \
_J
/ I Optimizing
Synthesis
_>
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Oftline Learning to Collect Opt. Patterns
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PPHEATIONS jD } :/\ Collected
- Opt. Patterns
y ?\“’“‘*— } ~ I

J| ¢
f&/
(

. o Optimizing
\ Synthesis %/\\
_>

40




Oftline Learning to Collect Opt. Patterns

/ e
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Offline Learning/(\Collect Opt. Patterns
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Oftline Learning to Collect Opt. Patterns
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Learned Optimization Patterns : examples

nlps whou =Dl
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Input
HE application

Online Rule-based Optimization
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Online Rule-based Optimization

Input
HE application

Learned
Opt. Patterns
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Online Rule-based Optimization

Input
HE application
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k’)
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Applying Learned Optimization Patterns (1/2)

Syntactic Matching is Not Effective

- Learned 1 @7
» Opt. Patterns ¢
ERGEED Sg=

T Py g
W\, Sy M e PR TR v Mo R S

: t 77‘

di — ’; New Input Circuit

d> — ' ' Optimization

ds E }@_ L ’
d4 | /, ()

»




Applying Learned Optimization Patterns (1/2)

Syntactic Matching is Not Effective

Learned 1 ﬂ
—D—'\-} Opt. Patterns j_
C4 Cs
Ci —} 4 _> o _} }
e ) D sl e -
Cs D— g /

© o O
Q

_} New Input Circuit
Optimization
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Applying Learned Optimization Patterns (2/2)

Normalization + Equational Matching

C1 =
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Applying Learned Optimization Patterns (2/2)

Normalization + Equational Matching

L C1 =y

| :
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Applying Learned Optimization Patterns (2/2)

Normalization + Equational Matching

| Normalized
@l D_ Opt. Patterns . @—
C:"_ > C4
gD —
o : } o] }
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Applying Learned Optimization Patterns (2/2)

Normalization + Equational Matching

old Normalized | new
n, _D_ Opt. Patterns - @—

C4
Cs4 —
) - —_ -
Cs ni

B

? New Input Circuit

d: Optimization
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Applying Learned Optimization Patterns (2/2)

Normalization + Equational Matching

old Normalized new

n —j_ Opt. Patterns @—

L ) —_— -
—D

Cs

Find substitution o I

5 o o -

B

(considering commutativity) v

— ? New Input Circuit
— Optimization

3 o— /
=
-

=Y = W = W = W < W o W =
[\ TR S o =
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Applying Learned Optimization Patterns (2/2)

Normalization + Equational Matching

old Normalized new
n _D_ Opt. Patterns @—
Cs4 — !
" ﬂ } e }
Cs

Find substitution o I ¢ = inl » dl and d2,

5 o o -

B

(considering commutativity) v
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Applying Learned Optimization Patterns (2/2)

Normalization + Equational Matching

old Normalized new
n _D_ Opt. Patterns E—
Cs4 —
" ﬂ } e }
Cs

Find substitution ¢ c = {nl » dl and d2,
c4 » d3 xor d4,

5 o o -

B

(considering commutativity) v
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Applying Learned Optimization Patterns (2/2)

Normalization + Equational Matching

old Normalized new

. —j_ Opt. Patterns ! w
C4

Cs —

n ﬂ —> .. j_

: B m B
Find substitution ¢ 6= {nl » dl and d2,

c4 » d3 xor d4,
(considering commutativity) \ 4 ¢5 w d5)
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]
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j
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Applying Learned Optimization Patterns (2/2)

Normalization + Equational Matching

old Normalized | new
n: —j_ Opt. Patterns . E—
Cs4 —
T T - —_ . -
Cs ni }

o= {nl » dl and d2,
c4 » d3 xor d4,
cd » d5}

Find substitution o o
Apply substitution o

4) New Input Circuit
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Applying Learned Optimization Patterns (2/2)

N1 —

Normalization + Equational Matching

old

Cs —
| 1§
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Find substitution o I

(considering commutativity) v

D DTN
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oy
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Optimization
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Applying Learned Optimization Patterns (2/2)

