
111

Optimizing Homomorphic Evaluation Circuits by Program

Synthesis and Time-Bounded Exhaustive Search

DONGKWON LEE, Seoul National University
WOOSUK LEE, Hanyang University
HAKJOO OH, Korea University
KWANGKEUN YI, Seoul National University

We present a new and general method for optimizing homomorphic evaluation circuits. Although fully
homomorphic encryption (FHE) holds the promise of enabling safe and secure third party computation, building
FHE applications has been challenging due to their high computational costs. Domain-specific optimizations
require a great deal of expertise on the underlying FHE schemes, and FHE compilers that aims to lower the
hurdle, generate outcomes that are typically sub-optimal as they rely on manually-developed optimization
rules. In this paper, based on the prior work of FHE compilers, we propose a method for automatically learning
and using optimization rules for FHE circuits. Our method focuses on reducing the maximum multiplicative
depth, the decisive performance bottleneck, of FHE circuits by combining program synthesis, term rewriting,
and equality saturation. It first uses program synthesis to learn equivalences of small circuits as rewrite rules
from a set of training circuits. Then, we perform term rewriting on the input circuit to obtain a new circuit that
has lower multiplicative depth. Our rewriting method uses the equational matching with generalized version
of the learned rules, and its soundness property is formally proven. Our optimizations also try to explore
every possible alternative order of applying rewrite rules by time-bounded exhaustive search technique called
equality saturation. Experimental results show that our method generates circuits that can be homomorphically
evaluated 1.08x – 3.17x faster (with the geometric mean of 1.56x) than the state-of-the-art method. Our method
is also orthogonal to existing domain-specific optimizations.
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1 INTRODUCTION

Fully Homomorphic Encryption (FHE) [32] enables safe and secure third-party computation with
private data because it enables any computation on encrypted data without the decryption key.
Because the cloud can perform any computation on encrypted data without learning about the data

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
0164-0925/2023/8-ART111 $15.00
https://doi.org/doi

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2023.

https://doi.org/doi
https://doi.org/doi


111:2 Dongkwon Lee et al

itself, the clients can safely upload their encrypted data without trusting the software/hardware
vendors of the cloud.

Problem

However, building FHE applications has been challenging at the moment because of their high
computational costs. Though building FHE applications itself does not require much expertise
thanks to off-the-shelf libraries of FHE schemes [33, 34, 51], when naively implemented, even with
the best FHE schemes [10, 18], FHE applications incur slowdown factors of orders of magnitudes
compared to their plaintext version. One key challenge is therefore reducing the costs of FHE
applications so that they become amenable to practical use.

Existing Approaches

There have been two approaches – domain-specific optimizations and optimizing FHE compil-
ers – for reducing the costs of FHE applications, but they are still less than desirable. Various
domain-specific FHE optimization techniques have been successfully developed, but developing
such techniques requires a great deal of expertise on the underlying FHE schemes. For example,
optimizations such as rescaling [25], data movement [42] and batching [44], and heuristics for
encryption parameter selection [25, 27] enable several orders of magnitude speedups in a wide
range of FHE applications (such as image recognition [25], statistical analysis [42], sorting [17],
bioinformatics [19], database [8], and static program analysis [41]). Yet, such improvement requires
a great deal of expertise in cryptography. Lowering this hurdle of expertise is a goal of FHE com-
pilers, which, equipped with FHE optimization techniques, automatically transform conventional
plain-text programs into optimized FHE code. For example, Ramparts [4], Cingulata [15] and
Alchemy [23] take programs written in a high-level language (e.g., Julia, C++, or a custom DSL)
and transform them into arithmetic representations which can be evaluated using a backend FHE
scheme.

However, though the users do not have to concern about low-level details of underlying schemes
when writing applications, they need to write FHE-friendly algorithms [16, 17, 19, 42] to achieve
the desired efficiency. Furthermore, state-of-the-art compilers rely on hand-written optimization
rules whose findings require expertise and are likely to remain sub-optimal.

Our Approach

In this paper, in the context of optimizing FHE compilation, we propose a novel and general
method for optimizing FHE boolean circuits that outperforms existing automatic FHE optimization
techniques. Our method focuses on reducing the number of nested multiplications and achieves
sizeable optimizations even for existing domain-specific manually optimized results.

Our setting of the optimization problem is simple. Let c be an arithmetic code that can be evalu-
ated using FHE schemes, which can be either generated by a FHE compiler or manually written by
a developer. Optimization is to find a new circuit c ′ of lower computational cost while guaranteeing
the same semantics as the original. Because the decisive performance bottleneck in homomorphic
computation is the nested depth of multiplications [4, 15, 17, 56], we set the computation cost
to be measured using the maximum multiplicative depth, which is simply the maximum num-
ber of sequential multiplications required to perform the computation. For example, the circuit
c(x1,x2,x3,x4,x5) = ((x1x2)x3)x4+x5 has multiplicative depth 3. The lower the multiplicative depth
is, the more efficiently a circuit can be evaluated. For example, we can optimize c by replacing it
with c ′(x1,x2,x3,x4,x5) = (x1x2)(x3x4) + x5 that has depth 2.
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Fig. 1. Overview of the system.

To achieve this critical optimization for homomorphic computation circuits as much as possible,
we combine three techniques: program synthesis, term rewriting and equality saturation. Fig. 1
illustrates our approach.
• Our method first automatically learns equivalences of small circuits from a set of training
circuits using the program synthesis technique and then uses the learned equivalences to
optimize unseen circuits. To learn such equivalences, we partition each training circuit into
multiple sub-parts and synthesize their equivalent counterparts of smaller depth. Most of these
machine-found optimization patterns are what we can hardly imagine from human-devised
optimization techniques. (Section 5.2)
• Next, armored with these automatically learned equivalences as rewrite rules, we perform
term rewriting on the input circuit to obtain a new circuit that has lower multiplicative
depth. We generalize what have been learned from training circuits by giving flexibility to
the rewriting procedure: our method is based on a limited version of the equational matching
that takes commutativity into account rather than just the syntactic matching. Our rewriting
method is proven to be sound and terminating.
• Moreover, by the equality saturation technique [54], we explore every possible alternative
order of applying rewrite rules (i.e. we obtain backtracking effect). First, we efficiently express
all possible result circuits as a form of program grammar using a data structure called E-
graph [61] (saturation process). Next, from the saturated E-graph, we extract the optimal
circuit that has the lowest multiplicative depth (extraction process).

We implement our method atop Cingulata [21], a widely-used FHE compiler and evaluate
our method on 25 FHE applications from diverse domains (statistical analysis, sorting, medical
diagnosis, low-level algorithms, etc). We learn rewrite rules from a set of Cingulata-generated
Boolean circuits and apply the rules into other circuits.1 On average, our method generates Boolean
circuits that can be homomorphically evaluated 1.08x – 3.17x faster (with the geometric mean of
1.56x) than the state-of-the-art method [14].

Contributions

• A novel general method for optimizing homomorphic evaluation circuits: we first learn
rewrite rules from a set of training Boolean circuits using program synthesis and then
perform term-rewriting with the equational matching for generalized versions of the learned
rewrite rules on a given new circuit. The soundness property of this rewriting system are

1Although the paper targets Boolean circuits, the method can also be directly applied to arithmetic circuits.
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formally proven. We combine equality saturation [54] with the existing term rewriting
system (Section 4.4) to obtain a backtracking effect. This saturation-based term rewriting
system outperforms our previous approach [39].
• Confirming the method’s effectiveness in a realistic setting : the method outperforms existing
automatic FHE optimization techniques, and even shows sizeable optimizations for domain-
specific manually optimized results.

2 PROBLEM DEFINITION

We define the problem of minimizing the multiplicative depth of Boolean circuits. We first pro-
vide background on homomorphic encryption (Section 2.1) and Boolean circuits (Section 2.2). In
Section 2.3, we formally state the problem.

2.1 Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme with binary plaintext space Z2 = {0, 1} can be
described by the interface:

Encpk : Z2 → Ω Decsk : Ω → Z2
Addpk : Ω × Ω → Ω Mulpk : Ω × Ω → Ω

where pk is a public key, sk is a secret key, Ω is a ciphertext space (e.g. large cardinality set such as
Zq , i.e., integers modulo an integer q). For all plaintextsm1,m2 ∈ Z2, the interface should satisfy
the following algebraic properties:

Decsk (Addpk (Encpk (m1), Encpk (m2))) =m1 +m2,
Decsk (Mulpk (Encpk (m1), Encpk (m2))) =m1 ×m2.

Note that such a scheme is able to potentially evaluate all Boolean circuits as addition and multipli-
cation in Z2 correspond to XOR and AND operations.
As an instance, let us consider a simple symmetric version (where only a secret key is used for

both encryption and decryption) of the HE scheme [26] based on approximate common divisor
problems [36]:
• The secret key (sk) is a random integer p.
• For a plaintextm, Enc(m) outputs pq + 2r +m, where q and r are randomly chosen integers
such that |r | ≪ |p |. r is a noise for ensuring semantic security [47].
• For a ciphertext c̄ , Dec(c̄) outputs ((c̄ mod p) mod 2).
• For ciphertexts c̄1 and c̄2, Add(c̄1, c̄2) outputs c̄1 + c̄2.
• For ciphertexts c̄1 and c̄2,Mul(c̄1, c̄2) outputs c̄1 × c̄2.

For ciphertexts c̄1 ← Enc(m1) and c̄2 ← Enc(m2), we know each c̄i is of the form c̄i = pqi + 2ri +mi
for some integer qi and noise ri . Hence Dec(c̄i ) = ((c̄i mod p) mod 2) = mi , if |2ri +mi | < p/2.
Then, the following equations hold:

c̄1 + c̄2 = p(q1 + q2) + 2(r1 + r2) +m1 +m2︸                    ︷︷                    ︸
noise

Add

c̄1 × c̄2 = p(pq1q2 + · · · ) + 2(2r1r2 + r1m2 + r2m1) +m1m2︸                                   ︷︷                                   ︸
noise

Mult

Based on these properties, we can show that

Dec(c̄1 + c̄2) =m1 +m2 and Dec(c̄1 × c̄2) =m1 ·m2
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if the absolute values of noiseAdd and noiseMult are less than p/2. Note that the noise in the resulting
ciphertext increases during homomorphic addition and multiplication (twice and quadratically
as much noise as before respectively). If the noise becomes larger than p/2, the decryption result
of the scheme will be spoiled. As long as the noise is managed, the scheme is able to potentially
evaluate all Boolean circuits.

