A Progress Bar for Static Analyzers

Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi

Seoul National University

Motivation

- Static analysis of large, complex SW takes a long time.
 - Sparrow 10 hrs for 400KLOC
 - Astrée 32 hrs for 780KLOC
 - CGS 20 hrs for 550KLOC
- One useful UI is missing : a progress indicator

Hard to Estimate

• Analysis time is NOT proportional to program size.

Our Solution

- pre-analysis + machine learning
- generally applicable to abstract interpreters
- shows its applicability for numerical analyses and a pointer analysis on a suit of real C benchmarks

Demo

• Buffer overflow analysis on GNU tar-1.13

Our Goal

- Abstract domain $\mathbb D$, semantic function $F:\mathbb D\to\mathbb D$
- Analysis computes (until stabilized)

$$\bigsqcup_{i\in\mathbb{N}}F^{i}(\bot)=F^{0}(\bot)\sqcup F^{1}(\bot)\sqcup F^{2}(\bot)\sqcup\cdots$$

• Ideal progress bar :

 $\frac{\# \text{ iterations so far}}{\# \text{ total iterations}}$

Result (Interval)

• X : actual progress, Y : estimated progress

Result (Pointer)

Result (Octagon)

Result

- Time overhead for progress estimations (on 8 GNU programs)
 - Interval analysis : 3.8%
 - Pointer analysis : 7.3%
 - Octagon analysis : **36.6%** (prototypical)

Our Approach

Problems of the Naive Approach

sendmail-8.14.6 (interval analysis)

Our Solution

• normalize the height progress

$$\bar{P}_i = \text{normalize}(P_i) = \text{normalize}\left(\frac{H_i}{H_{final}^{\sharp}}\right)$$

• we can predict 'normalize' by using a less precise, but cheaper <u>pre-analysis</u>.

Similar Height-progresses

sendmail-8.14.6 (interval analysis)

The pre-analysis takes only 6.6% of the main analysis time.

Normalized Height-progress

sendmail-8.14.6 (interval analysis)

Normalized Height-progress

wget-1.9 (octagon analysis)

Thursday, September 11, 14

Our Hypothesis

 If the pre-analysis is semantically related with the main analysis, the pre-analysis's height-progress behavior is similar to that of the main analysis.

The Normalization

• Step I : Design a pre-analysis as a further abstraction of the main analysis.

$$\mathbb{D} \xleftarrow{\gamma}{\alpha} \mathbb{D}^{\sharp}$$
$$F^{\sharp} : \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp} \qquad \alpha \circ F \sqsubseteq F^{\sharp} \circ \alpha$$
$$\bigsqcup_{i \in \mathbb{N}} F^{\sharp^{i}}(\bot^{\sharp}) = F^{\sharp^{0}}(\bot^{\sharp}) \sqcup F^{\sharp^{1}}(\bot^{\sharp}) \sqcup F^{\sharp^{2}}(\bot^{\sharp}) \sqcup \cdots$$

The Normalization

• Step 2 : Profile the following data during the preanalysis (suppose the pre-analysis stabilizes in *m* steps)

$$\begin{pmatrix} \frac{H_0^{\sharp}}{H_m^{\sharp}}, \frac{0}{m} \end{pmatrix}, \quad (\frac{H_1^{\sharp}}{H_m^{\sharp}}, \frac{1}{m}), \quad \cdots, \quad (\frac{H_i^{\sharp}}{H_m^{\sharp}}, \frac{i}{m}), \quad \cdots, \quad (\frac{H_m^{\sharp}}{H_m^{\sharp}}, \frac{m}{m})$$

$$\text{where } H_i^{\sharp} = \mathsf{H}(\gamma(F^{\sharp^i}(\bot^{\sharp}))).$$

The Normalization

 Step 3 : Generalize the profiled data (via techniques such as interpolation or regression), and obtain a normalization function

$$\mathsf{normalize}:[0,1]\to[0,1]$$

• We use linear regression.