Normalization + Equational Matching

old Normalized

1 new

n —j_ Opt. Patterns . @—

L ) —_— -
]

Cs

ni
Cs ni

Find substitution ¢ o 6= 1nlrdlandd,
Apply substitution o c4 » d3 xor d4,
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D o) -
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ds / di --ﬂ R 4 S :>——
di= &—
d> — /
target - optimized target

depth 3 depth 2



Applying Learned Optimization Patterns

Formal properties

(Soundness) semantics unchanged

Bt Applying an w
:}“Di DED— opt. pattern }31-’ Z
I DL}L .
ooy o= B0 o0
. O~ DJ:D ;

(Termination) finitely many rule applications



Phase-Ordering Problem

@ Rule 1 @ Rule 2 Rule 3 Rule 4
—_— > > —_—
Different outcome
VS depending on the

application order

@ Rule 3
>

Rule 1 @ Rule 4
> >
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Existing Solutions

® Using a pre-defined application order (e.g., LLVM optimization passes)

£

Rule 1,3 Rule 1,2 Rule 2,4 Rule 1
> > > >

® Backtracking (i.e., maintaining top-k candidates)

@
Rule 2 @

Rule 1 Rule 4

N
Rule 1 @
>

£
4@? _________ S
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Equality Saturation

® A solution to the phase ordering problem

e Obtains results of all possible orderings and extract the best one
among them

e Enabled by E-graph, a very efficient data structure
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E-Graph

® E-sraph = e-nodes + e-classes
o E-classes = set of e-nodes

o E-node = a node whose children are e-classes

® Meaning

o E-node (bold): expressions with sub-expressionsé

represented by children e-classes U

o E-class (doted): semantically equivalent e-nodes
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Example

e Optimizing (a X 2)/2 using the following rules:
(1) xX2->x<<1 2) (xXVy)/z—xX/72)
3) x/x—1 (4) I Xx—x
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Example

e Optimizing (a X 2)/2 using the following rules:

() xX2 - x<<1 2) (xXy)/z = x X (y/7)
- (4) Il Xx —>x

&y 4
‘.Ill lllllll‘ cccc

EEE IIIIIIIV'
““

llllllllllllllllllllllllllll

equal

67/



Example

e Optimizing (a X 2)/2 using the following rules:

(1) xX2 - x<<1 2) (xXy)z—=xX(y/7)
3) x/x—1 (4) I Xx—x

[ @x22@<< 2

and

a X (2/2) are equal ~
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Example

e Optimizing (a X 2)/2 using the following rules:

(1) xX2 - x<<1 2) xXy)/z—=xX/7)
3) x/x—1 (4) I Xx—x
S *1 V
<< << /
e [A .: .............. y y ' C
al 2 |1 ali (2] i1
g R St S e R et
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Example

e Optimizing (a X 2)/2 using the following rules:

(1) xX2 - x<<1 2) xXy)/z—=xX/7)
3) x/x—1 (4) I Xx—x
® More rule application can’t change the graph ! )
—_— Saturation! ................
<< /
o Exprs represented by the root node’s e-class —
is all exprs obtainable by applying the rules . 5 1

in all possible orders >

lllllllllllllllllllllll
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Extracting an Optimal Solution

® Extract an expression of the best score after saturationt
o e.g., greedy method using scores assigned for each kind of e-node

o By integer linear programing in more complicated cases

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

/[ 10 *
1 g
3| * | (<< ]
...... .. | f‘ A_
O d 2 | o

T Termination is not always guaranteed

.
----------------------------
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Fundamental Meaning of Equality Saturation

e E-graph = Grammar representing semantically equivalent exprs
o (E-class = non-terminal, E-node = production rule)

® Equality saturation = grammar induction

S1 = S22/ 54
| 51 %53
| a
Sz —> Sl << 53

Y
S — S4/ S4
1
54 — 2
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Evaluation

e 25 HE algorithms from 4 sources
o Cingulata benchmarks
o Sorting benchmarks
o Hackers Delight benchmarks
o EPFL benchmarks
® Baseline tool: Cingulata

o A HE compiler using optimization rules written by domain experts
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Lobster Performance

