
A Progress Bar for
Static Analyzers

Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi

Seoul National University

Thursday, September 11, 14

Motivation

• Static analysis of large, complex SW takes a long
time.

• Sparrow - 10 hrs for 400KLOC

• Astrée - 32 hrs for 780KLOC

• CGS - 20 hrs for 550KLOC

• One useful UI is missing : a progress indicator

Thursday, September 11, 14

Hard to Estimate

• Analysis time is NOT proportional to program size.

0

375

750

1125

1500

1 2 3 4 5 6 7
0

175

350

525

700

Sparrow

LOC TIME

0

150

300

450

600

1 2 3 4 5 6
0

375

750

1,125

1,500

Astrée

LOC TIME

Thursday, September 11, 14

Our Solution

• pre-analysis + machine learning

• generally applicable to abstract interpreters

• shows its applicability for numerical analyses and a
pointer analysis on a suit of real C benchmarks

Thursday, September 11, 14

Demo

• Buffer overflow analysis on GNU tar-1.13

Thursday, September 11, 14

Our Goal

• Abstract domain , semantic function

• Analysis computes (until stabilized)

• Ideal progress bar :

D F : D ! DA Progress Bar for Static Analyzers 3

analysis’ job is to compute the following sequence until stabilized:

G

i2N
F i(?) = F 0(?) t F 1(?) t F 2(?) t · · · (1)

where F 0(?) = ? and F i+1(?) = F (F i(?)). When the chain is infinitely long,
we can use a widening operator

`
: D⇥ D ! D to accelerate the sequence.

2.2 Progress Estimation

We aim to develop a progress bar that proceeds at a linear rate. That is, the es-
timated progress directly indicates the amount of work that has been completed
so far. Suppose that the sequence in (1) requires n iterations to stabilize, and
assume that computing the abstract semantics F (X) at each iteration takes a
constant time regardless of the input X. Then, the actual progress of the analysis
at ith iteration is defined by i

n . We aim at estimating this progress.
Basically, our method estimates the progress by calculating the lattice heights

of intermediate analysis results. Suppose that we have a function H : D ! N
that takes an abstract domain element X 2 D and computes its height. The
heights of domain elements need not be precisely defined, but we assume that
H satisfies two conditions: 1) the height is initially zero. 2) H is monotone. The
second condition is for building a progress bar that monotonically increases as
the analysis makes progress.

The first job in our progress estimation is to approximate the height of the
final analysis result. Let Hfinal be the height of the final analysis result, i.e.,
Hfinal = H(

F
i2N F i(?)). In Section 4.3, we describe a method for precisely

estimating Hfinal with the aid of statistical regression. This height estimation
method is orthogonal to the rest part of our progress estimation technique. In
this overview, let H]

final be the estimated final height and assume, for simplicity,

that H]
final = Hfinal .

A Naive Approach Given H and H]
final , a simple progress bar could be devel-

oped as follows. At each iteration i, we first compute the height of the current
analysis result:

Hi = H(F i(?)).

Then, we show to the users the following height progress of the analysis :

Pi =
Hi

H]
final

Note that we can use Pi as a progress estimation: Pi is initially 0, monotoni-
cally increases as the analysis makes progress, and has 1 when the analysis is
completed.

iterations so far

total iterations

Thursday, September 11, 14

Result (Interval)

Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 14

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

bison-1.875

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss
screen-4.0.2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

lighttpd-1.4.25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

a2ps-4.14

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

gnugo-3.8

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

gnu-cobol-1.1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

bash-2.05

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

sendmail-8.14.5

Figure A.5. Our progress estimation for interval analysis (when depth = 1).

14

Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 14

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

bison-1.875

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

screen-4.0.2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

lighttpd-1.4.25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

a2ps-4.14

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

gnugo-3.8

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

gnu-cobol-1.1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

bash-2.05

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

sendmail-8.14.5

Figure A.5. Our progress estimation for interval analysis (when depth = 1).

14

ideal
progress bar

• X : actual progress, Y : estimated progress

Thursday, September 11, 14

Result (Pointer)
Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 15

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

screen-4.0.2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

lighttpd-1.4.25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

a2ps-4.14

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

gnu-cobol-1.1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

gnugo-3.8

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

bash-2.05

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

proftpd-1.3.2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

sendmail-8.14.5

Figure A.6. Our progress estimation for pointer analysis (when depth = 1).