Final Height Estimation

• We use pre-analysis result to estimate the final height.

$$H_{pre} = \mathsf{H}(\gamma(\mathbf{lfp}F^{\sharp}))$$

Final Height Estimation

- Using ridge linear regression, and 254 programs (GNU, and linux packages)
- 8 syntactic features, 6 semantic features
- Evaluation (3-fold cross validation)
 - Interval : 0.06 mean absolute err. (0.007 std dev.)
 - Pointer : 0.05 (0.001 std dev.)

Details

Progress Estimation Details

- A class of static analyses we consider
- Pre-analysis design
- Precise estimation of a final height

Static Analysis

- Program : $\langle \mathbb{C}, \hookrightarrow \rangle$
- Abstract Domain : program points to abstract states: $\mathbb{D} = \mathbb{C} \to \mathbb{S}$
- Abstract State : abstract locations to abstract values: $\mathbb{S} = \mathbb{L} \to \mathbb{V}$
- Abstract semantic function: $F \in (\mathbb{C} \to \mathbb{S}) \to (\mathbb{C} \to \mathbb{S})$

$$F(X) = \lambda c \in \mathbb{C}.f_c(\bigsqcup_{c' \hookrightarrow c} X(c'))$$

where $f_c \in \mathbb{S} \to \mathbb{S}$ is the transfer function for control point c.

Static Analysis

- Fixpoint computation with widening : If abstract value domain is of infinite height, a widening operator is applied at a set of widening points $\mathbb{W} \subseteq \mathbb{C}$
- In our case, all loop headers are widening points.

Progress Estimation Details

- A class of static analyses we consider
- Pre-analysis design
- Precise estimation of a final height

Pre-analysis

- **Partially flow-sensitive** version of the main analysis (the main analysis is fully flow-sensitive)
- Our pre-analysis only distinguishes program points around loop headers, i.e., widening points
 - as widening increases lattice height significantly.

Partially flow-sensitive analysis

• Abstract domain

Semantic function

 $\mathbb{C} \to \mathbb{S} \xleftarrow{\gamma}{\alpha} \Delta \to \mathbb{S} \qquad \Delta = \Phi \cup \{\bullet\} \qquad \gamma(X) = \lambda c. \ X(\delta(c))$

• Distinguishable program points Φ

$$\Phi = \{ c \in \mathbb{C} \mid w \in \mathbb{W} \land c \hookrightarrow^{depth} w$$

adjustable parameter ∈[0,∞] default : I

$$F^{\sharp}(X) = \lambda i \in \Delta. \left(\bigsqcup_{c \in \delta^{-1}(i)} f_c(\bigsqcup_{c' \hookrightarrow c} X(\delta(c')))\right) \qquad \delta^{-1}(i) = \{c \in \mathbb{C} \mid \delta(c) = i\}$$

$$\delta(c) = \begin{cases} c & c \in \Phi \\ \bullet & c \notin \Phi \end{cases}$$

Progress Estimation Details

- A class of static analyses we consider
- Pre-analysis design
- Precise estimation of a final height

Final Height Estimation

- However, the refinement requires significant time overhead.
- We use simple indicators that show possibility of the refinement to avoid extra cost.
 - Height decrease when semantic function F is applied once.

Feature Vector

Table 1. The feature vector used by linear regression to construct prediction models

Category	Feature
	# function calls in the program
Inter-procedural	# functions in recursive call cycles
(syntactic)	# undefined library function calls
	the maximum loop size
	the average loop sizes
Loop-related	the standard deviation of loop sizes
(syntactic)	the standard deviation of depths of loops
	# loopheads
Numerical analysis	# bounded intervals in the pre-analysis result
(semantic)	# unbounded intervals in the pre-analysis result
Pointer analysis	# points-to sets of cardinality over 4 in the pre-analysis result
(semantic)	# points-to sets of cardinality under 4 in the pre-analysis result
Post-fixpoint	# program points where applying the transfer function once
(semantic)	improves the precision
	height decrease when transfer function is applied once

Evaluation Metric

• Our progress bar : $\bar{P}_i^{\sharp} = \text{normalize}\left(\frac{H_i}{\alpha \cdot H_{pre}}\right)$