Because managing the noise growth is very expensive and the noise growth induced by multipli-
cation is much larger than that by addition, the performance of homomorphic evaluation is often
measured by the maximum multiplicative depth of evaluated circuits. The maximum multiplica-
tive depth influences parameters of a HE scheme. Minimizing the multiplicative depth results in
not only smaller ciphertexts but also less overall execution time. For example, to support a large
number of consecutive multiplications, the secret key p should also be huge in the aforementioned
scheme, and it increases overall computational costs. Current FHE schemes are leveled (also called
somewhat homomorphic) in that for fixed encryption parameters they only support computation
of a particular depth.2

2.2 Boolean Circuit and Multiplicative Depth

Boolean Circuit

A Boolean circuit c ∈ C is inductively defined as follows:
c → ∧(c, c) | ⊕(c, c) | x | 0 | 1

where ∧ and ⊕ denote AND and XOR respectively, and x denotes an input variable. The grammar
is functionally complete because any Boolean functions can be expressed using the grammar. For
simplicity, we assume that circuits have a single output value. We will often denote 1 ⊕ c or c ⊕ 1
as ¬c . In addition, we will use infix notation for ⊕ and ∧.

Multiplicative Depth

Let ℓ : C→ N be a function that computes the multiplicative depth of a circuit, which is inductively
defined as follows:

ℓ(c) =


1 +maxi ∈{1,2} ℓ(ci ), c = ∧(c1, c2)

maxi ∈{1,2} ℓ(ci ), c = ⊕(c1, c2)

0, otherwise

Critical Path

The input-to-output paths with the maximal number of AND gates are called critical paths. A set
of critical paths, denoted P(c), of a circuit c is a set of strings over the alphabet of positive integers,
which is inductively defined as follows:

• If c = x or 0 or 1, P(c) def= {ϵ}, where ϵ is the empty string.
• If c = f (c1, c2) where f ∈ {∧, ⊕}, then

P(c)
def
=

⋃
ℓ(ci )=max1≤j≤2 ℓ(c j )

{ip | p ∈ P(ci )}

A set of critical positions CP(c) consists of all prefixes of strings in P(c).

Example 2.1. Consider a circuit c(v1,v2,v3,v4) defined as

v1 ∧ (1 ⊕ (v4 ∧ (1 ⊕ (v2 ∧v3)))).

2A leveled scheme may be turned into a fully homomorphic one by introducing a bootstrapping operation [32], which is
computationally heavy.
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The multiplicative depth ℓ(c) of circuit c is 3 because there are three consecutive AND operations
performed on v2 and v3. The set P(c) of critical paths in c is

P(c) = {2p | p ∈ P(1 ⊕ (v4 ∧ (1 ⊕ (v2 ∧v3))))}

= {22p | p ∈ P(v4 ∧ (1 ⊕ (v2 ∧v3)))}

= {222p | p ∈ P(1 ⊕ (v2 ∧v3))}

= {2222p | p ∈ P(v2 ∧v3)}

= {22221, 22222}

The set CP(c) of critical positions is:

{ϵ, 2, 22, 222, 2222, 22221, 22222}.

Note that in order to decrease the overall multiplicative depth of a Boolean circuit, all critical
paths of the circuit must be rewritten. The depth of a critical path can be reduced if we reduce the
depth of a sub-circuit at a critical position.

2.3 Problem

Given a Boolean circuit c ∈ C whose input variables are x1, · · · ,xn , we aim to find a semantically
equivalent circuit c ′ ∈ C whose multiplicative depth is smaller than c . Formally, our goal is to find
c ′ such that

∀xi . c(x1, · · · ,xn ) ⇐⇒ c ′(x1, · · · ,xn ), ℓ(c) > ℓ(c
′). (1)

In this paper, we propose to solve this problem by combining program synthesis, term rewriting,
and equality saturation.

3 INFORMAL DESCRIPTION

In this section, we illustrate our approach with examples. Our approach consists of offline and
online phases (Figure 1).

Offline Learning via Program Synthesis

In the offline phase, we use program synthesis to learn a set of rewrite rules from training circuits.
Suppose we have the circuit c in Example 2.1 in the training set:

c
def
= v1 ∧ (¬(v4 ∧ (¬(v2 ∧v3)))).

The depth of this circuit is 3 and we would like to find a semantically-equivalent circuit c ′ with a
smaller depth (i.e. ℓ(c ′) ≤ 2). To do so, we formulate the task as an instance of the syntax-guided
synthesis (SyGuS) problem [2]. The formulation comprises a syntactic specification, in the form of a
context-free grammar that constrains the space of possible programs, and a semantic specification,
in the form of a logical formula that defines a correctness condition. The syntactic specification for
c ′ is the grammar:

S → d3
d3 → d2 ∧ d2 | d3 ⊕ d3 | d2
d2 → d1 ∧ d1 | d2 ⊕ d2 | d1
d1 → d0 ∧ d0 | d1 ⊕ d1 | d0
d0 → 0 | 1 | c1 | c2 | c3 | c4 | c5

where S denotes the start symbol, and each non-terminal symboldi denotes circuits of multiplicative
depth ≤ i . The semantic specification for c ′ is given as a logical formula:

∀v1,v2,v3,v4. c(v1,v2,v3,v4) ⇐⇒ c ′(v1,v2,v3,v4)
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Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Time-Bounded

Exhaustive Search 111:7

which enforces c ′ to be semantically equivalent to c . Given this SyGuS formulation, an off-the-shelf
program synthesizer (e.g. EUSolver [3], DUET [40]) is able to find the following circuit c ′:

c ′
def
= ((¬(v3 ∧v2)) ∧ (v1 ∧v4)) ⊕ v1

which has multiplicative depth 2.
Once we obtain a pair (c, c ′) of original and optimized circuits, we simplify c and c ′ by replacing

sub-circuits that are equivalent modulo commutativity with a new fresh variable. In this example,
¬(v2 ∧v3) in c and ¬(v3 ∧v2) in c ′ are equivalent modulo commutativity and therefore we replace
them by a new variable x , which simplifies c and c ′ into v1 ∧ (¬(v4 ∧ x)) and (x ∧ (v1 ∧v4)) ⊕ v1,
respectively. Note that the simplified circuits are still semantically equivalent. We replace sub-
circuits with a variable after we check for equivalence using a SAT solver.

The purpose of this simplification step is to generalize the knowledge andmaximize the possibility
of applying the rewrite rule for optimization in the online phase. However, care is needed not to
over-generalize and destroy the syntactic structures of the circuits. For example, if we aim to replace
all semantically equivalent sub-circuits with a new fresh variable, we would obtain x ⇐⇒ x ,
which is useless.

In summary, the offline learning phase produces the following rewrite rule:

v1 ∧ (¬(v4 ∧ x)) → (x ∧ (v1 ∧v4)) ⊕ v1. (2)

Online Optimization via Term Rewriting

In the online phase, we use the learned rewrite rule to optimize unseen circuits. Suppose we want
to optimize the following circuit whose multiplicative depth is 4:

((v5 ∧v6) ∧ (¬((v7 ∧v8) ∧ (¬((v8 ∧v9) ∧ (v9 ∧v7)))))). (3)

To optimize the circuit, we first compare it with the left-hand side of the learned rewrite rule (i.e.
v1 ∧ (¬(v4 ∧ x))), and find a substitution σ that makes the two circuits equivalent. For example, our
matching algorithm in Section 4 is able to find the following substitution:

σ =


v1 7→ v5 ∧v6
v4 7→ v7 ∧v8
x 7→ (¬(v8 ∧v9) ∧ (v9 ∧v7))

 .
Note that σ (v1 ∧ (¬(v4 ∧ x))) is equivalent to the circuit in (3). Next, we apply the substitution to
the right-hand side of the rewrite rule, obtaining the following optimized circuit:

(¬((v8 ∧v9) ∧ (v9 ∧v7)) ∧ ((v5 ∧v6) ∧ (v7 ∧v8))) ⊕ (v5 ∧v6).

whosemultiplicative depth is 3. In our approach, the resulting circuit is guaranteed to be semantically
equivalent to the original one in (3).

Scaling via Divide-and-Conquer

As described from the above, we obtain rewrite rules from a small circuit and apply it into a new
small circuit. In practice, however, real circuits are much larger, and the aforementioned method
using the SyGuS formulation is not directly applicable. Even state-of-the-art SyGuS tools can only
handle small circuits because the search space for synthesis grows exponentially with the maximum
depth and number of input variables.
To address this scalability issue, we apply our approach in a divide-and-conquer manner; we

divide a circuit into pieces, find a replacement for each piece, and finally compose them to form a
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Fig. 2. (a) The circuit cex of depth 5. (b) A circuit that has depth 3 and the same semantics as cex .

final circuit. For example, consider the circuit cex of depth 5, which is depicted in Figure 2(a) (the
critical path is highlighted in red):

cex
def
= ((((a ∧ b) ∧ c) ∧ d) ∧ e) ∧ f . (4)

We can divide the circuit into two pieces r1 and r2 through which a critical path passes. By
introducing two auxiliary variables, cex can be rewritten as r2 where

r2
def
= (r1 ∧ e) ∧ f , r1

def
= ((a ∧ b) ∧ c) ∧ d .

We separately reduce the depths of r1 and r2 in order. We first find a replacement for r1. We can
replace r1 of depth 3 by the following:

r ′1
def
= (a ∧ b) ∧ (c ∧ d)

which has depth 2 and the same semantics as r1. Next, we find a replacement for r2. We treat r1 in
the definition of r2 as a special variable that has its own depth 2. Considering the depth of r1, we
replace r2 of depth 4 by

r ′2
def
= r ′1 ∧ (e ∧ f )

that has depth 3 and the same semantics as r2. Combining r ′1 and r
′
2 produces the final circuit of

depth 3. We use this divide-and-conquer strategy in both of our offline learning and online rewriting
phases.

Backtracking via Equality Saturation

In rewriting input circuits, we may miss the global optimality because there can be multiple targets
to optimize and multiple rewrite rules to apply to each target. In this situation, optimization results
can be varied depending on which target is rewritten first, or which rewrite rule is applied first.

For example, suppose that we want to optimize circuit c0 = ((x1 ∧ x2) ∧ (x2 ⊕ x3)) ∧ x3 using the
following learned rewrite rules.

rule (1) : ((v1 ∧v2) ∧v3) ∧v4 → ((v1 ∧v2) ∧v4) ∧ ((v2 ⊕ v4) ⊕ v3)

rule (2) : ((v1 ∧v2) ∧v3) ∧v4 → (v1 ∧v2) ∧ (v3 ∧v4)

rule (3) : (v1 ⊕ v1) → 0
rule (4) : (v1 ∧ 0) → 0

We can apply both rule (1) and rule (2) using substitution σ = {v1 7→ x1,v2 7→ x2,v3 7→

(x2 ⊕ x3),v4 7→ x3}. If we apply rule (1) first, we can optimize c0 → c1 = ((x1 ∧ x2) ∧ x3) ∧ ((x2 ⊕

x3) ⊕ (x2 ⊕ x3)). In this case, we can subsequently apply rule (3) and rule (4) and optimize c0 →
∗ 0.