15

Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 15

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

screen-4.0.2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

lighttpd-1.4.25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

a2ps-4.14

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

gnu-cobol-1.1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

gnugo-3.8

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

bash-2.05

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

proftpd-1.3.2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

sendmail-8.14.5

Figure A.6. Our progress estimation for pointer analysis (when depth = 1).

15

Thursday, September 11, 14

Result (Octagon)
Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 16

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

httptunnel-3.3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

combine-0.3.3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

bc-1.06

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

tar-1.17

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

parser

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

wget-1.9

Figure A.7. Progress estimation for octagon analysis.

16

Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 16

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

httptunnel-3.3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

combine-0.3.3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

bc-1.06

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

tar-1.17

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

parser

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

wget-1.9

Figure A.7. Progress estimation for octagon analysis.

16

Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 16

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

httptunnel-3.3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

combine-0.3.3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

bc-1.06

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

tar-1.17

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

parser

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

wget-1.9

Figure A.7. Progress estimation for octagon analysis.

16

Thursday, September 11, 14

Result

• Time overhead for progress estimations
(on 8 GNU programs)

• Interval analysis : 3.8%

• Pointer analysis : 7.3%

• Octagon analysis : 36.6% (prototypical)

Thursday, September 11, 14

Our Approach

Thursday, September 11, 14

A Naive Approach

?

>

Intermediate
analysis result

Estimated progress :
Final analysis

result

H(F i(?))(= Hi)

H(lfpF)(= Hfinal)

Pi =
Hi

Hfinal
2 [0, 1]

Thursday, September 11, 14

Problems of the Naive Approach

?

>

Intermediate
analysis result

Estimated progress :
Final analysis

result

H(F i(?))(= Hi)

H(lfpF)(= Hfinal)

Pi =
Hi

Hfinal
2 [0, 1]

1. may not constantly
increase

2. Not trivial to
estimate

Thursday, September 11, 14

Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

main

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

(a) original height-progress (b) normalized height-progress

Figure 1. The height progress of a main analysis can be normalized using a pre-analysis. In this program (sendmail-8.14.6), the pre-analysis
takes only 6.6% of the main analysis time.

height is initially zero. 2) H is monotone. The second condition is for building a progress bar that monotonically
increases as the analysis makes progress.

The first job in our progress estimation is to approximate the height of the final analysis result. Let Hfinal be the
height of the final analysis result, i.e., Hfinal = H(

F
i2N Fi(?)). In Section 4.3, we describe a method for precisely

estimating Hfinal with the aid of statistical regression. This height estimation method is orthogonal to the rest part of
our progress estimation technique. In this overview, let H]final be the estimated final height and assume, for simplicity,

that H]final = Hfinal.

A Naive Approach. Given H and H]final, a simple progress bar could be developed as follows. At each iteration i, we
first compute the height of the current analysis result:

Hi = H(Fi(?)).

Then, we show to the users the following height progress of the analysis :

Pi =
Hi

H]final

Note that we can use Pi as a progress estimation: Pi is initially 0, monotonically increases as the analysis makes
progress, and has 1 when the analysis is completed.

Problem of the Naive Approach. We noticed that this simple method for progress estimation is, however, unsatisfac-
tory in practice. The main problem is that the height progress does not necessarily indicate the amount of computation
that has been completed. We depict the problem with the following example.

Example 1 (Liveness analysis). Suppose we do analysis which figures out live variables(variables of which value
just before at a particular program point will be used in the future) at each program point. Suppose we wil use
CFG(control flow graph)’s in which nodes represent program statements. We will get In : Node ! 2Variable which
denotes set of live variables at each program point. We can calculate a fixpoint using the following equation:

In[n] = use[n] [(
[

s2succ(n)

in(s) � de f (n))

where use, de f , and succ returns used, defined variables and successor nodes of a given node respectively. Fig. 1
demonstrates a CFG.

3

sendmail-8.14.6 (interval analysis)

Problems of the Naive Approach

Thursday, September 11, 14

Our Solution

• normalize the height progress

• we can predict ‘ ’ by using a less precise,
but cheaper pre-analysis.

normalize

4 Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
gh

t
p
ro
gr
es
s

main
pre

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
gh

t
p
ro
gr
es
s

(a) original height-progress (b) normalized height-progress

Fig. 1. The height progress of a main analysis can be normalized using a pre-analysis. In
this program (sendmail-8.14.6), the pre-analysis takes only 6.6% of the main analysis
time.