• We quantifiably measure quality of estimation (n : total iteraion, i : current iteration, best : I)

$$Linearity(\bar{P}_{i}^{\#}) = 1 - \frac{\sum_{1 \le i \le n} (\frac{i}{n} - \bar{P}_{i}^{\sharp})^{2}}{\sum_{1 \le i \le n} (\frac{i}{n} - \frac{n+1}{2n})^{2}}$$

Interval Analysis

		Time(s)				Height-
Program	LOC	Main	Pre	Linearity	Overhead	Approx.
bison-1.875	38841	3.66	0.91	0.73	24.86%	1.03
screen-4.0.2	44745	40.04	2.37	0.86	5.92%	0.96
lighttpd-1.4.25	56518	27.30	1.21	0.89	4.43%	0.92
a2ps-4.14	64590	32.05	11.26	0.51	35.13%	1.06
gnu-cobol-1.1	67404	413.54	99.33	0.54	24.02%	0.91
gnugo	87575	1541.35	7.35	0.89	0.48%	1.12
bash-2.05	102406	16.55	2.26	0.80	13.66%	0.93
sendmail-8.14.6	136146	1348.97	5.81	0.69	0.43%	0.93
TOTAL	686380	3423.46	130.5	0.74	3.81%	Err : 0.07

Pointer Analysis

		Time(s)				Height-
Program	LOC	Main	Pre	Linearity	Overhead	Approx.
screen-4.0.2	44745	15.89	1.56	0.90	9.82%	0.98
lighttpd	56518	11.54	0.87	0.76	7.54%	1.03
a2ps-4.14	64590	10.06	3.48	0.65	34.59%	1.04
gnu-cobol-1.1	67404	32.27	12.22	0.91	37.87%	1.03
gnugo	87575	217.77	3.88	0.64	1.78%	0.97
bash-2.05	102406	3.68	0.78	0.56	21.20%	1.04
proftpd-1.3.2	126996	74.64	11.14	0.82	14.92%	1.03
sendmail-8.14.6	136146	145.62	3.15	0.58	2.16%	0.98
TOTAL	686380	511.47	37.08	0.73	7.25%	Err: 0.03

Octagon Analysis

		Time(s)			
Program	LOC	Main	Pre	Linearity	Overhead
httptunnel-3.3	6174	49.5	8.2	0.91	16.6%
combine-0.3.3	11472	478.2	16	0.89	3.4%
bc-1.06	14288	63.9	43.8	0.96	68.6%
tar-1.17	18336	977.0	73.1	0.82	7.5%
parser	18923	190.1	104.8	0.97	55.1%
wget-1.9	35018	3895.36	1823.15	0.92	46.8%
TOTAL	69193	5654.0	2069.49	0.91	36.6%

Precision-Overhead Tradeoff

More finer partitioned pre-analysis → more precise progress estimation

Program	Linearity change	Overhead change
bash-2.05 (pointer)	$0.56 \rightarrow 0.70$	$21.2\% \rightarrow 37.5\%$
sendmail-8.14.6 (interval)	$0.69 \rightarrow 0.95$	$0.4\% \rightarrow 18.4\%$

Conclusion

- For the first time, we propose a technique for estimating static analysis progress.
- Our method combines a semantic-based preanalysis with machine learning.
- We show its applicability on a suit of real C benchmarks.

Backup

Height Function

 $\mathsf{H}:(\mathbb{C}\to\mathbb{S})\to\mathbb{N}$

 $\mathsf{H}(X) = \sum_{c \in \mathbb{C}} \sum_{l \in \mathbb{L}} \mathsf{h}(X(c)(l))$

Interval

$$h(\perp) = 0$$

$$h([a,b]) = \begin{cases} 1 & a = b \land a, b \in \mathbb{Z} \\ 2 & a < b \land a, b \in \mathbb{Z} \\ 3 & a \in \mathbb{Z} \land b = +\infty \\ 3 & a = -\infty \land b \in \mathbb{Z} \\ 4 & a = -\infty \land b = +\infty \end{cases}$$

• Pointer

$$h(S) = \begin{cases} 4 & |S| \ge 4 \\ |S| & otherwise \end{cases}$$

• Octagon : we reuse interval's height function.