Otherwise, we can optimize c0 → c2 = (x1 ∧ x2) ∧ ((x2 ⊕ x3) ∧ x3). In this case, we can no longer
apply the rewrite rules and miss the opportunity of further optimizing c0.
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To address this rewrite order issue, we use the equality saturation technique [54] that obtains
a fully backtracking effect within a given time limit. By the technique we try to explore every
possible rewriting sequences (e.g. we try to explore both c0 →

∗ 0 and c0 → c2).
Equality saturation consists of two processes: saturation process and extraction process. First,

in the saturation process, we express all possible result circuits as a form of program grammar
using a data structure named E-graph [61] (e.g. we construct program grammar that can generate
circuits c0, c1, c2 and 0). In the extraction process, we extract an optimal circuit that has the lowest
multiplicative depth from a saturated E-graph (e.g. we extract circuit 0 which has the lowest
multiplicative depth). Details of this equality saturation process are in Section. 4.4.

4 ALGORITHM

We first review (Section 4.1) key definitions and results borrowed from Baader and Nipkow [6]
that will be used in the rest of the paper. Then we present the offline learning phase (Section 4.2),
online optimization phase (Section 4.3) based on term rewriting and backtracking system(Section
4.4) via equality saturation.

4.1 Preliminaries

Term

A signature Σ is a set of function symbols, where each f ∈ Σ is associated with a non-negative
integer n, the arity of f (denoted arity(f )). For n ≥ 0, we denote the set of all n-ary elements
Σ by Σ(n). Function symbols of 0-arity are called constants. Let X be a set of variables. The set
TΣ,X of all Σ-terms over X is inductively defined; X ⊆ TΣ,X and ∀n ≥ 0, f ∈ Σ(n). t1, · · · , tn ∈
TΣ,X . f (t1, · · · , tn) ∈ TΣ,X . We will denote Var(s) for s ∈ TΣ,X as a set of variables in term s . Note
the set C of circuits consists of terms over Σ = {∧, ⊕, 0, 1}.

Position

The set of positions of term s is a set Pos(s) of strings over the alphabet of positive integers, which
is inductively defined as follows:

• If s = x ∈ X , Pos(s) def= {ϵ}.
• If s = f (s1, · · · , sn), then Pos(s) def= {ϵ} ∪

⋃n
i=1{ip | p ∈ Pos(si )}.

The position ϵ is called the root position of term s . The size |s | of term s is the cardinality of Pos(s).
For p ∈ Pos(s), the subterm of s at position p, denoted by s |p , is defined by induction on the length
of p: (i) s |ϵ

def
= s and (ii) f (s1, · · · , sn) |iq

def
= si |q . For p ∈ Pos(s), we denote by s[p ← t] the term

that is obtained from s by replacing the subterm at position p by t . Formally,

• s[ϵ ← t]
def
= t

• f (s1, · · · , sn)[iq ← t]
def
= f (s1, · · · , si [q ← s], · · · , sn).

Substitution

ATΣ,X -substitution is a functionX → TΣ,X . The set of allTΣ,X -substitutions is denoted by Sub(TΣ,X ).
Any TΣ,X -substitution σ can be extended to a mapping σ̂ : TΣ,X → TΣ,X as follows: for x ∈ X ,
σ̂ (x)

def
= σ (x) and for any non-variable term s = f (s1, · · · , sn), σ̂ (s)

def
= f (σ̂ (s1), · · · , σ̂ (sn)). With a

slight of abuse of notation, we denote σ̂ as just σ .
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Term Rewriting

A Σ-identity (or simply identity) is a pair ⟨s, t⟩ ∈ TΣ,X ×TΣ,X . Identities will be written as s ≈ t . A
term rewrite rule is an identity ⟨l , r ⟩, written l → r , such that l < X and Var(r ) ⊆ Var(l). A term
rewriting system ⟨Σ,E⟩ consists of a set Σ of function symbols and a set E of term rewrite rules
over TΣ,X . We will often identify such a system with its rule set E, leaving Σ implicit. The rewrite
relation→E on TΣ,X induced by a term rewriting system E is defined as follows:

s →E t ⇐⇒ ∃l → r ∈ E,p ∈ Pos(s),σ ∈ Sub(TΣ,X ).
s |p= σ (l), t = s[p ← σ (r )]

Example 4.1. Let E = {x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z, 1 ∧ x ≈ x ,x ∧ y ≈ y ∧ x}. Then, 1 ∧ (a ∧ 1) →E
(1 ∧ a) ∧ 1→E a ∧ 1→E 1 ∧ a →E a.

Equational Theory

Let↔∗E denote the reflexive-transitive-symmetric closure of→E . The identity s ≈ t is a semantic
consequence of E (denoted E |= s ≈ t ) iff s ↔∗E t . And the relation ≈E

def
= {⟨s, t⟩ ∈ TΣ,X ×TΣ,X | E |=

s ≈ t} is called the equational theory induced by E.

Example 4.2. Let C = {x ∧ y ≈ y ∧ x ,x ⊕ y ≈ y ⊕ x}. Then, x ∧ (y ⊕ z) →C (y ⊕ z) ∧ x →C
(z ⊕ y) ∧ x . The theory of commutativity for circuits is ≈C

def
= {⟨s, t⟩ ∈ C × C | C |= s ≈ t} (e.g.

x ∧ (y ⊕ z) ≈C (z ⊕ y) ∧ x ).

Example 4.3. Boolean ring theory is ≈R
def
= {⟨s, t⟩ ∈ C × C | R |= s ≈ t} where

R =



x ⊕ y ≈ y ⊕ x , x ∧ y ≈ y ∧ x ,
(x ⊕ y) ⊕ z ≈ x ⊕ (y ⊕ z),
(x ∧ y) ∧ z ≈ x ∧ (y ∧ z),
x ⊕ x ≈ 0, x ∧ x ≈ x ,
0 ⊕ x ≈ x , 0 ∧ x ≈ 0,

x ∧ (y ⊕ z) ≈ (x ∧ y) ⊕ (x ∧ z),
1 ∧ x ≈ x


Boolean ring theory formalizes digital circuits. For any two circuits c1, c2, c1 ↔

∗
R
c2 means they

are semantically equivalent [6].

Example 4.4. The original circuit c and its optimized version c ′ in Section 3 are semantically
equivalent because

c = v1 ∧ (1 ⊕ (v4 ∧ (¬(v2 ∧v3))))

→R (v1 ∧ 1) ⊕ (v1 ∧ (v4 ∧ (¬(v2 ∧v3)))) x ∧ (y ⊕ z) ≈ (x ∧ y) ⊕ (x ∧ z)
→R v1 ⊕ (v1 ∧ (v4 ∧ (¬(v2 ∧v3)))) x ∧ y ≈ y ∧ x , 1 ∧ x ≈ x
→R v1 ⊕ ((v1 ∧v4) ∧ (¬(v3 ∧v2))) (x ∧ y) ∧ z ≈ x ∧ (y ∧ z)
→R ((v1 ∧v4) ∧ (¬(v3 ∧v2))) ⊕ v1 x ⊕ y ≈ y ⊕ x
→R ((¬(v3 ∧v2)) ∧ (v1 ∧v4)) ⊕ v1 = c

′ x ∧ y ≈ y ∧ x

E-Matching

A substitution σ is a E-matcher of two terms s and t if σ (s) ≈E t . Given two terms s and t , a
E-matching algorithm computes {σ ∈ Sub(TΣ,X ) | σ (s) ≈E t}.

Example 4.5. Given two terms s = x ∧y and t = (a ∧ b) ∧ (b ∧ a), C-matching algorithm returns
two substitutions which are {x 7→ a ∧ b,y 7→ b ∧ a} and {x 7→ b ∧ a,y 7→ a ∧ b}.
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4.2 Learning Rewrite Rules

In this section, we describe how to learn rewrite rules using the divide-and-conquer approach
described in Section 3. The method is inspired by the prior work [28], which uses syntax-guided
synthesis to automatically transform a circuit into an equivalent and provably secure one.

4.2.1 The Overall Algorithm. The pseudocode is shown in Algo. 1. Here, c denotes an original
training circuit, θ denotes a threshold value for termination condition, n is an user-provided
predefined limit for region selection. The algorithm generates an optimized circuit c ′, and returns a
set E of rewrite rules collected in the process of optimization.
Our algorithm repeatedly identifies a circuit region and synthesizes a replacement. To identify

a circuit region, we randomly choose a critical path and traverse the path from input-to-output.
If the left and right children at a position have different depths, we include both gates in fan-in
and recurse on the child of deeper depth. We repeat this process until the region size reaches a
predefined limit. Once we successfully synthesize a replacement, we can decrease the overall depth
if a unique critical path passes through the region. Otherwise, we decrease the number of parallel
critical paths by one.

Algorithm 1 Synthesis-based Rule Learning

Input: c: input boolean circuit
Input: θ : threshold for termination condition
Input: n: predefined size limit for chosen regions
Output: E: a set of rewrite rules
1: c ′ ← c
2: E ← ∅
3: w ← CP(c ′)
4: whilew , ∅ and |c

′ |

|c | < θ do

5: remove a pos fromw
6: ⟨r ,σ ⟩ ← GetRegion(c ′ |pos ,n)
7: r ′ ← Synthesize(r , ℓ(r ) − 1,σ )
8: if r ′ , ⊥ then

9: E ← E ∪ {Normalize(r → r ′)}
10: c ′ ← c ′[pos ← σ (r ′)]
11: w ← CP(c ′)
12: end if

13: end while

14: return E

Our method first initializes c ′ to be the original circuit c , E to be the empty set and the worklist
w to be a set of critical positions, respectively (lines 1–3). The loop (lines 4 – 13) repeats the process
of selecting a region and synthesizing a replacement. First, a critical position pos is chosen in the
input-to-output order (line 5). Given a subcircuit at pos , the GetRegion procedure is invoked to
obtain a circuit region r such that |r | ≤ n (line 6). The GetRegion procedure substitutes some
subterms of a given circuit with fresh variables and returns the result along with the substitution.
Section 4.2.2 will detail more on this procedure. Next, we invoke a SyGuS solver to synthesize a
replacement for r (line 7). If a solution is found (line 8), we obtain a term rewrite rule r → r ′. We
generalize the rule by invoking the Normalize procedure (Section 4.2.4), and add it into the set E
(line 9). The old region r is replaced with the new region r ′ (line 10). Because the replacement step
may change the overall structure of the current circuit, we recompute critical positions and update
the worklist (line 11). This process is repeated as long as there is room for improvement, and the
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ratio between the sizes of c ′ and c does not exceed the threshold value θ (line 4). The ratio between
the circuit sizes is considered because the depth reduction may not be beneficial if a new circuit c ′
additionally performs a huge number of AND/XOR operations. Although the multiplicative depth is
the dominating factor for homomorphic evaluation performance, the number of operations can also
have a non-trivial impact if it is enormous. The threshold value varies depending on the underlying
FHE schemes. In our evaluation, we set θ to be 3. The algorithm eventually returns the set E of
rewrite rules (line 14), which include all the transformations occurred while optimizing c into c ′.