Problem of the Naive Approach We noticed that this simple method for
progress estimation is, however, unsatisfactory in practice. The main problem
is that the height progress does not necessarily indicate the amount of com-
putation that has been completed. For instance, the solid line in Figure 1(a)
depicts how the height progress increases during our interval analysis of pro-
gram sendmail-8.14.6 (The dotted diagonal line represents the ideal progress
bar). As the figure shows, the height progress rapidly increases during the early
stage of the analysis and after that slowly converges. We found that this progress
bar is not much useful to infer the actual progress nor to predict the remaining
time of the analysis.

Our Approach We overcome this problem by normalizing the height progress
using the relationship between the actual progress and the height progress. Sup-
pose at the moment that we are given a function normalize : [0, 1] ! [0, 1]
that maps the height progress into the corresponding actual progress. Indeed,
normalize represents the inverse of the graph (the solid line) shown in Figure
1(a). Given such normalize, the normalized height progress is defined as follows:

P̄i = normalize(Pi) = normalize
� Hi

H]
final

�
(2)

Note that, unlike the original height progress Pi, the normalized progress P̄i

would represent the actual progress, increasing at a linear rate. However, note
also that we cannot compute normalize unless we run the main analysis.

The key insight of our method is that we can predict the normalize function
by using a less precise, but cheaper pre-analysis than the main analysis. Our hy-
pothesis is that if the pre-analysis is semantically related with the main analysis,
it is likely that the pre-analysis’ height-progress behavior is similar to that of

Thursday, September 11, 14

Similar Height-progresses

The pre-analysis takes only 6.6% of the main analysis time.

Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress
he

ig
ht

pr
og

re
ss

pre

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

(a) original height-progress (b) normalized height-progress

Figure 1. The height progress of a main analysis can be normalized using a pre-analysis. In this program (sendmail-8.14.6), the pre-analysis
takes only 6.6% of the main analysis time.

height is initially zero. 2) H is monotone. The second condition is for building a progress bar that monotonically
increases as the analysis makes progress.

The first job in our progress estimation is to approximate the height of the final analysis result. Let Hfinal be the
height of the final analysis result, i.e., Hfinal = H(

F
i2N Fi(?)). In Section 4.3, we describe a method for precisely

estimating Hfinal with the aid of statistical regression. This height estimation method is orthogonal to the rest part of
our progress estimation technique. In this overview, let H]final be the estimated final height and assume, for simplicity,

that H]final = Hfinal.

A Naive Approach. Given H and H]final, a simple progress bar could be developed as follows. At each iteration i, we
first compute the height of the current analysis result:

Hi = H(Fi(?)).

Then, we show to the users the following height progress of the analysis :

Pi =
Hi

H]final

Note that we can use Pi as a progress estimation: Pi is initially 0, monotonically increases as the analysis makes
progress, and has 1 when the analysis is completed.

Problem of the Naive Approach. We noticed that this simple method for progress estimation is, however, unsatisfac-
tory in practice. The main problem is that the height progress does not necessarily indicate the amount of computation
that has been completed. We depict the problem with the following example.

Example 1 (Liveness analysis). Suppose we do analysis which figures out live variables(variables of which value
just before at a particular program point will be used in the future) at each program point. Suppose we wil use
CFG(control flow graph)’s in which nodes represent program statements. We will get In : Node ! 2Variable which
denotes set of live variables at each program point. We can calculate a fixpoint using the following equation:

In[n] = use[n] [(
[

s2succ(n)

in(s) � de f (n))

where use, de f , and succ returns used, defined variables and successor nodes of a given node respectively. Fig. 1
demonstrates a CFG.

3

sendmail-8.14.6 (interval analysis)

Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

main

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress
he

ig
ht

pr
og

re
ss

(a) original height-progress (b) normalized height-progress

Figure 1. The height progress of a main analysis can be normalized using a pre-analysis. In this program (sendmail-8.14.6), the pre-analysis
takes only 6.6% of the main analysis time.

height is initially zero. 2) H is monotone. The second condition is for building a progress bar that monotonically
increases as the analysis makes progress.