® Achieved an average of 2x, up to 3.1x faster performance compared
to Cingulata (with up to a 40% reduction in multiplication depth)

4 0
3.5 0%

w
=)
X

2.5

20%

Speedup
Depth Reduction Ratio

10%

Ol L LR >H O OO
» .0 0.0 O O 0 200730 207207307 x0O7 307 a7 Al "\

0%

Benchmarks Benchmarks



Efficacy of Equality Saturation

Success rateT : 19 — 22 in the number Single-path B Saturation-based

of successfully optimized programs 60%

°© Execution time: x2.03 — x2.26 50%
9O
. T 5

° Reduction in multiplicative depth: = 40%
S
21.9% — 25.1% 5

S5 30%
O
O
o
L

= 20%
O
O

0% N
O(bk89260{;60{:60{:)60(\0'60(;&1\&1&1@1691&3\@\%&3\@3\8\1&1\8\%0&0’04\066 660’\ > @O&?\é

Benchmarks
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Contents

o Case | : Optimizing compiler for homomorphic encryption

® Case 2: Deobfuscation of bit-manipulating code

o Jaehyung Lee and Woosuk Lee, Simplifying Mixed Boolean-Arithmetic Obfuscation by Program Synthesis
and Term Rewriting, ACM CCS 2023

o Jaehyung Lee, Seoksu Lee, Eunsun Cho and Woosuk Lee, Simplifying Mixed Boolean-Arithmetic
Obfuscation by Program Synthesis and Equality Saturation, IEEE TDSC (Submitted)

® |Lessons from the two cases

o Core technology: high-performance program synthesis
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Mixed Boolean Arithmetic (MBA)

® Program expressions with logical operators (AND, OR, XOR...)
and bitwise arithmetic operators (+,-,%,/,%,...)

0 e.g., 8458(x Vy N 2)° ((zy) Az Vi) +x+9(xVy)yz®

o MBA obfuscation: transforming arbitrary bitwise expressions into
highly complex MBA expressions while maintaining their meaning
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Popular MBA Obfuscation

® The cost of obfuscation and executing obfuscated code is low.

o Only basic operations are added, and the execution flow remains
unchanged (no additional calls to user/system functions, etc.)

® Theoretical foundation: any bitwise expressions can be obfuscated in
infinitely many ways. Deobfuscation is NP-hard

® Widely adopted by various tools

aaaaaaaaaa

An Analysis of the BabLock (aka Rorschach)

o Code obfuscation(Tigress,VMProtect) Ransomware
o DRM(Irdeto)

AAAAAAA

A ransomware called BabLock (aka Rorschach) has recently been making wave
Y ' due to its sophisticated and fast-moving attack chain that uses subtle yet Revisiting 16shop
O B e I n g u S e d fo r m a IWa re ?:r:a?sv:jn:;‘::res effective techniques. Although primarily based on LockBit, the ransomware is a Phishing Kit, Trend-
hodgepodge of other different ransomware parts pieced together into what we Interpol Partnership
now call BabLock (detected as Ransom.Win64.LOCKBIT.THGOGBB.enc). Note, ,
however, that we do not believe that this ransomware originates from the th

rrrrrrrrrrr

Attack With Ne

aaaaaaa
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Previous Approaches for MBA Deobfuscatlon

| Cannot handle a W|de range
* Term Rewriting : SSPAM [Eyrolles et al. 2016] « 1

* Program Synthesis : Syntia [Blazytko et al. 2017], QSynth [David et al. 2020],

Xyntia [Menguy et al. 2021] No Guarantee of Correctness

+ Neural Network Inference : NeuReduce [Feng et al. 2020] <d |, . ...

