

Program Synthesis-based Program Optimization

Woosuk Lee

Hanyang University ERICA Campus

2024. 11. 13 @ UNIST

Who am I

- Associate Professor at Hanyang Univ. ERICA (2024.9 ~)
- Assistant Professor at Hanyang Univ. ERICA (2018.9 ~ 2024.8)
- Research Interests: program analysis, program synthesis
- Vita
 - 2012 UC Berkeley visiting researcher
 - ° 2016 Ph.D, Seoul National University (Advisor: Kwangkeun Yi)
 - 2016-2017 Postdoctoral fellow, Georgia Tech (Mayur Naik)
 - 2017-2018 Postdoctoral fellow, University of Pennsylvania (Mayur Naik)

Motivation

- Program optimization
 - Transforming into a
 better (e.g., cost) program
 - Applying transformation rules (e.g., $x + 0 \rightarrow x$)

- Rules in prior methods
 - Hand-crafted by domain experts
 - Limited search space

- Application order in prior methods
 - Heuristics by domain experts
 - May miss the optimal solutions

Our Solution

Discovering new rules (by *Program synthesis*) + Systematically applying the rules (by *Term rewriting*) + Finding optimal solutions by exhaustive search (by *Equality saturation*)

When rule discovery is time consuming

: Offline learning +

Online optimization

Our Solution

Discovering new rules (by *Program synthesis*) + Systematically applying the rules (by *Term rewriting*) + Finding optimal solutions by exhaustive search (by *Equality saturation*)

When rule discovery is cheap

: Online learning + optimization

Enabled by Program Synthesis

Syntactic Constraint: A formal grammar (e.g., context-free grammar) consisting of SMT operators, limiting search space

Syntactic constraint

$$S \to x \mid S \times S \mid 1 \mid 2 \mid \cdots$$

Synthesizer

Program

Semantic constraint

$$f(1) = 2 \land f(3) = 6$$

Semantic Constraint: a logical formula over the target function f

Case I: Homomorphic Encryption (HE) (1/2)

- Allows computation on encrypted data
- Enables the outsourcing of private data storage/processing

Case I: Homomorphic Encryption (HE) (1/2)

- HE Compilers generate HE applications automatically
- Better optimization effect than the SOTA with hand-crafted rules

Case 2: Simplifying Obfuscated Code (1/2)

- Obfuscation: transforming programs into complex ones
 - Evasion of malware detection Copyright protection

De-obfuscation: simplifying obfuscated programs

Case 2: Simplifying Obfuscated Code (2/2)

- Success: generating simpler or as simple as original code
- Higher success rate than the SOTA based on handcrafted rules

Papers

• Case I: Optimizing compiler for homomorphic encryption

- Dongkwon Lee, Woosuk Lee, Hakjoo Oh and Kwangkeun Yi, Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Time-Bounded Exhaustive Search, **ACM TOPLAS 2023**
- Dongkwon Lee, Woosuk Lee, Hakjoo Oh and Kwangkeun Yi, Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Term Rewriting, ACM PLDI 2020

• Case 2: Deobfuscation of bit-manipulating code

- Jaehyung Lee and Woosuk Lee, Simplifying Mixed Boolean-Arithmetic Obfuscation by Program Synthesis and Term Rewriting, **ACM CCS 2023**
- Jaehyung Lee, Seoksu Lee, Eunsun Cho and Woosuk Lee, Simplifying Mixed Boolean-Arithmetic Obfuscation by Program Synthesis and Equality Saturation, IEEE TDSC (Submitted)

Core technology: high-performance program synthesis

 Yongho Yoon, Woosuk Lee, and Kwangkeun Yi, Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation. ACM PLDI 2023

Contents

- Case I: Optimizing compiler for homomorphic encryption
 - Dongkwon Lee, Woosuk Lee, Hakjoo Oh and Kwangkeun Yi, Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Time-Bounded Exhaustive Search, **ACM TOPLAS 2023**
 - Dongkwon Lee, Woosuk Lee, Hakjoo Oh and Kwangkeun Yi, Optimizing Homomorphic Evaluation
 Circuits by Program Synthesis and Term Rewriting, ACM PLDI 2020
- Case 2: Deobfuscation of bit-manipulating code