The first job in our progress estimation is to approximate the height of the final analysis result. Let Hfinal be the
height of the final analysis result, i.e., Hfinal = H(

F
i2N Fi(?)). In Section 4.3, we describe a method for precisely

estimating Hfinal with the aid of statistical regression. This height estimation method is orthogonal to the rest part of
our progress estimation technique. In this overview, let H]final be the estimated final height and assume, for simplicity,

that H]final = Hfinal.

A Naive Approach. Given H and H]final, a simple progress bar could be developed as follows. At each iteration i, we
first compute the height of the current analysis result:

Hi = H(Fi(?)).

Then, we show to the users the following height progress of the analysis :

Pi =
Hi

H]final

Note that we can use Pi as a progress estimation: Pi is initially 0, monotonically increases as the analysis makes
progress, and has 1 when the analysis is completed.

Problem of the Naive Approach. We noticed that this simple method for progress estimation is, however, unsatisfac-
tory in practice. The main problem is that the height progress does not necessarily indicate the amount of computation
that has been completed. We depict the problem with the following example.

Example 1 (Liveness analysis). Suppose we do analysis which figures out live variables(variables of which value
just before at a particular program point will be used in the future) at each program point. Suppose we wil use
CFG(control flow graph)’s in which nodes represent program statements. We will get In : Node ! 2Variable which
denotes set of live variables at each program point. We can calculate a fixpoint using the following equation:

In[n] = use[n] [(
[

s2succ(n)

in(s) � de f (n))

where use, de f , and succ returns used, defined variables and successor nodes of a given node respectively. Fig. 1
demonstrates a CFG.

3

Thursday, September 11, 14

Normalized Height-progress

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
gh

t
p
ro
gr
es
s

main
pre

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
gh

t
p
ro
gr
es
s

(a) original height-progress (b) normalized height-progress

Fig. 1. The height progress of a main analysis can be normalized using a pre-analysis.

A Naive Approach Given H and H]
final , a simple progress bar could be developed as follows.

At each iteration i, we first compute the height of the current analysis result:

Hi = H(F i(?)).

Then, we show to the users the following height progress of the analysis :

Pi =
Hi

H]
final

Note that we can use Pi as a progress estimation: Pi is initially 0, monotonically increases as
the analysis makes progress, and has 1 when the analysis is completed.

Problem of the Naive Approach This simple method for progress estimation is, however,
unsatisfactory in practice. The main problem is that the height progress does not necessarily
indicate the amount of computation that has been completed. For instance, the solid line in
Figure 1(a) depicts how the height progress increases during our interval analysis of program
sendmail-8.14.5 (The dotted diagonal line represents the ideal progress bar). As the figure
shows, the height progress rapidly increases during the early stage of the analysis and after that
slowly converges. We found that this progress bar is not much useful to infer the actual progress
nor to predict the remaining time of the analysis.

Our Approach We overcome this problem by normalizing the height progress using the rela-
tionship between the actual progress and the height progress. Suppose at the moment that we
are given a function normalize : [0, 1] ! [0, 1] that maps the height progress into the correspond-
ing actual progress. Indeed, normalize represents the inverse of the graph (the solid line) shown
in Figure 1(a). Given such normalize, the normalized height progress is defined as follows:

P̄i = normalize(Pi) = normalize
� Hi

H]
final

�
(2)

Note that, unlike the original height progress Pi, the normalized progress P̄i would represent
the actual progress, increasing at a linear rate. However, note that we cannot compute normalize
unless we run the main analysis.

The key insight of our method is that we can precisely estimate the normalize by using a
less precise (and cheap) pre-analysis. We observed that if the pre-analysis is semantically related
with the main analysis, it is very likely that the pre-analysis’ height-progress behavior is similar

sendmail-8.14.6 (interval analysis)

Thursday, September 11, 14

Normalized Height-progress

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
gh

t
p
ro
gr
es
s

main
pre

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
gh

t
p
ro
gr
es
s

(a) original height-progress (b) normalized height-progress

Fig. 4. Our method is also applicable to octagon domain–based static analyses.

We have implemented a prototype progress estimator for the octagon analysis as follows. For
pre-analysis, we used the same partial flow-sensitive abstraction described in Section 4.2 with
depth = 1. Regarding the height function H, we also used that of the interval analysis. Note
that, since an octagon domain element is a collection of intervals denoting ranges of program
variables such as x and y, their sum x+y, and their di↵erence x�y, we can use the same height
function in Example 3. In this prototype implementation, we assumed that we are given heights
of the final analysis results.