4.2.2 Region Selection. The GetRegion procedure for the region selection is shown in Algo. 2.
The region selection method is a heuristic based on our observation that replacing long and narrow
regions covering critical paths often leads to significant optimization effects. If the given region size
n is 1 or the given circuit region is a variable of a constant (i.e., |c | = 1) (line 2), we just represent
the given circuit region as a fresh variable and return it along with the corresponding substitution
(line 3). Otherwise (i.e., |c | > 1), we first let c1 and c2 be the left and right child of c , resp. (lines 5 –
6). If the depth of c1 (c2, resp.) is deeper than the other (line 7 (line 10, resp.)), we keep extending
the region in c1 (c2, resp.) (line 8 (line 11, resp.)), and substitute c2 (c1, resp.) with a fresh variable
(line 9 (line 12, resp.)).

Algorithm 2 GetRegion

Input: c: input boolean circuit region
Input: n: predefined size limit for regions
Output: r : a circuit region
Output: σ : a substitution from variables to circuits
1: x ←a new fresh variable
2: if n = 1 or |c | = 1 then

3: return ⟨x , {x 7→ c}⟩
4: end if

5: c1 ← c |1
6: c2 ← c |2
7: if ℓ(c1) > ℓ(c2) then
8: ⟨r ′,σ ⟩ ← GetRegion(c1,n − 1)
9: return ⟨c[1← r ′, 2← x],σ ∪ {x 7→ c2}⟩
10: else
11: ⟨r ′,σ ⟩ ← GetRegion(c2,n − 1)
12: return ⟨c[1← x , 2← r ′],σ ∪ {x 7→ c1}⟩
13: end if

Example 4.6. Consider the circuit cex in (4). GetRegion(cex , 5) returns ⟨(r1 ∧ e) ∧ f , {r1 7→

((a ∧ b) ∧ c) ∧ d}⟩ (see Fig. 2(a)).
4.2.3 Synthesizing Replacement. Given a circuit region r , an upper bound n of desired multiplica-

tive depths, and a substitution σ , the function Synthesize returns a new semantically equivalent
region r ′ of depth ≤ n.
For 1 ≤ i ≤ n, let x i denote one of the variables such that ℓ(σ (x i )) = i . We can formulate a

SyGuS instance as follows. The syntactic specification for r ′ is
S → dn
dn → dn−1 ∧ dn−1 | dn ⊕ dn | dn−1 | x

n

dn−1 → dn−2 ∧ dn−2 | dn−1 ⊕ dn−1 | dn−2 | x
n−1

...
d0 → 0 | 1 | x0
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where S denotes the start symbol and each di represents circuits of multiplicative depth ≤ i . The
semantics specification for r ′ enforces the equivalence of r and r ′:

∀x0, · · · ,xn−1. r (x0, · · · ,xn−1) ⇐⇒ r ′(x0, · · · ,xn−1).

When Synthesize fails to find a solution, it returns ⊥.

Example 4.7. After selecting the region r2 as in Example 4.6, we find a replacement for r2 using
the following formulation, hoping to reduce the depth from 5 to 4. The syntactic specification for
r ′2 is

S → d4
d4 → d3 ∧ d3 | d4 ⊕ d4 | d3
d3 → d2 ∧ d2 | d3 ⊕ d3 | d2 | r1
d2 → d1 ∧ d1 | d2 ⊕ d2 | d1
d1 → d0 ∧ d0 | d1 ⊕ d1 | d0
d0 → 0 | 1 | e | f

and the semantics specification is the semantic equivalence with r2. Note that r1 is producible from
d3 because its depth is 3. Given this problem, a SyGuS solver (e.g. EUSolver [3], DUET [40]) finds
the solution r1 ∧ (e ∧ f ) which has depth 4.
4.2.4 Collecting and Simplifying Rewrite Rules.
When we obtain a rewrite rule l → r , we simplify it by invoking the Normalize procedure (line

9 in Algo. 1). We normalize each rewrite rule l → r ∈ E as follows:
• Let S = {(l |pl , r |pr ) | pl ∈ Pos(l),pr ∈ Pos(r ), l |pl≈C r |pr }.
• For each (l |pl , r |pr ) ∈ S, we transform l → r into l ′ → r ′ where l ′ = σ (l), r ′ = σ (r ),
σ = {∀l |pi 7→ x ,∀r |pj 7→ x} s .t . l |pi≈C l |pl , r |pj≈C r |pr , and x is a fresh variable. We
transform the rule only if l ′ is semantically equivalent to r ′.

We consider a term rewrite rule that cannot be further simplified by this procedure normalized
modulo commutativity.

Example 4.8. Suppose we want to normalize a rewrite rule:

((a ∧ b) ∧ (b ∧ a)) ∧ (a ∧ b)︸                              ︷︷                              ︸
l

→ (b ∧ a)︸ ︷︷ ︸
r

.

Note that l |11= l |2= (a ∧ b) ≈C r |1= l |12= (b ∧ a). If we replace the subterms l |11, l |12, l |2, and
r |1 with a fresh variable x , we obtain normalized rewrite rule (x ∧ x) ∧ x → x , which is semantics
preserving.

Example 4.9. Suppose we want to normalize a rewrite rule:

(a ∧ b) ∧ a︸       ︷︷       ︸
l

→ (b ∧ a) ∧ b︸       ︷︷       ︸
r

.

Note that l |1= (a ∧b) ≈C r |1= (b ∧ a). If we replace the subterms l |1 and r |1 with a fresh variable
x , we would obtain x ∧ a → x ∧ b, which is undesirably semantics-changing. In this case, we do
not replace the subterms.

4.3 Optimization without Backtracking

Next, we describe our algorithm that uses the set E of (normalized) learned rewrite rules to optimize
unseen circuits.
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4.3.1 Our Term Rewriting System. Our term rewriting system is based on the following relation
→E, ℓ induced by E (learned rewrite rules) and ℓ (the function computing the multiplicative depth).

s →E, ℓ t ⇐⇒ ∃l → r ∈ E,p ∈ CP(s),σ ∈ Sub(C).

s |p≈C σ (l), ℓ(σ (l)) > ℓ(σ (r )), t = s[p ← σ (r )].

Because our primary goal is to reduce the overall multiplicative depth, the above rewrite relation
differs from the ordinary relation in Section 4.1 in three aspects.
First, we rewrite critical paths by considering only critical positions CP(s) of a given circuit s .

Rewriting non-critical paths are not of our interest.
Second, we admit a rewrite step only if it decreases the depth of a critical path. This condition is

reflected in ℓ(σ (l)) > ℓ(σ (r )).
Lastly, we perform rewriting modulo commutativity to provide flexibility to the rewriting proce-

dure. This is for maximizing the possibility of applying the learned rewrite rules for optimization.
Instead of syntactically matching a left-hand side of a rule with a subterm as in the ordinary
rewrite relation, each rewrite step requires C-matching, which is reflected in s |p≈C σ (l). Here, a
complication arises that there may be multiple C-matchers. In such a case, we choose the one that
can reduce depth.

Example 4.10. Recall the rewrite rule (2) in Section 3
v1 ∧ (¬(v4 ∧ x))︸              ︷︷              ︸

l

→ (x ∧ (v1 ∧v4)) ⊕ v1︸                   ︷︷                   ︸
r

.

and the target circuit (3) of depth 4
(v5 ∧v6) ∧ (¬((v7 ∧v8) ∧ (¬((v8 ∧v9) ∧ (v9 ∧v7))))).

There are two substitutions that make l match with the target circuit: σ1 = {v1 7→ v5 ∧v6,v4 7→

v7∧v8,x 7→ (¬(v8∧v9)∧(v9∧v7))} andσ2 = {v1 7→ v5∧v6,v4 7→ (¬(v8∧v9)∧(v9∧v7)),x 7→ v7∧v8}.
Applying the substitutions into r gives us two candidates for the replacement, which are

σ1(r ) = (¬((v8 ∧v9) ∧ (v9 ∧v7)) ∧ ((v5 ∧v6) ∧ (v7 ∧v8))) ⊕ (v5 ∧v6),

σ2(r ) = ((v7 ∧v8) ∧ ((v5 ∧v6) ∧ (¬(v8 ∧v9) ∧ (v9 ∧v7)))) ⊕ (v5 ∧v6).

Note that σ1(r ) has depth 3 whereas σ2(r ) has depth 4. Because only σ1 can reduce the depth, we
choose σ1.

The following theorem ensures that our term rewriting system is semantics-preserving and
terminating.

Theorem 4.11 (Soundness). ∀c, c ′ ∈ C. c →E, ℓ c
′⇒ c ≈R c ′.

Proof. Available in appendix. □

Theorem 4.12 (Termination). →E, ℓ is a terminating relation.

Proof. Available in appendix. □

Intuitively, termination is enforced because every rewrite step decreases the depth of a critical
path. If the rewritten critical path is unique, we reduce the overall multiplicative depth of the circuit.
Otherwise, we reduce the number of parallel critical paths. Because every circuit has at least one
critical path of non-negative depth, the rewriting procedure eventually terminates.
Using the rewrite relation→E, ℓ , given a circuit c , we perform term rewriting on c to obtain an

optimized circuit c ′ such that c
∗
→E, ℓ c

′. At each rewrite step, we randomly choose a critical path
and traverse the path to find a target region to be replaced. The traversal order is randomly chosen
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between the input-to-output and output-to-input orders. Similarly to Algo. 1, we stop the rewriting
procedure when there are so many additional AND/XOR gates in c ′ that the depth reduction may
not be beneficial.

4.3.2 Optimizations. In practice, we apply the following optimization techniques to the rewriting
procedure.

Prioritizing Large Rewrite Rules. In the case where multiple rewrite rules are applicable, we
choose the largest rule. The size of a rule l → r is simply measured by |l |. This heuristic is based
on our observation that large rules are applicable less often than small rules, but they expedite
transformation by modifying a wider area.

Bounded C-matching. From a performance perspective, the main weakness of our rewriting
system is that each rewrite step requires C-matching, which is known to be NP-complete [38].
We limit the search space of C-matching algorithm by limiting the number of applications of
commutativity rules (see appendix for details).

Term Graph Rewriting. So far, we have presented our method as if circuits are represented as
functional expressions for ease of presentation. In practice, we cannot directly implement this kind
of conventional term rewriting based on strings or trees because of an efficiency issue. For example,
term rewrite rules such as (2) containing some variable more often on its right-hand side than on
its left-hand side can increase the size of a term by a non-constant amount. This problem can be
overcome by creating several pointers to a subterm instead of copying it.

For efficiency, we conduct term graph rewriting [48] on circuits. Term graph rewriting is a model
for computing with graphs representing functional expressions. Graphs allow sharing common
subterms, which improves the efficiency of conventional term rewriting in space and time. Thus,
we represent circuits as graphs and perform rewriting on the graphs by translating term rewrite
rules into suitable graph transformation rules. Term graph rewriting is sound with respect to term
rewriting in that every graph transformation step corresponds to a sequence of applications of term
rewrite rules. The interested reader is referred to Plump [48] for more details about the soundness
proof and the translation method.

4.4 Optimization with Backtracking Based on Equality Saturation

4.4.1 E-graph Structure. E-graph structure is defined as a triple of a set of enodes, a set of
eclasses, and a set of edges. Each enode contains a boolean operator (∧, ⊕) or boolean value (0, 1,
x ). Eclass is a set of enodes. Edge connects an enode to an eclass.