. Algebraic Methods : MBA-Solver [Xu et al. 2021], SIMBA [Reichenwallner et
| 2000 A

Limited to a specific class of MBA expressions
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Our Goal

To overcome the limitations, we should achieve :

Soundness : Guarantee of correctness
Generality : Covers arbitrary MBA expression
Flexibility : Regardless of obfuscation rules

Scalability : Covers huge MBA expression

AV R e W A Y B VA LRVYZ “ ) G Y. UL == N s
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Program Synthesis-Based MBA Deobfuscation

Same semantics

Synthesize
_|_ ﬁ

S — 155 S|SAS
SVvS|-S5|5+S
SxS|S§5=-5|8>S5
S<< S|V |C

V. — Dblel---
C — 0x00|0x01]---

Syntax

Can cover arbitrary MBA EXxprs

Deobfuscated expression
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Challenge : Scalability

Synthesize

(-a)) * (((-e) -

Too Slow! @

size of obfuscated expression T -> deobfuscation performance ¥
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Solution 1: Synthesis via Localization

® Sub-expressions are chosen for replacement

((-e)& (~(((~e)|(-a)) +((~e)&(-a))))) +
(-e) & (~(((~e)[(-a)) + ((~e) &(-a))))) ...
(v1 &((v2 v3)&(v2 v1)))

(V2 * v3) & (~ v1)) + v2)

ynthesize o [ (& (2 V3)& )
| (V2 - v1)))

- ((v1 & (v2 * v3)) & (V2 - v1))

Scalable ®
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Solution 2: Learning Successful Synthesis Patterns

Deobfuscation
Rules
((-e)& (~(((~e)|(-a)) +((~e)&(-a)))) + c
((-e) & (~(((~e)|(-a)) + (~e) &(-2)))) ... i
(v1 &((v2 v3)&(v2 v1)))

Rule learning

SyntheSize (V1 & ((V2 * V3) & ,

) ﬁ (V 5 - v )))
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Comparison to the HE Optimization

e Commons : Synthesis via localization = Learning rules = Term
rewriting + Equality saturation

e Major Diffs : Learning and applying rules directly online (without
offline learning)

o Rules used in MBA obfuscation are highly diverse, making offline-
learned rules ineffective for deobfuscating new MBA expressions.

o Advances in program synthesis have enabled faster rule synthesis.

e Others: using algebraic methods for certain types of MBA expressions
(linear MBA), selecting target subexpressions for replacement, etc.
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Evaluation

® ProMBA: performs term rewriting first and then equality saturation
® 4000 MBA obfuscated expressions from prior work

o From three categories with different sizes, from small to large
® Baseline tools

o MBASolver [PLDI 22] : Algebraic method. Correctness guarantee

o Syntia [USENIX "17] : Heuristics. No correctness guarantee
o GAMBA [WORMA'23] :Algebraic + heuristics. Correctness guarantee

® Success: (|) size of deobfuscated result < size of original expression,

(2) deobfuscated result has the same meaning as the original one
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Results

® An average deobfuscation success rate of 95.3%, significantly
outperforming other tools (13%, 82.5%, 39.4%)

M ProMBA | MBASolver [ GAMBA | Syntia

Average
Success Rate

100% e 95.31%

75% |

) . ; ' N
. . , :
50% i | . —
/) ; )' 9 “ ,'i'. “; '
3 . / /) 2 o

&« ;a : } "\. ‘:, \“b'
25 o y | - ) {‘ ; nv
: ) | :

0% '.;. —  T— R |
MBA-Solver QSynth Loki
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Efficacy of Equality Saturation

® Increased success rate:
847% — 95%

® Reduced average size
of deobfuscated results

:94 — 7.9 (in AST
nodes)

100%

/5%

50%

25%

0%

‘ -olver

® ProMBA+EgSat

ProMBA-EqSat
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Contents

o Case | : Optimizing compiler for homomorphic encryption

® (Case 2: Deobfuscation of bit-manipulating code

® Lessons from the two cases

® Core technology: high-performance program synthesis

39



Lesson | : Both Term Rewriting and Equality Saturation
are Necessary (1/2)

® Equality saturation is for overcoming the phase-ordering problem, the
limitation of term rewriting. But, equality saturation alone is insufficient.