Figure 4 shows that our technique e↵ectively normalizes the height progress of the octagon
analysis. The solid lines in Figure 4(a) depicts the height progress of the main octagon analysis
of program wget-1.9 and the dotted line shows that of the pre-analysis. By normalizing the
main analysis’ progress behavior, we obtain the progress bar depicted in Figure 4(b), which is
almost linear.

Figure 5 depicts the resulting progress bar for other benchmark programs, and the following
table reports detailed experimental results.

Time(s)
Program LOC Main Pre Linearity Overhead
httptunnel-3.3 6174 49.5 8.2 0.91 16.6%
combine-0.3.3 11472 478.2 16 0.89 3.4%
bc-1.06 14288 63.9 43.8 0.96 68.6%
tar-1.17 18336 977.0 73.1 0.82 7.5%
parser 18923 190.1 104.8 0.97 55.1%
wget-1.9 35018 3895.36 1823.15 0.92 46.8%
TOTAL 69193 5654.0 2069.49 0.91 36.6%

Even though we completely reused the pre-analysis design and height function for the interval
analysis, the resulting progress bars are almost linear. This preliminary results suggest that our
method could be applicable to relational analyses.

7 Conclusion

We have proposed a technique for estimating static analysis progress. Our technique is based
on the observation that semantically related analyses would have similar progress behaviors, so
that the progress of the main analysis can be estimated by a pre-analysis. We implemented our
technique on top of an industrial-strength static analyzer and show our technique e↵ectively
estimates its progress.

wget-1.9 (octagon analysis)

Thursday, September 11, 14

Our Hypothesis

• If the pre-analysis is semantically related with the
main analysis, the pre-analysis’s height-progress
behavior is similar to that of the main analysis.

Thursday, September 11, 14

The Normalization

• Step 1 : Design a pre-analysis as a further
abstraction of the main analysis.

to that of the main analysis. Based on this observation, we estimate the normalization function
as follows.

We first design a pre-analysis as a further abstraction of the main analysis. Let D] and
F] : D] ! D] be such abstract domain and semantic function of the pre-analysis, respectively,
such that D ���! ���↵

�
D] and ↵ � F v F] � ↵. In Section 4.2, we give the exact definition of the

pre-analysis design we used. Next, we run this pre-analysis, computing the following sequence
until stabilized: G

i2N
F]i(?]) = F]0(?]) t F]1(?]) t F]2(?]) t · · ·

Suppose that the pre-analysis stabilizes in m steps. Then, we collect the following data during
the course of the pre-analysis:

(
H]

0

H]
m

,
0

m
), (

H]
1

H]
m

,
1

m
), · · · , (

H]
i

H]
m

,
i

m
), · · · , (

H]
m

H]
m

,
m

m
)

where H]
i = H(�(F]i(?]))). The second component i

m of each pair represents the actual progress
of the pre-analysis at the ith iteration, and the first represents the corresponding height progress.
Generalizing the data (using techniques such as interpolation or regression), we obtain a nor-
malization function normalize] : [0, 1]! [0, 1] for the pre-analysis.

Surprisingly, the normalization function normalize] for such a pre-analysis is closely related
with the normalization function normalize for the main analysis. For instance, the dotted curve
in Figure 1(a) shows the height progress of our pre-analysis (defined in Section 4.2), which has
a clear resemblance with the height progress (the solid line) of the main analysis. Thanks to
this similarity, it is acceptable in practice to use the normalization function normalize] for the
pre-analysis instead of normalize in our progress estimation. Thus, we revise (2) as follows:

P̄]
i = normalize]

� Hi

Hfinal

�
(3)

That is, at each iteration i of the main analysis, we show the estimated normalized progress P̄]
i to

the users. Figure 1(b) depicts P̄]
i for sendmail-8.14.5 (on the assumption that H]

final = Hfinal).
Note that, unlike the original progress bar (the solid line in Figure 1(a)), the normalized progress
bar progresses at an almost linear rate.

3 Setting

In this section, we define a class of static analyses on top of which we develop our progress
estimation technique. For presentation brevity, we consider non-relational analyses (in particular,
analyses with the interval domain).