The meaning of the E-graph is as follows. Each enode represents a set of all expressions that
can be generated in the following manner, and each eclass represents a set of all expressions that
can be generated by enodes inside it. All E-graphs must have the invariant that all expressions
generated by enodes in the same eclass must be semantically equivalent. If an enode is a boolean
value, it generates the constant expression itself. If an enode is a boolean operator, it generates all
expressions that can be made by choosing each child boolean expression among the expressions
that the corresponding child eclass represents.

Figure 3 shows the concept of an E-graph. Let us illustrate how to generate various expressions
from eclass or enode, and show that the above invariant of E-graph holds. Let ECi and ENi be the
sets of expressions that can be generated by eclass eci and enode i respectively. Since enode 1–3
respectively contain a boolean value x1–x3, ECi = ENi = {xi }(1 ≤ i ≤ 3). Since enode 4 contains a
boolean operator ∧ and has two children eclasses ec1 and ec2, it can generate x1 ∧ x2 by choosing
x1 ∈ EC1 and x2 ∈ EC2 as two children expressions. Similarly, we get EC5 = EN5 = {(x1 ∧ x2) ∧ x3},
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Fig. 3. Simple example of E-graph. Each box means enode, and dotted box means eclass.

EC6 = EN6 = {(x2 ⊕ x3) ⊕ (x2 ⊕ x3)}, and EN7 = {((x1 ∧ x2) ∧ x3) ∧ ((x2 ⊕ x3) ⊕ (x2 ⊕ x3))}. In the
same way, we get EN8 = {((x1 ∧ x2) ∧ (x2 ⊕ x3)) ∧ x3}. Since ecroot contains enodes 7 and 8, we
get ECroot = EN7 ∪ EN8 = {((x1 ∧ x2) ∧ x3) ∧ ((x2 ⊕ x3) ⊕ (x2 ⊕ x3)), ((x1 ∧ x2) ∧ (x2 ⊕ x3)) ∧ x3}.
Recall that two boolean expressions in ECroot are semantically equivalent.

Note that E-graph also can be interpreted as a program grammar. Each of the eclasses corresponds
to a nonterminal symbol and each of enodes in that eclass corresponds to a production rule for the
nonterminal symbol. Every E-graph corresponds to a particular context-free grammar.
In this context, equality saturation is a process of constructing a program grammar that can

generate all boolean circuits equivalent to the input circuit.

4.4.2 Equality Saturation Process. Equality saturation consists of two processes: saturation
process and extraction process. First, in the saturation process, we continually expand E-graph
by finding all circuits which are semantically equivalent to an initial circuit. We call the E-graph
saturated if we can not find any other equivalent circuits. In the extraction process, we extract a
circuit that has the lowest multiplicative depth from a saturated E-graph.

Figure 4 and Figure 5 illustrates the saturation process. Same as Section 3, we start with a term
graph of the input boolean circuit ((x1 ∧ x2) ∧ (x2 ⊕ x3)) ∧ x3 and following rewrite rules.

rule (1) : ((v1 ∧v2) ∧v3) ∧v4 → ((v1 ∧v2) ∧v4) ∧ ((v2 ⊕ v4) ⊕ v3)

rule (2) : ((v1 ∧v2) ∧v3) ∧v4 → (v1 ∧v2) ∧ (v3 ∧v4)

rule (3) : (v1 ⊕ v1) → 0
rule (4) : (v1 ∧ 0) → 0

Then we explore optimized circuits that can be generated based on the rewrite rules by an iteration
of three steps: ematch, add, and merge. Figure 4 illustrates the first iteration. In the ematch step, we
find all enodes that can be rewritten by a certain rule. An enode is said rewritable by a certain rule
if it can generate a circuit which can be rewritten by the rule. As the root enode can generate circuit
((x1∧x2)∧ (x2 ⊕x3))∧x3 that can be rewritten by rule (1) and rule (2), we get two rewritten circuits
as a result of ematch step for the root enode (Figure 4.(a)). In the add step, we add all rewritten
circuits to the E-graph in a recursive manner from bottom to top (Figure 4.(b)). Newly added enodes
are colored gray in Figure 4 and Figure 5. Note that each added rewritten circuit corresponds to
an enode. In the merge step, for each pair of rewritable enode and rewritten circuit, we merge the
rewritable enode and newly added enode (that corresponds to the rewritten circuit) as the same
eclass (Figure 4.(c)). In the second and third iteration, we expand E-graph by applying rewrite rule
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Fig. 4. Change of E-graph during a single iteration. Dotted box means eclass. (a) ematch result for root enode.

(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

(3) and rule (4) respectively (Figure 5.(c), Figure 5.(d)).3 As the root enode is merged with the enode
that contains 0, we can figure out that the initial circuit is semantically equivalent to 0. More details
of these three steps are described in Willsey et al. [61].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hours).
In the extraction process, we extract the least-cost circuit from the saturated E-graph for the

given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [61]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeoff between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system defined in Section 4.3, we can only explore limited optimization space due to
termination property and efficiency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For efficiency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to find a globally
optimal circuit for efficient and terminating rewriting procedures.
3More enodes are rewritable by rule (2), but we ruled out them in Figure 5 for clarity.
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Fig. 5. Change of E-graph during iterations. Dotted box means eclass. (a) initial E-graph. (b) after 1 iteration.

(c) after 2 iterations. (d) saturated E-graph.

In a saturation-based rewriting system, the possibility of finding the globally optimal circuit is
enlarged. As we efficiently compress all possible result circuits as a form of program grammar, we
can explore an expansive space within a practical time budget.

Although equality saturation is a time-consuming method in general, we can successfully intro-
duce it for our term rewriting system since most of the homomorphic evaluation circuits have a
relatively small scale.

5 EVALUATION

We implemented our method as a tool named Lobster4. This section evaluates our Lobster system
to answer the following questions:
Q1: How effective is Lobster for optimizing FHE applications from various domains?
Q2: How does Lobster compare with existing general-purpose FHE optimization techniques?
Q3: What is the benefit of reusing pre-learned rewrite rules?
Q4: What is the benefit of using equality saturation technique?
Q5: What is the benefit of the rule normalization and equational matching?
Q6: How long does Lobster take to obtain optimized circuits?
Q7: How sensitive is Lobster to changes in the training set for learning rewrite rules?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

5.1 Experimental Setup

Implementation

Lobster comprises three pieces: (i) an offline rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. Lobster is written in OCaml and RUST, and consists of about 3K
lines of code.

4
Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting
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The offline rule learner collects rewrite rules for online optimization. For each of the benchmarks,
we performed the offline learning algorithm (Algo. 1) with a timeout of 1 week before online
optimization.We use EUSolver [3]5 andDUET [40]6, which are state-of-the-art open-source search-
based synthesizers, for the offline learning task. We use a timeout of one hour for synthesizing
each rewrite rule.

The online circuit optimizer transforms Boolean circuits generated by Cingulata [15], an open-
source FHE compiler, into depth-optimized ones with a timeout of 12 hour. Cingulata first directly
translates a given FHE application written in C++ into a Boolean circuit representation, and then
heuristically minimizes the circuit area by removing redundancy using the ABC tool [12], which
has been widely used for hardware synthesis. Then, our optimizer performs the saturation-based
rewriting procedure on the resulting circuit. We used EGG [61] library to implement saturation-
based rewriting system. We used learned rewrite rules and commutativity as equality rules, and
did not use any eclass analysis.

Circuits optimized by the online optimizer are evaluated by our homomorphic circuit evaluator
built using HElib [34].7 When homomorphically evaluating circuits, we set the security parameter
to 128 which is usually considered large enough. It means a ciphertext can be broken in the worst
case time proportional to 2128.

Benchmarks

Our benchmarks comprise 25 FHE applications written using the Cingulata APIs shown in Table 1.
We had initially collected 64 benchmarks from the following four sources.

• Cingulata benchmarks – 9 FHE-friendly algorithms from diverse domains (medical diagno-
sis, stream cipher, search, sort) [21].
• Sorting benchmarks – 4 privacy-preserving sorting algorithms (merge, insertion, bubble, and
odd-even) [17]. All the sorting algorithms can take up to 6 encrypted 8-bit integers as input.
• Hacker’s Delight benchmarks – 26 homomorphic bitwise operations adapted from Hacker’s
Delight [60]8, a collection of bit-twiddling hacks. We include these benchmarks because
they can be potentially used as building blocks for efficient FHE applications that perform
computations over fixed-width integers.
• EPFL benchmarks – 25 circuits from EPFL combinational benchmark suite [1]. The circuits
are intendedly suboptimal to test the ability of circuit optimization tools.

Among these 64 candidate benchmarks, we ruled out 39 benchmarks that are out of reach for
homomorphic evaluation even with the state-of-the-art FHE scheme [34], or which are likely
depth-optimal based on empirical evidence.
Among the excluded 39 benchmarks, 18 benchmarks have the number of AND/XORs greater

than 10,000, or the multiplicative depth is larger than 100. Our homomorphic circuit evaluator
runs out of memory for these circuits. The remaining 21 benchmarks are such that (i) baseline
optimizer [14] fails to reduce the multiplicative depth, and (ii) we could not mine any rules from
their circuit representations even after 7 days of running the offline learner, because this means that
even the state-of-the-art synthesizer with practically unlimited time cannot find any improvement.

5In our previous work [39], we chose EUSolver among the general-purpose synthesizers that participated in the 2019
SyGuS competition [53] since the tool performs best for our optimization tasks.
6We could learn new rewrite rules using DUET, since it outperforms EUSolver for our optimization tasks in most cases.
7We could not use the homomorphic circuit evaluator provided by Cingulata because it crashed for some of our evaluation
benchmarks, which are fairly sizeable circuits.
822 benchmarks used for program synthesis [37] + 4 excerpted from Hacker’s Delight [60]
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Table 1. Benchmark characteristics. ×Depth denotes the multiplicative depth. #AND and Size give the

number of AND operations and the circuit size, respectively.