® [ he main issue is its high computational cost.
® In the case of homomorphic encryption optimization

o EqSat alone causes OOM (256GB) for large circuits (depths > 25)

o Even smaller circuits may not reach saturation within 12 hours

® For MBA deobfuscation — lower success rate (92% — 61.8%) when
with equality saturation alone (with early termination to avoid high
cost)
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Lesson | : Both Term Rewriting and Equality Saturation
are Necessary (2/2)

® [he larger the original expression and the more rules there are, the
greater the search space and computational cost

® |t is beneficial to do term rewriting first and then equality saturation.

o Reducing the size of the original expression decreases the search
space and provides direction to the exploration process.

v

.
) 2
.

@® Original  * : @ Result of term rewriting

{ Searchable with
| equality saturation |

91



Lesson 2 : Performance of Synthesis is key (1/2)

® Rules discovered by a better synthesizer lead to better optimization

o Performance : Simba > Duet > EUSolver

e Case of MBA

M Simba [PLDI'23] Duet [POPL'21]
160M EUSolver [TACAS'17] 100%

120 90%

80 80%

40 70%

60%
Time Success Rate




Lesson 2 : Performance of Synthesis is key (2/2)

® Case of HE optimization

Boolean-ring theory [l Rules from EUSolver [ Rules fron DUET

60%
50%
40%
30%

20%

Depth Reduction Ratio

10%

0%

Benchmarks
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Contents

e Case | : Optimizing compiler for homomorphic encryption

® (Case 2: Deobfuscation of bit-manipulating code

® | essons from the two cases

® Core technology: high-performance program synthesis

o Yongho Yoon,Woosuk Lee, and Kwangkeun Yi, Inductive Program Synthesis via
Iterative Forward-Backward Abstract Interpretation. ACM PLDI 2023
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Two Synthesis Strategies — Bottom-Up

E — 0
1
. X
X+(-1) XX L+ FE
1+1 1+x 1+(-X) Ex E
—E
-1 -X
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Two Synthesis Strategies — Top-Down

1+1

-E+E

1+X

X

E+E E'E
X+X E*(-E)
E'E+E E*(E+E)

-E

— O

E+E
E x E

926



Bidirectional Synthesis

E
0 1 X E+E E'E -E E — 0
1+1 14X X+X E*(-E) 1
E+E E*E+E  E*(E+E) X
Programs with missing holes Missing holes are filled with E+E
are explored top-down . the component expressions. Ex E
Component expressions are . _F
explored bottom-up (-X) X+(-1) XX
-1 -X
0 1 X

*(POPL’21) Woosuk Lee, “Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis”



Synthesis + Static Analysis

e Can prune infeasible program candidates

* “Infeasible” = partial program that can never satisfy the given spec no
matter how we fill in the holes

* The more component expressions, the higher impact of the pruning

e “Fairly precise” static analysis for pruning infeasible candidates
* |nput: spec(input-output examples) and an incomplete partial program

e Qutput:“May be feasible” or “Infeasible”
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Example

® Goal: turn off all bits from the first bit to the rightmost 0 from a given bitvector
e Target function f(x: BitVec) : BitVec.

® Syntactic constraint:

Hacker’s Delight
SEcoND EDITION

S — x]|0001, input bit-vector and bit-vector literals
SAS|SVS|S5aS bitwise logical binary operators
S+S|SXS|S/S|S>S bitwise arithmetic binary operators

e Semantic constraint : f(l()llz) = 0011,

e Solution: f(x) = ((x +00015) ® x) >> 0001,




r Syntactic Spec ™
S — X|00012
| SAS|SVvS|SeS
| S+S|SxS|S/S|S>>S
S
- Semantic Spec ~\
£(10112) = 00115
i

.

X >>

2) >>
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r Syntactic Spec
S — X|00012
| SAS|SVvS|ISeS

| S+S|SxS|S/S|S>>S

o

, Semantic Spec

£(10115) = 0011,
.

‘\

A

f(10115) = 10115 >>
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r Syntactic Spec
S — X|00012
| SAS|SVvS|ISeS

N

| S+S|SxS|S/S|S>>S

~J How to detect7

el

N 4

, Semantic Spec

£(10115) = 0011,
.