Lessons from the two cases

Core technology: high-performance program synthesis

Homomorphic Encrytion (1/2)

Building HE applications

Homomorphic Encrytion (2/2)

Existing Homomorphic Compiler

- Generates HE applications automatically
- Optimization : several hand-written rules

Our Contribution

Automatic, Aggressive HE optimization Framework

- Generates HE applications automatically
- Optimization: machine-found rules by program synthesis + applying by term rewriting

Lobster

Offline Learning via Program Synthesis + Online Optimization via Term Rewriting

Simple HE Scheme

- Based on approximate common divisor problem
- p: integer as a secret key
- q: random integer
- $r(\ll |p|)$: random noise for security

$$Enc_p(\mu \in \{0,1\}) = pq + 2r + \mu$$

$$Dec_p(c) = (c \bmod p) \bmod 2$$

$$Dec_p(Enc_p(\mu)) = Dec_p(pq + 2r + \mu) = \mu$$

• For ciphertexts $\underline{\mu_i} \leftarrow Enc_p(\mu_i)$, the following holds

$$Dec_p(\underline{\mu_1} + \underline{\mu_2}) = \mu_1 + \mu_2$$
$$Dec_p(\underline{\mu_1} \times \underline{\mu_2}) = \mu_1 \times \mu_2$$

• The scheme can evaluate all boolean circuits as + and \times in $\mathbb{Z}_2 = \{0,1\}$ are equal to XOR and AND

Performance Hurdle: Growing Noise

- Noise increases during homomorphic operations.
- For $\underline{\mu_i} = pq_i + 2r_i + \mu_i$

$$\underline{\mu_1} + \underline{\mu_2} = p(q_1 + q_2) + 2(r_1 + r_2) + (\mu_1 + \mu_2) \text{ double increase}$$

$$\underline{\mu_1} \times \underline{\mu_2} = p(pq_1q_2 + \cdots) + 2(2r_1r_2 + r_1\mu_2 + r_2\mu_1) + (\mu_1 \times \mu_2) \text{ quadratic increase}$$
noise

• if (noise > p) then incorrect results

Multiplicative Depth: a Decisive Performance Factor

The maximum number of sequential multiplications from input to output

What is HE optimization?

• Finding a new circuit that has smaller mult. depth

same semantics

Desired

program

Hurdle: Synthesis Scalability

Solution 2: Learning Successful Synthesis Patterns

- Offline Learning
 - Collect successful synthesis patterns
- Online Optimization
 - Applying the patterns by term rewriting

Offline Learning to Collect Opt. Patterns

Offline Learning to Collect Opt. Patterns

Offline Learning to Collect Opt. Patterns

Collected Opt. Patterns

Learned Optimization Patterns: examples

Online Rule-based Optimization

Online Rule-based Optimization

Online Rule-based Optimization

Syntactic Matching is Not Effective

Syntactic Matching is Not Effective

Formal properties

Phase-Ordering Problem

Existing Solutions

• Using a pre-defined application order (e.g., LLVM optimization passes)

Backtracking (i.e., maintaining top-k candidates)

Equality Saturation

A solution to the phase ordering problem

 Obtains results of all possible orderings and extract the best one among them

• Enabled by *E-graph*, a very efficient data structure

E-Graph

- E-graph = e-nodes + e-classes
 - E-classes = set of e-nodes
 - E-node = a node whose children are e-classes

- Meaning
 - E-node (bold): expressions with sub-expressions represented by children e-classes
 - E-class (doted): semantically equivalent e-nodes