Name Description ×Depth #AND Size

cardio medical diagnostic algorithm [16] 10 109 318
dsort FHE-friendly direct sort [17] 9 708 1464
msort merge sort [17] 45 810 1525
isort insertion sort [17] 45 810 1525
bsort bubble sort [17] 45 810 1525
osort oddeven sort [17] 25 702 1343
hd-01 isolate the rightmost 1-bit [37] 6 87 118
hd-02 absolute value [37] 6 76 229
hd-03 floor of average of two integers (a clever impl.) [37] 5 27 64
hd-04 floor of average of two integers (a naive impl.) [60] 10 75 159
hd-05 max of two integers [37] 7 121 295
hd-06 min of two integers [37] 7 121 295
hd-07 turn off the rightmost contiguous string of 1-bits [37] 5 17 32
hd-08 determine if an integer is a power of 2 [37] 6 18 37
hd-09 round up to the next highest power of 2 [37] 14 134 236
hd-10 find first 0-byte [60] 6 35 73
hd-11 the longest length of contiguous string of 1-bits [60] 18 391 652
hd-12 number of leading 0-bits [60] 16 116 232
bar barrel shifter [1] 12 3141 5710
cavlc coding-cavlc [1] 16 655 1219
ctrl ALU control unit [1] 8 107 180
dec decoder [1] 3 304 312
i2c i2c controller [1] 15 1157 1987
int2float int to float converter [1] 15 213 386
router lookahead XY router [1] 19 170 277

Baseline

We compare Lobster to Carpov et al. [14], which also aims at minimizing the multiplicative depth
of circuits for homomorphic evaluation. The work is also based on term rewriting, but only with two
hand-written rewrite rules. The first rule is based on AND associativity: (x∧y)∧z → x∧(y∧z). In a
given circuit c , a substitution σ such that σ ((x∧y)∧z) is syntactically matched with a sub-circuit of c
is found. The matched part σ ((x∧y)∧z) is replaced with σ (x∧(y∧z)) if ℓ(y) < ℓ(x) and ℓ(z) < ℓ(x).
This rewrite rule, when applied into a critical path, reduces the depth by one from ℓ(σ (x)) + 2 to
ℓ(σ (x))+1. The second rewrite rule is based on XOR distributivity: (x⊕y)∧z → (x∧z)⊕(y∧z). This
rule does not affect the depth, but it can make the first rule applicable by clearing XOR operators
away. The two rewrite rules repeatedly rewrite critical paths until a heuristic termination condition
is satisfied. As the tool is not publicly available, we reimplemented their algorithm.9

9We use the “random” priority function because it slightly outperforms the “non-random” heuristics according to the results
in Carpov et al. [14].
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Fig. 6. Main results comparing the optimization performance of Lobster and Carpov et al. [14] – Speedups

in overall homomorphic evaluation time (left) and depth reduction ratios (right).

5.2 Effectiveness of Lobster

Optimization Effect

We evaluate Lobster on the benchmarks and compare it with Carpov et al. [14]. Both of the tools
are provided circuits initially generated by Cingulata. We aim to determine whether Lobster
can learn rewrite rules from training circuits and effectively generalize them for optimizing other
unseen circuits. To this end, we conduct leave-one-out cross validation; for each benchmark,
we use rewrite rules learned from the other remaining 24 benchmarks. Both of the tools are given
the timeout limit of 12 hours for the online optimization tasks; in case of exceeding the limit, we
use the best intermediate results computed so far.
We measure Lobster’s reduction ratios of the multiplicative depth and speedups in overall

homomorphic evaluation time against the initial Cingulata-generated circuits, and compared
them with Carpov et al. [14]. The results can be found in Table 2. Lobster is able to optimize 22
out of 25 benchmarks within the timeout limit. Lobster achieves 1.08x – 5.43x speedups with the
geometric mean of 2.05x. The number of AND gates increases up to 1.9x more with the geometric
mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with the geometric mean
of 25.1%. Fig. 6 illustrates the summarized results comparing the optimization performance of
Lobster and Carpov et al. [14].
We next study the results in detail. Most notably, Lobster achieves 2.62x and 1.60x speedups

for the two Cingulata benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides significant
performance gains that are complementary to those achieved by domain-specific optimizations. The
four sorting benchmarks also observe significant performance improvements. For the four sorting
benchmarks, we used single-path term rewriting, since EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25. Lobster reduces the depth by 20% for each
of them. The osort benchmark shows a 3.17x speedup, and the other three benchmarks show
2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe improvements. The
speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and 3.3x, respectively).
For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both of the two optimizers
fail to optimize the other 2 benchmarks, which are relatively simple. Based on the fact that these
small and tricky algorithms are designed to efficiently perform computations on plaintexts, we
suspect most of these benchmarks to be depth-optimal.
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Table 2. Detailedmain results. The timeout for optimization is set to 12 hours. #AND↑ shows the ratio between

the number of AND gates of the optimized circuit and the original one. Eval. Time shows homomorphic

evaluation time (where ‘-’ means that the depth and evaluation time is the same as the original).

Original Cingulata Carpov et al. [14] Lobster

Name ×Depth Eval. Time ×Depth #AND ↑ Eval. Time ×Depth #AND ↑ Eval. Time

cardio 10 17m 14s 9 x1.07 10m 08s 8 x1.12 6m 34s

dsort 9 10m 52s 8 x1.08 8m 29s 7 x1.33 6m 47s

msort 45 5h 20m 59s 41 x1.02 5h 00m 06s 36 x1.88 2h 40m 23s

isort 45 5h 20m 16s - - - 36 x1.88 2h 38m 53s

bsort 45 5h 21m 46s 41 x1.02 5h 06m 09s 36 x1.88 2h 32m 38s

osort 25 2h 16m 58s - - - 20 x1.91 43m 12s

hd01 6 4m 36s - - - - - -
hd02 6 4m 50s - - - - - -
hd03 5 1m 08s - - - 4 x1.44 1m 03s

hd04 10 9m 06s 9 x1.00 7m 36s 7 x1.31 2m 25s

hd05 7 6m 08s - - - 6 x1.52 4m 16s

hd06 7 6m 14s - - - 6 x1.54 4m 12s

hd07 5 1m 02s - - - 3 x1.12 24s

hd08 6 2m 18s 5 x1.00 1m 03s 5 x1.00 57s

hd09 14 13m 03s 12 x1.10 9m 34s 11 x1.37 8m 48s

hd10 6 4m 24s 5 x1.03 2m 07s 5 x1.00 1m 20s

hd11 18 33m 31s 17 x1.00 28m 30s 14 x1.08 17m 42s

hd12 16 22m 31s 15 x1.00 18m 01s 14 x1.12 12m 26s

bar 12 56m 55s - - - 10 x0.89 37m 47s

cavlc 16 26m 35s 10 x1.20 15m 01s 9 x1.18 9m 37s

ctrl 8 3m 06s 6 x1.02 2m 44s 4 x1.19 1m 14s

dec 3 38s - - - - - -
i2c 15 51m 00s 9 x1.08 21m 38s 8 x1.21 15m 45s

int2float 15 15m 23s 9 x1.13 6m 30s 7 x1.21 2m 50s

router 19 37m 26s 10 x1.31 12m 34s 10 x1.38 11m 39s

As of the EPFL benchmarks, 6 out of 7 observe improvements. Both optimizers fail to optimize
dec, which is relatively simple. For bar, we observe 1.51x speedup. For the other benchmarks (cavlc,
ctrl, i2c, int2float and router), Lobster achieves remarkable speedups (2.5x – 5.4x).
The number of AND gates increases 1.31x more on average. For the 4 sorting benchmarks

({m,i,b,o}sort), we observe nearly 2x increases. For the other benchmarks, we observe up to 1.5x
increases. These increases are acceptable considering depth reduction ratio and speedup. The
increases in the number of XOR gates is similar, with the geometric mean of 1.2x.

In terms of time spent for the optimization, Lobster successfully optimizes circuits better than
Carpov et al. [14] within given time limit (12 hours).

Note that Fig. 7 shows that the depth reduction ratios are generally proportional to performance
improvements (but not exactly proportional since the number of AND operations also influences
the performance). This shows that multiplicative depth reduction is a good proxy for speedup, and
thus we only measured depth reduction ratio rather than speedup in sub-experiments (Section 5.4 –
Section 5.8).
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Fig. 7. Correlation log-log plot of multiplicative depth and homomorphic evaluation time

Learning Capability

We investigate the learned rewrite rules. From all the benchmarks, our rule learner mines 502
rewrite rules. The rule sizes (the size of a rule l → r is measured by |l |) range from 4 to 38. The
average and median sizes are 14 and 13, respectively. Fig. 8 shows how often these rules were applied
to reduce the multiplicative depth during our single-path term rewriting. Relatively small-sized
rules (size 5 – 15) are most frequently used, but also the large-sized rules are sometimes applied
and optimize wide areas of the input boolean circuits.

Fig. 8. Distribution of rule sizes and how often they were used during optimization

The machine-found optimization patterns are surprisingly aggressive. For example, the following
intricate rules enable to reduce the depth of a rewritten path by 1 when applied once (we denote
1 ⊕ c as ¬c).
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(v1 ∧ (v2 ∧ ((v3 ⊕ (v4 ∧v5)) ⊕ (v6 ∧v5))))

→ ((((v6 ⊕ v4) ∧v5) ⊕ v3) ∧ (v2 ∧v1))

((¬((v1 ∧ (¬(v2 ⊕ v3))) ⊕ (v2 ⊕ v3))) ∧v4)

→ (((¬v2) ⊕ v3) ∧ ((¬v1) ∧v4))

(¬((¬((((v1 ⊕ v2) ∧v3) ∧v4) ∧v5)) ⊕ v2))

→ ((((v2 ⊕ v1) ∧v4) ∧ (v3 ∧v5)) ⊕ v2)

((¬((v1 ⊕ (v2 ∧v3)) ⊕ (v4 ∧v3))) ∧v5)

→ (((v2 ⊕ v4) ∧ (v5 ∧v3)) ⊕ ((¬v1) ∧v5))

((((v1 ⊕ v2) ⊕ v3) ∧ (((v1 ⊕ v2) ∧v3) ⊕ (v1 ∧v2)))∧

(((((v1 ⊕ v2) ∧v3) ⊕ (v1 ∧v2)) ∧ ((v1 ⊕ v2) ∧v3))⊕

(¬((v1 ⊕ v2) ∧v3))))

→ ((v3 ∧v1) ∧v2)

Next, we investigate how long it takes to learn rewrite rules. The offline learning algorithm
(Algo. 1) is time consuming. The timeout limit for the offline learning is set to 168 hours (i.e., 1
week), and we use intermediate results (rules collected so far) when the budget expires. On average,
the offline learning phase for each benchmark takes 125 hours. For dsort, hd01, hd02, hd03, hd10,
ctrl and dec, the learning takes 1 – 46 hours. For router, it takes 129 hours. The other benchmarks
takes 168 hours (i.e., the learner is forced to stop when the time budget expires).

Answer to Q1: Lobster can optimize 22 out of 25 realistic FHE applications.
(x2.26 speedup, 25.1% depth reduction).

5.3 Comparison to the Baseline

Fig. 6 shows that Lobster significantly outperforms the existing state-of-the-art homomorphic
circuit optimizer [14] in terms of both depth reduction ratio and homomorphic evaluation time.
Only 15 out of 25 benchmarks can be optimized by Carpov et al. [14], whereas Lobster is able to
optimize 22. Compared to Carpov et al. [14], Lobster’s speedup is increased by up to 3.17x with the
geometric mean of 1.56x. The depth reduction ratio is increased by up to 40.0% with the geometric
mean of 13.8%.
We observe that Carpov et al. [14] needs relatively small amount of optimization time than

Lobster. It took 1 second – 25 minutes to optimize benchmarks with the average of 2 minutes,
whereas Lobster took 12 hours to optimize each benchmark. This is because Carpov et al. [14]
uses single-path rewriting with two simple rewrite rules, whereas Lobster uses saturation-based
rewriting with total 502 rewrite rules.