‘\

A

f(10115) = 10115 >>
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Static Analysis

e Simulation of program execution with “abstract” values instead of concrete ones

® Abstraction = over-approximation (e.g., concrete : {0, 2, 6} = abstract : even)

e Bitfield abstract domain

o Each bit is represented by {0,1, L, T }

o T:unknown,

1:no value

//\\
\><><P<\

® e.g., TOIT represents a set {00102,001 I, 1010,
101 15}

® Abstract operators (denoted with #)

O

e.g., 1

10 A* 00

= 00

Ol LO 11 1‘ i |

11
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Using Forward Analysis

Checking only output feasibility

- Semantic Spec - "~
Candidate Partial Program f(10113) =0011;
. y

f(x)=xV

S

Forward

x — 1011

— ]
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Using Forward Analysis

Checking only output feasibility

’ Semantic Spec -
f(1011,) =0011,
-

Candidate Partial Program

f(x)=xV

S

Infeasible |
output



Limitation of Forward Analysis

Checking only output feasibility

- Semantic Spec - "~
Candidate Partial Program f(10113) =0011;
. y
Forward f (ic) —A®
- XD
— v

30011 X0 (x>> x® (x/ X®(x+
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Need: Backward Analysis Too

Output feasibility + Hole Precondition

- Semantic Spec - "~
Candidate Partial Program f(10112) = 0011,
- J
Forward / (ic) —A®
- X D
— | [ | !
— 0011 {*? X0 (x>> x® (x/ X (X +

Backward /\ /\ /\
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Need: Backward Analysis Too

Output feasibility + Hole Precondition

- Semantic Spec ~ "~

Candidate Partial Program f(10113) =0011;

f(x) = - ’

X &P

14 value of hole must be | / \
P 10002 f v

X (x >> x® (x/ X®(x+

Backward /\ /\ /\

10¢



Need: Backward Analysis Too

Output feasibility + Hole Precondition

’ Semantic Spec -
f(1011,) =0011,
-

Candidate Partial Program

f(x)=xo

—

Forward

1 prune infeasible parts |

l X >> £ 1000,

Backward




Evaluation

* Our tool: Simba
® Benchmark: 1,125 synthesis tasks from 4 sources
* HD: 44 from hacker’s delight
® Deobfsc: 500 from the program deobfuscation tasks in prior work
| obster: 369 from optimizing homomorphic evaluation circuits
o Crypto: 212 from generating circuits resilient to side-channel attacks
® Baseline tools

e duet:Woosuk Lee, "Combining the Top-Down Propagation and Bottom-Up Enumeration for
Inductive Program Synthesis”, POPL2 |

e probe: Barke et al., Just-in-Time Learning for Bottom-Up Enumerative Synthesis, OOPSLA’20
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Results

e Siginificantly outperforms the baseline tools

DEOBFUSC HD LOBSTER CRYPIO
v 500 ‘428‘ ‘86‘ B] 32600 571 [7
£ 400 40 £ 500 .
y 0 04
o0 300 a 400
k5 k5
% % 300
v 200 388 )
+~J +~J
§ § 200 367
§ 100 1 § 100
# 85 ;‘ * o >
DUET PROBE | SIMBA DUET
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Results

e Siginificantly outperforms the baseline tools

BitVec (HD+DEOBFUSC) CIRCUIT (LOBSTER+CRYPTO)

| —>— DUET (solved = 456) 30001 —=— DUET (solved = 569)
—w— PROBE (solved = 409) —o— S|IMBA (solved = 578)

»n 4 » 2500

= 209901 —s— SIMBA (solved = 519) b

E 50000 g 2000-

-) . (@)}

= 40000 JP £ 1500

2 2

- O

D ¥ 1000

(v ©

D °

= = 500
0“

0 100 200 300 400 500 0 100 200 300 400 500 500

# Solved instances (total = 544) # Solved instances (total = 581)
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Conclusion

® By using advanced search algorithms

o program synthesis, term rewriting, and equality saturation

o and by leveraging the high performance of modern computers
® [n certain cases

o | ow-level languages

o e.g., Boolean circuits and bitwise integers
® VWe can achieve better optimization than domain experts

o By discovering new optimization rules

o and sophisticated rule application orders that yield (nearly)optimal results
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