(I)
$$x \times 2 \rightarrow x \ll 1$$

(1)
$$x \times 2 \to x << 1$$
 (2) $(x \times y)/z \to x \times (y/z)$

$$(3) \quad x/x \to 1$$

$$(4) 1 \times x \rightarrow x$$

$$(3) x/x \rightarrow 1$$

(1)
$$x \times 2 \to x << 1$$
 (2) $(x \times y)/z \to x \times (y/z)$

$$(4) 1 \times x \rightarrow x$$

(I)
$$x \times 2 \rightarrow x \ll 1$$

$$(3) x/x \rightarrow 1$$

(2)
$$(x \times y)/z \rightarrow x \times (y/z)$$

$$(4) 1 \times x \rightarrow x$$

(I)
$$x \times 2 \rightarrow x \ll 1$$

$$(3) \quad x/x \to 1$$

(1)
$$x \times 2 \to x << 1$$
 (2) $(x \times y)/z \to x \times (y/z)$

$$(4) 1 \times x \rightarrow x$$

(I)
$$x \times 2 \rightarrow x \ll 1$$

(1)
$$x \times 2 \to x << 1$$
 (2) $(x \times y)/z \to x \times (y/z)$

$$(3) \quad x/x \to 1$$

$$(4) 1 \times x \rightarrow x$$

- More rule application can't change the graph
 - Saturation!
 - Exprs represented by the root node's e-class is all exprs obtainable by applying the rules in all possible orders

Extracting an Optimal Solution

- Extract an expression of the best score after saturation†
 - o e.g., greedy method using scores assigned for each kind of e-node
 - By integer linear programing in more complicated cases

Fundamental Meaning of Equality Saturation

- E-graph ≅ Grammar representing semantically equivalent exprs
 - \circ (E-class \cong non-terminal, E-node \cong production rule)
- Equality saturation = grammar induction

Evaluation

- 25 HE algorithms from 4 sources
 - Cingulata benchmarks
 - Sorting benchmarks
 - Hackers Delight benchmarks
 - EPFL benchmarks
- Baseline tool: Cingulata
 - o A HE compiler using optimization rules written by domain experts

Lobster Performance

 Achieved an average of 2x, up to 3.1x faster performance compared to Cingulata (with up to a 40% reduction in multiplication depth)

Efficacy of Equality Saturation

Success rate \uparrow : 19 \rightarrow 22 in the number of successfully optimized programs

- \circ Execution time: $x2.03 \rightarrow x2.26$
- Reduction in multiplicative depth: $21.9\% \rightarrow 25.1\%$

Contents

Case I: Optimizing compiler for homomorphic encryption

- Case 2: Deobfuscation of bit-manipulating code
 - Jaehyung Lee and Woosuk Lee, Simplifying Mixed Boolean-Arithmetic Obfuscation by Program Synthesis and Term Rewriting, ACM CCS 2023
 - Jaehyung Lee, Seoksu Lee, Eunsun Cho and Woosuk Lee, Simplifying Mixed Boolean-Arithmetic
 Obfuscation by Program Synthesis and Equality Saturation, IEEE TDSC (Submitted)

Lessons from the two cases

Core technology: high-performance program synthesis

Mixed Boolean Arithmetic (MBA)

Program expressions with logical operators (AND, OR, XOR...)
 and bitwise arithmetic operators (+,-,*,/,%,...)

o e.g.,
$$8458(x \lor y \land z)^3 ((xy) \land x \lor t) + x + 9(x \lor y)yz^3$$

 MBA obfuscation: transforming arbitrary bitwise expressions into highly complex MBA expressions while maintaining their meaning

Popular MBA Obfuscation

- The cost of obfuscation and executing obfuscated code is low.
 - Only basic operations are added, and the execution flow remains unchanged (no additional calls to user/system functions, etc.)
- Theoretical foundation: any bitwise expressions can be obfuscated in infinitely many ways. Deobfuscation is NP-hard
- Widely adopted by various tools
 - Code obfuscation(Tigress, VMProtect)
 - DRM(Irdeto)
 - Being used for malware

Previous Approaches for MBA Deobfuscation

- Term Rewriting: SSPAM [Eyrolles et al. 2016] -
- Cannot handle a wide range of MBA obfuscation rules
- Program Synthesis: Syntia [Blazytko et al. 2017], QSynth [David et al. 2020], Xyntia [Menguy et al. 2021] **No Guarantee of Correctness**
- Neural Network Inference: NeuReduce [Feng et al. 2020]