We empirically observe that Carpov et al. [14] often falls into the basin of local minima because
its two rewrite rules can modify only a small area at a time. On the contrary, Lobster often applies
large rewrite rules and escapes local optima.

Answer to Q2: Lobster outperforms existing FHE optimizer.
(x1.56 speedup, 13.8% depth reduction ratio)

5.4 Efficacy of Reusing Pre-Learned Rewrite Rules

We observe that reusing pre-learned rewrite rules significantly enhanced Lobster’s scalability and
exploration power.

To investigate the benefit for scalability, we compare Lobster to a simple method that uses the
offline rule learner as an on-the-fly optimizing synthesizer. Since it does not use any pre-learned
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rewrite rules, it can not use saturation-based rewriting. While performing single-path rewriting,
it finds an optimized version of sub-circuits using a program synthesizer rather than matching it
with pre-learned rewrite rules. The timeout limit for optimization is again set to 12 hours, and we
use the best intermediate results when the budget expires.
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Fig. 9. Comparison between on-the-fly synthesis and equality saturation with learned rules

Fig. 9 summarizes the results. The synthesis-based optimizer can optimize only 14 benchmarks
within the timeout limit. Furthermore, in all the 14 benchmarks, the depth reduction ratio is less
than that of Lobster that reuses pre-learned rewrite rules (geometric mean of 8.2% vs 25.1%). That
is mainly due to its limited scalability; if the synthesis-based optimizer is given 7 days, it can achieve
optimization effects similar to Lobster’s. Such enormous optimization costs are mainly due to the
inability to prove unrealizability (i.e., no solution) of attempts of optimizing already depth-optimal
circuit regions. In such cases, the synthesizer wastes the timeout limit of 1 hour. On the contrary,
Lobster can avoid such situations by giving up cases beyond the reach of previously learned rules.
To investigate the benefit for exploration power, we compare Lobster to a simple version that

only uses boolean ring theory (Example. 4.3) as rewrite rules. Fig. 10 summarizes the results. The
simple version of Lobster can optimize only 6 benchmarks within the timeout limit. Furthermore,
in all the 6 benchmarks, the depth reduction ratio is less than that of Lobster that uses pre-learned
aggressive rewrite rules. This shows that Lobster can efficiently escape local optima by applying
pre-learned rewrite rules even though they can be induced by boolean ring theory.

We also investigate that adding new rewrite rules can enhance exploration power. We compare
Lobster to a simple version that only uses 188 rewrite rules learned by EUSolver rather than
the whole 502 rewrite rules learned by EUSolver and DUET. Fig. 10 summarizes the results. In
five benchmarks, the simple version’s depth reduction ratio is less than that of Lobster that uses
all rewrite rules. In the exceptional case of hd 01, the simple version can reduce multiplicative
depth by 1, whereas Lobster can not optimize it within time limit. This is because full version
of Lobster needs much more time to perform each iteration step for equality saturation, since it
uses nearly 3 times more rewrite rules than the simple version. If the Lobster is given sufficient
amount of time limit, it can also optimize hd 01.
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Fig. 10. Impact of changing rewrite rules

Answer to Q3: Reusing learned rules enhances Lobster’s scalability and exploration power.
(1 week vs 12 hour opt. time, 2.6% vs 23.7% vs 25.1% depth reduction)

5.5 Efficacy of Equality Saturation

We now evaluate the effectiveness of saturation-based rewriting, which we used for online op-
timization. We compare Lobster to a previous version [39] that uses single-path rewriting only.
Both of the tools use the same pre-learned rewrite rules.
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Fig. 11. Efficacy of Equality Saturation

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2023.



Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Time-Bounded

Exhaustive Search 111:27

Fig. 11 summarizes the results. Although both of the tools can optimize 22 benchmarks within
time limit, previous version’s depth reduction ratio is less than that of saturation-based rewriting
version in 11 benchmarks. This shows that saturation-based rewriting can explore wider area of
optimization results because it can store every possible rewriting sequences (i.e. saturation-based
rewriting obtains backtracking effect).

Answer to Q4: Equality saturation enhances Lobster’s exploration power via backtracking.
(20.2% vs 25.1% depth reduction)

5.6 Efficacy of Equational Rewriting

We now evaluate the effectiveness of design choices made in Lobster– the rule normalization and
equational term rewriting. We compare Lobster with its variant without the two techniques. In
other words, the variant uses syntactic matching instead of equational matching when conducting
term rewriting and applies the learned rules without the normalization process.
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Fig. 12. Efficacy of equational rewriting

Fig. 12 summarizes the results. The variant can optimize 16 benchmarks (Lobster can optimize
22), and its depth reduction ratio is less than that of Lobster in 12 benchmarks. In the exceptional
case of hd 01, the variant can reduce multiplicative depth by 1, whereas Lobster can not optimize
it within time limit. This is because of the difference of time cost for each iteration step for equality
saturation. Same as 5.4, Lobster can also optimize hd 01 if it is given sufficient amount of time
limit. We conclude that overall, the rule normalization and equational term rewriting play crucial
roles in giving flexibility to the rewriting procedure.

Answer to Q5: Equational matching enables flexible rewriting and enhances exploration power.
(16 vs 22 optimized benchmarks, 17.6% vs 25.1% depth reduction)
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5.7 Sensitivity to Changes in a Time Limit

We now investigate the effects of changing the time limit of online optimization. We compared
Lobster with its variant that is given 1 hour of time limit.
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Fig. 13. Comparison between the optimization results with 1h and 12h of time limit.

Fig. 13 summarizes the results. Both of the tools can optimize 22 benchmarks within time
limit. In 4 sorting benchmarks ({m,i,b,o}sort) that use single-path rewriting, Lobster significantly
outperforms the variant. In the other benchmarks that use saturation-based rewriting, Lobster
slightly outperforms the variant. This shows that most of the effective iteration steps for equality
saturation are performed within 1 hour, since each iteration step needs much more time as the
number of iteration grows. We conclude that the most appropriate time limit for Lobster is 12
hours, but we can also get similar optimization result with 1 hour of time limit in saturation-based
rewriting.

Answer to Q6: Lobster takes less than 12 hour to obtain practically saturated circuit.

5.8 Sensitivity to Changes in a Training Set

We now investigate the effects of changing the number of training programs. We have conducted
2-fold cross validation; for each of four benchmark categories (Cingulata, Sorting, HD, EPFL), we
used rules learned from the smaller half and applied them to the other larger half, and compare
with the result of leave-one-out cross validation. The 14 benchmarks on the x-axis in Fig. 14 are
testing benchmarks, and the other 11 benchmarks are training benchmarks.
As can be seen in Fig. 14 that summarizes the results, the smaller set of training programs

does not lead to significant performance degradation. The cardio, hd05, hd06, hd09, hd12, cavlc,
and int2float benchmarks observe optimization effects less powerful than before, but the other
benchmarks remain the same. We conclude that overall, the performance of Lobster is not much
sensitive to changes in a given set of training programs.
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Fig. 14. Comparison between the optimization results with two-fold cross validation and leave-one-out cross

validation.

Answer to Q7: Lobster is not critically sensitive to changes in a given set of training circuits.
(11 vs 14 optimized benchmarks, 23.6% vs 29.0% depth reduction)

6 RELATEDWORK

Existing FHE Compilers in comparison

Existing FHE compilers [4, 15, 22–25, 43] use fixed, hand-tuned optimization methods. These
compilers allow programmers to easily write FHE applications without detailed knowledge of the
underlying FHE schemes. These compilers also provide optimizations for reducing themultiplicative
depth of the compiled circuits. However, the optimization methods are hand-tuned, which requires
manual effort and is likely to be sub-optimal. In this paper, we aimed to automatically generate
optimization rules that can be used by existing compilers.
• Cingulata [15] is an open-source compiler that translates high-level programs written in
C++ into boolean circuits. It supports optimization of circuits for reducing multiplicative
depth based on hand-written rules. Cingulata uses ABC [12], an open-source boolean circuit
optimizer, but it does not directly address our optimization problem [15]. Cingulata also
uses more advanced, yet hand-written, circuit optimization techniques specially designed for
minimizing multiplicative depth [5, 14]. In particular, the multi-start heuristic by Carpov et
al. [14], which we used for comparison with Lobster in Section 5, shows a significant reduc-
tion in multiplicative depths for their benchmarks. However, we note that the benchmark
circuits used in Carpov et al. [14] are “intendedly suboptimal to test the ability of optimization
tools” [1]. By contrast, the benchmarks used in this paper include circuits that are already
carefully optimized in terms of FHE evaluation as explained in Section 5.1, thereby leaving
relatively small room for depth reduction. We observe the heuristic in Carpov et al. [14] does
not perform very well for such a hard optimization task.
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• Ramparts [4] is an optimizing compiler for translating programs written in Julia into circuits
for homomorphic evaluation. It optimizes the size and multiplicative depth of the circuits
using symbolic execution and hand-written rules. It automatically selects the parameters of
FHE schemes and the plain text encoding for input values and uses a number of hand-written
circuit optimization rules for reducing multiplicative depth.

• Alchemy [23] is a system that provides domain-specific languages and a compiler for trans-
lating high-level plaintext programs into low-level ones for homomorphic evaluation. The
compiler automatically controls the ciphertext size and noise by choosing FHE parameters,
generating keys and hints, and scheduling maintenance operations. The domain-specific
languages are statically typed and are able to check the safety conditions that parameters
should satisfy.

• CHET [25] is a domain-specific optimizing compiler for FHE applications on neural network
inference. It enables a number of optimizations automatically, but they are hand-tuned and
specific to tensor circuits, e.g., determining efficient tensor layout, selecting good encryption
parameters, etc. By contrast, our technique is domain-unaware and does not rely on a limited
set of hand-written rules.

• COPSE [43] is a domain-specific optimizing compiler for FHE applications on decision forest
inference. It vectorizes decision-forest inference models (i.e. parallelizes operations performed
during inference) to exploit ciphertext packing technique and optimize FHE applications.
This vectorizing process also minimizes the multiplicative depth growth, but its method is
hand-tuned and specific to decision forest inference.

• EVA [24] is an optimizing compiler for arithmetic FHE applications. It enables a hand-tuned
optimization specific to the CKKS FHE scheme by lowering the cost overhead caused by
crypto operations (e.g. linearize, rescale, relevel) that ensure the safety of homomorphic
evaluations. By contrast, our optimization framework is scheme-unaware and has a larger
potential for speedup since it aims to reduce the multiplicative depth of FHE applications.

• Porcupine [22] is an optimizing compiler for arithmetic FHE applications. Similar to ours, it
uses program synthesis to optimize FHE applications. However, it targets specific DSL named
Quill rather than boolean circuits and user has to provide hand-written sketch to successfully
optimize target applications.

Superoptimization

Similar to ours, existing superoptimizers [7, 13, 35, 49, 50] for traditional programs are able to learn
rewrite rules automatically. The major technical difference, however, is that we use equational
matching, rather than syntactic matching, to maximize generalization.
Bansal and Aiken [7] present a technique for automatically constructing peephole optimizers.