Algebraic Methods: MBA-Solver [Xu et al. 2021], SiMBA [Reichenwallner et al. 2022] Limited to a specific class of MBA expressions

Our Goal

• Term Rewriting: "Rewrite with fi

To overcome the limitations, we should achieve:

- Soundness: Guarantee of correctness
- Generality: Covers arbitrary MBA expression
- Flexibility: Regardless of obfuscation rules
- Scalability: Covers huge MBA expression

o MDA-Solver [Au et al. 2021], Silvida [Reichenwahner et al. 2022

Limited to specific set of transformations (linear)

Program Synthesis-Based MBA Deobfuscation

Constraints

+

Grammar

Synthesize

Result

$$1 + a$$

$$V \;\; o \;\; \mathtt{b} \; | \; \mathtt{e} \; | \; \cdots$$

$$C
ightarrow \mathsf{0x00} \mid \mathsf{0x01} \mid \cdots$$

Same semantics

Syntax

Deobfuscated expression

Challenge: Scalability

size of obfuscated expression **↑** -> deobfuscation performance **↓**

Solution 1: Synthesis via Localization

Sub-expressions are chosen for replacement

Solution 2: Learning Successful Synthesis Patterns

Comparison to the HE Optimization

- Commons : Synthesis via localization → Learning rules → Term rewriting + Equality saturation
- **Major Diffs**: Learning and applying rules directly online (without offline learning)
 - Rules used in MBA obfuscation are highly diverse, making offline-learned rules ineffective for deobfuscating new MBA expressions.
 - Advances in program synthesis have enabled faster rule synthesis.
- Others: using algebraic methods for certain types of MBA expressions (linear MBA), selecting target subexpressions for replacement, etc.

Evaluation

- ProMBA: performs term rewriting first and then equality saturation
- 4000 MBA obfuscated expressions from prior work
 - From three categories with different sizes, from small to large
- Baseline tools
 - MBASolver [PLDI '22] : Algebraic method. Correctness guarantee
 - Syntia [USENIX '17]: Heuristics. No correctness guarantee
 - GAMBA [WORMA'23] : Algebraic + heuristics. Correctness guarantee
- Success: (I) size of deobfuscated result ≤ size of original expression,
 (2) deobfuscated result has the same meaning as the original one

Results

 An average deobfuscation success rate of 95.3%, significantly outperforming other tools (13%, 82.5%, 39.4%)

Efficacy of Equality Saturation

ProMBA+EqSat

• Increased success rate:

Reduced average size
of deobfuscated results
: 9.4 → 7.9 (in AST nodes)

ProMBA-EqSat

Contents

• Case I: Optimizing compiler for homomorphic encryption

• Case 2: Deobfuscation of bit-manipulating code

Lessons from the two cases

• Core technology: high-performance program synthesis

Lesson I: Both Term Rewriting and Equality Saturation are Necessary (1/2)

- Equality saturation is for overcoming the phase-ordering problem, the limitation of term rewriting. But, equality saturation alone is insufficient.
- The main issue is its high computational cost.
- In the case of homomorphic encryption optimization
 - EqSat alone causes OOM (256GB) for large circuits (depths > 25)
 - o Even smaller circuits may not reach saturation within 12 hours
- For MBA deobfuscation lower success rate (92% → 61.8%) when with equality saturation alone (with early termination to avoid high cost)

Lesson I: Both Term Rewriting and Equality Saturation are Necessary (2/2)

- The larger the original expression and the more rules there are, the greater the search space and computational cost
- It is beneficial to do term rewriting first and then equality saturation.
 - Reducing the size of the original expression decreases the search space and provides direction to the exploration process.