Given a set of training programs, the technique learns a set of replacement rules (i.e. peephole
optimizers) using exhaustive enumeration. The correctness of the learned rules is ensured by a
SAT solver. The learned rules are stored in an optimization database and used for other unseen
programs via syntactic pattern matching. Optgen [13] is also based on enumeration for generating
peephole optimization rules that are sound and complete up to a certain size by generating all rules
up to the size and checking the equivalence by an SMT solver. Souper [49] is similar to Bansal and
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Aiken [7] but is based on a constraint-based synthesis technique and targets a subset of LLVM
IR. STOKE [35, 50] uses a stochastic search based on MCMC to explore the space of all possible
program transformations for the x86-64 instruction set.

Program Synthesis

Over the last few years, inductive program synthesis has been widely used in various application
domains [28–31, 52, 58, 62]. In this work, we use inductive synthesis to minimize multiplicative
depth of boolean circuits. To our knowledge, this is the first application of program synthesis for
efficient homomorphic evaluation. Our work has been inspired by the prior work by Eldib et al. [28],
where syntax-guided synthesis and static analysis are used to automatically transform a circuit
into an equivalent and provably secure one that is resistant to a side-channel attack.

Term Rewriting and Equality Saturation

Term rewriting [9, 11, 20, 55, 57] and equality saturation [45, 54, 59, 61, 63] has been widely used
in program transformation systems. The previous rewrite techniques rely on hand-written rules
that require domain expertise, whereas this work uses automatically synthesized rewrite rules. For
example, Chiba et al. [20] presented a framework of applying code-transforming templates based
on term rewriting, where programs are represented by term rewriting systems and transformed
by a set of given rewrite rules (called templates). Visser et al. [57] used term rewriting in ML
compilers and presented a language for writing rewriting strategies. Tate et al. [54] and Yang et
al. [63] used equality saturation(i.e. saturation-based term rewriting) with hand-tuned rewrite rules
to optimize C-like languages and trained DNN models respectively. In this work, we focus on a
different application domain of term rewriting (i.e. homomorphic evaluation) and provide a novel
idea of learning and using rewrite rules automatically.
Similar to ours, Ruler [46] used equality saturation to automatically infer rewrite rules for a

given user-defined domain. Although Ruler found 35 rewrite rules for the boolean circuit domain,
we observed that the saturation-based term rewriting with these 35 rewrite rules shows little
optimization effect for homomorphic evaluation. It just slightly outperforms an ablation of Lobster
used in Section 5.4 that uses Boolean ring theory as rewrite rules (2.6% vs 3.3%). This is because
rewrite rules inferred by Ruler have no objective in mind to reduce the multiplicative depth.

7 CONCLUSION

In this paper, we presented a new method for optimizing FHE boolean circuits that does not require
any domain expertise and manual effort. Our method first uses program synthesis to automatically
discover a set of optimization rules from training circuits. Then, it performs equational term
rewriting on the new, unseen circuit based on the equality saturation to maximally leveraging
the learned rules. We demonstrated the effectiveness of our method with 25 FHE applications
from diverse domains. The results show that our method achieves sizeable optimizations that are
complementary to existing domain-specific optimization techniques.
Though we target a specific kind of optimization tasks for homomorphic evaluation in this

paper, we believe our approach is potentially applicable to other optimization tasks. Our method
of synthesizing optimization rules and exhaustively applying the combinations of the learned
optimization rules in a cost-effective way by the time-bounded equality saturation technique can
be beneficial to a broader class of optimization tasks.
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Proofs Before describing the proofs of Theorem 1 and 2, we begin with preliminary concepts
from Baader and Nipkow [6].

Definition 7.1. Let ≡ be a binary relation on TΣ,X .
(1) The relation ≡ is closed under substitutions iff s ≡ t implies σ (s) ≡ σ (t) for all s, t ∈ TΣ,X and

substitutions σ .
(2) The relation ≡ is compatible with Σ-context iff s ≡ s ′ implies t[p ← s] ≡ t[p ← s ′] for all

t ∈ TΣ,X and positions p ∈ Pos(t).

Lemma 7.2. ≈R is closed under substitutions and compatible with Σ-context.

Proof. By Theorem 3.1.12 in Baader and Nipkow [6], for any set E of Σ-identities, the
relation↔∗E is closed under substitutions. By Lemma 3.1.11 in Baader and Nipkow [6], the
relation↔∗E is also compatible with Σ-context. Setting E = R finishes the proof.

□

Lemma 7.3. For all s, t ∈ TΣ,X ,
s ≈C t =⇒ s ≈R t .

Proof. Straightforward from the fact that C ⊆ R. □

Now we are ready to prove Theorem 1.

Theorem 1

∀s, t ∈ TΣ,X . s →E t ⇒ s ≈R t

(Stated in Section 4.3)

Proof. By the definition of s →E t and E, there exist (l ≈R r ) ∈ E,p ∈ Pos(s),σ . such that
s |p≈C σ (l), t = s[p ← σ (r )].

s |p≈R σ (l) (By Lemma 7.3 and s |p≈C σ (l))
s[p ← s |p ] ≈R s[p ← σ (l)] (By Lemma 7.2)
σ (l) ≈R σ (r ) (By Lemma 7.2 and l ≈R r )
s[p ← σ (l)] ≈R s[p ← σ (r )] (By Lemma 7.2)
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Therefore, s ≈R t . □

Next, before describing the proof of termination, we define the following strict orders between
terms.

Definition 7.4. For all s, t ∈ TΣ,X ,

s ≻ t ⇐⇒ (ℓ(s) > ℓ(t)) ∨ (ℓ(s) = ℓ(t) ∧ |CP(s)| > |CP(t)|).

Recall that by replacing an old circuit region compassing a critical path with a new circuit region
of smaller depth, we can either i) decrease the overall depth if the critical path is unique, or ii)
decrease the number of parallel critical paths, which is reflected on the definition of ≻.
The following lemma tells us that the order ≻ is compatible with Σ-context.

Lemma 7.5. Suppose we have s, t1, t2 ∈ TΣ,X such that s |p= t1 and ℓ(t1) > ℓ(t2). Then,

∀p ∈ CP(s). s[p ← t1] ≻ s[p ← t2].

Proof. • Case p = ϵ : s[p ← t1] = t1 ≻ t2 = s[p ← t2].
• Case p = p ′.1:
Suppose s |p′= ∧(t1, s2) which makes s |p= t1. By the fact p = p ′.1 and the definition of CP,
ℓ(t1) ≥ ℓ(s2). There are two cases.
Case (1) ℓ(t1) > ℓ(s2):

ℓ(∧(t1, s2)) = 1 + ℓ(t1)
ℓ(∧(t2, s2)) = 1 +max(ℓ(t2), ℓ(s2)) (By Def. of ℓ)
ℓ(t1) > ℓ(t2) (By the premise)
ℓ(t1) > ℓ(s2) (By the case assumption)
∴ ℓ(s[p ← t1]) > ℓ(s[p ← t2])

Case (2) ℓ(t1) = ℓ(s2):

ℓ(∧(t1, s2)) = 1 + ℓ(s2)
ℓ(∧(t2, s2)) = 1 + ℓ(s2) (ℓ(s2) = ℓ(t1) > ℓ(t2))
|CP(∧(t1, s2))| = |CP(t1) ⊎ CP(s2)| × 2 (By Def. of CP)
|CP(∧(t2, s2))| = |CP(s2)| × 2
CP(t1) , ∅
|CP(∧(t1, s2))| > |CP(∧(t2, s2))|

Note that CP(t1) , ∅ because otherwise, ℓ(t1) = 0 > ℓ(t2) ≥ 0 which leads to a contradiction.
Therefore, ℓ(s[p ← t1]) = ℓ(s[p ← t2]) ∧ |CP(s[p ← t1])| > |CP(s[p ← t2])|.
The other case where s |p′= ⊕(t1, s2) can be proven similarly.
• Case p = p ′.2: Similar to the above case.

□

Now we are ready to prove Theorem 2.

Theorem 2→E is a terminating relation.
(Stated in Section 4.3)

Proof. Straightforward from Lemma 7.5 and the fact that ≻ is a strict order. □

Matching Algorithm
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{s �? s } ∪ P ; S
P ; S [Trivial]

{f (s1, s2) �
? f (t1, t2)} ∪ P ; S

{s1 �
? t1, s2 �

? t2 } ∪ P ; S [Decomposition]

{f (s1, s2) �
? f (t1, t2)} ∪ P ; S

{s2 �
? t1, s1 �

? t2 } ∪ P ; S [C-Decomposition]

{f (s1, s2) �
? д(t1, t2)} ∪ P ; S
⊥

f , д
[Symbol Clash]

{f (s1, s2) �
? x } ∪ P ; S
⊥ [Symbol-Variable Clash]

{x �? t1 } ∪ P ; {x � t2 } ∪ S
⊥

t1 , t2
[Merging Clash]

{x �? t } ∪ P ; S
P ; {x � t } ∪ S

x � t ′ < S where t , t ′
[Variable Elimination]

Table 3. Rules for C-matching

E-Matching Algorithm. Solving a matching problem for two terms s and t is represented by
S = {s ≈?

E t}. A conventional E-matching algorithm derives a set of equations in solved form:

{x1 ≈E t1, · · · ,xn ≈E tn}

where all xi ’s are pairwise distinct.

Matching System. The symbol ⊥ or a pair P ; S where
• P is a set of matching problems,
• S is a set of equations in matched form.
• ⊥ represents failure (i.e., no matchers).

A matcher (or a solution) of a system P ; S returns a matcher that solves each of the matching
equations in P and S .

Table. 3 depicts an example of the matching rules when E = C.
The following algorithm matchs s to t .
(1) Create an initial system is {s �? t}; ∅.
(2) Apply successively the matching rules.
(3) If the final system is ∅; S , return S .
(4) If the final system is ⊥, then fail.

C-Matching Algorithm.

Example 7.6. The followings show the process of findingC-matchers of f (x , f (a,x)) and f (д(a), f (a,д(a)))
where f and д are function symbols, and the others are variables.

{ f (x ,y) �?
C f (f (a,b), f (b,a))}; ∅ =⇒Decomposition

{x �?
C f (a,b);y �?

C f (b,a)}; ∅ =⇒V.Elim

{y �?
C f (b,a)}; {x �C f (a,b)} =⇒V.Elim

∅; {x �C f (a,b),y �C f (b,a)} =⇒V.Elim
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The other way is
{ f (x ,y) �?

C f (f (a,b), f (b,a))}; ∅ =⇒C−Decomposition

{x �?
C f (b,a);y �?

C f (a,b)}; ∅ =⇒V.Elim

{y �?
C f (a,b)}; {x �C f (b,a)} =⇒V.Elim

∅; {x �C f (b,a),y �C f (a,b)} =⇒V.Elim

Note that C-Decomposition andDecomposition transform the same system in different ways. There
may exist multiple matchers, and C-matching algorithm is NP-complete [38].

To avoid the exponential complexity of C-matching algorithm, we bound the number of applica-
tions of the C-Decomposition rule. This lead to incompleteness, but does not harm the correctness
of the matching algorithm.
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