Lesson 2: Performance of Synthesis is key (1/2)

- Rules discovered by a better synthesizer lead to better optimization
 - Performance : Simba > Duet > EUSolver

Case of MBA

Lesson 2: Performance of Synthesis is key (2/2)

Case of HE optimization

Contents

• Case I: Optimizing compiler for homomorphic encryption

• Case 2: Deobfuscation of bit-manipulating code

Lessons from the two cases

- Core technology: high-performance program synthesis
 - Yongho Yoon, Woosuk Lee, and Kwangkeun Yi, Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation. ACM PLDI 2023

Two Synthesis Strategies — Bottom-Up

Two Synthesis Strategies — Top-Down

Bidirectional Synthesis

Synthesis + Static Analysis

- Can prune infeasible program candidates
 - "Infeasible" = partial program that can never satisfy the given spec no matter how we fill in the holes
 - The more component expressions, the higher impact of the pruning

- "Fairly precise" static analysis for pruning infeasible candidates
 - Input: spec(input-output examples) and an incomplete partial program
 - Output: "May be feasible" or "Infeasible"

- Goal: turn off all bits from the first bit to the rightmost 0 from a given bitvector
- Target function f(x: BitVec) : BitVec.
- Syntactic constraint:

$$S \longrightarrow x \mid 0001_{2}$$

$$\mid S \land S \mid S \lor S \mid S \oplus S$$

$$\mid S + S \mid S \times S \mid S/S \mid S >>> S$$

input bit-vector and bit-vector literals bitwise logical binary operators bitwise arithmetic binary operators

- Semantic constraint : $f(1011_2) = 0011_2$
- Solution: $f(x) = ((x + 0001_2) \oplus x) >> 0001_2$

Syntactic Spec
$$S \rightarrow x \mid 0001_2$$
 $\mid S \land S \mid S \lor S \mid S \oplus S$ $\mid S + S \mid S \times S \mid S/S \mid S >> S$

 $f(1011_2) = 0011_2$

Semantic Spec $f(1011_2) = 0011_2$

Static Analysis

- Simulation of program execution with "abstract" values instead of concrete ones
 - Abstraction = over-approximation (e.g., concrete : $\{0, 2, 6\} \rightarrow \text{abstract} : \text{even}$)
- Bitfield abstract domain
 - \circ Each bit is represented by $\{0,1,\perp,\top\}$
 - ° T: unknown, ⊥: no value
- e.g., T01T represents a set {0010₂, 0011₂, 1010₂,
 1011₂}
- Abstract operators (denoted with #)

$$\circ$$
 e.g., $1 \top 10 \wedge^{\#} 00 \top \top = 00 \top 0$

Using Forward Analysis

Checking only output feasibility

Candidate Partial Program

$$f(x) = x \vee \square$$

Using Forward Analysis

Checking only output feasibility

$$f(x) = x \vee \square$$

Limitation of Forward Analysis

Checking only output feasibility

Need: Backward Analysis Too

Output feasibility + Hole Precondition

Need: Backward Analysis Too

Output feasibility + Hole Precondition

Need: Backward Analysis Too

Output feasibility + Hole Precondition

Evaluation

- Our tool: Simba
- Benchmark: I,125 synthesis tasks from 4 sources
 - HD: 44 from hacker's delight
 - Deobfsc: 500 from the program deobfuscation tasks in prior work
 - Lobster: 369 from optimizing homomorphic evaluation circuits
 - Crypto: 212 from generating circuits resilient to side-channel attacks
- Baseline tools
 - **duet**: Woosuk Lee, "Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis", POPL'21
 - probe: Barke et al., Just-in-Time Learning for Bottom-Up Enumerative Synthesis, OOPSLA'20

Results

• Siginificantly outperforms the baseline tools

Results

Siginificantly outperforms the baseline tools

Conclusion

- By using advanced search algorithms
 - o program synthesis, term rewriting, and equality saturation
 - o and by leveraging the high performance of modern computers
- In certain cases
 - Low-level languages
 - o e.g., Boolean circuits and bitwise integers
- We can achieve better optimization than domain experts
 - By discovering new optimization rules
 - o and sophisticated rule application orders that yield (nearly)optimal results