However, our overall approach to progress estimation is also applicable to relational analyses.
In Section 6, we discuss the application to a relational analysis with the octagon domain.

3.1 Programs

A program is a tuple hC, ,!i where C is a finite set of program points, (,!) ✓ C⇥C is a relation
that denotes control structures of the program: c ,! c0 indicates that c0 is a next program point
of c. Each program point is associated with a command: cmd(c) denotes the command associated
with program point c.

to that of the main analysis. Based on this observation, we estimate the normalization function
as follows.

We first design a pre-analysis as a further abstraction of the main analysis. Let D] and
F] : D] ! D] be such abstract domain and semantic function of the pre-analysis, respectively,
such that D ���! ���↵

�
D] and ↵ � F v F] � ↵. In Section 4.2, we give the exact definition of the

pre-analysis design we used. Next, we run this pre-analysis, computing the following sequence
until stabilized: G

i2N
F]i(?]) = F]0(?]) t F]1(?]) t F]2(?]) t · · ·

Suppose that the pre-analysis stabilizes in m steps. Then, we collect the following data during
the course of the pre-analysis:

(
H]

0

H]
m

,
0

m
), (

H]
1

H]
m

,
1

m
), · · · , (

H]
i

H]
m

,
i

m
), · · · , (

H]
m

H]
m

,
m

m
)

where H]
i = H(�(F]i(?]))). The second component i

m of each pair represents the actual progress
of the pre-analysis at the ith iteration, and the first represents the corresponding height progress.
Generalizing the data (using techniques such as interpolation or regression), we obtain a nor-
malization function normalize] : [0, 1]! [0, 1] for the pre-analysis.

Surprisingly, the normalization function normalize] for such a pre-analysis is closely related
with the normalization function normalize for the main analysis. For instance, the dotted curve
in Figure 1(a) shows the height progress of our pre-analysis (defined in Section 4.2), which has
a clear resemblance with the height progress (the solid line) of the main analysis. Thanks to
this similarity, it is acceptable in practice to use the normalization function normalize] for the
pre-analysis instead of normalize in our progress estimation. Thus, we revise (2) as follows:

P̄]
i = normalize]

� Hi

Hfinal

�
(3)

That is, at each iteration i of the main analysis, we show the estimated normalized progress P̄]
i to

the users. Figure 1(b) depicts P̄]
i for sendmail-8.14.5 (on the assumption that H]

final = Hfinal).
Note that, unlike the original progress bar (the solid line in Figure 1(a)), the normalized progress
bar progresses at an almost linear rate.

3 Setting

In this section, we define a class of static analyses on top of which we develop our progress
estimation technique. For presentation brevity, we consider non-relational analyses (in particular,
analyses with the interval domain).

However, our overall approach to progress estimation is also applicable to relational analyses.
In Section 6, we discuss the application to a relational analysis with the octagon domain.

3.1 Programs

A program is a tuple hC, ,!i where C is a finite set of program points, (,!) ✓ C⇥C is a relation
that denotes control structures of the program: c ,! c0 indicates that c0 is a next program point
of c. Each program point is associated with a command: cmd(c) denotes the command associated
with program point c.

to that of the main analysis. Based on this observation, we estimate the normalization function
as follows.

We first design a pre-analysis as a further abstraction of the main analysis. Let D] and
F] : D] ! D] be such abstract domain and semantic function of the pre-analysis, respectively,
such that D ���! ���↵

�
D] and ↵ � F v F] � ↵. In Section 4.2, we give the exact definition of the

pre-analysis design we used. Next, we run this pre-analysis, computing the following sequence
until stabilized: G

i2N
F]i(?]) = F]0(?]) t F]1(?]) t F]2(?]) t · · ·

Suppose that the pre-analysis stabilizes in m steps. Then, we collect the following data during
the course of the pre-analysis:

(
H]

0

H]
m

,
0

m
), (

H]
1

H]
m

,
1

m
), · · · , (

H]
i

H]
m

,
i

m
), · · · , (

H]
m

H]
m

,
m

m
)

where H]
i = H(�(F]i(?]))). The second component i

m of each pair represents the actual progress
of the pre-analysis at the ith iteration, and the first represents the corresponding height progress.
Generalizing the data (using techniques such as interpolation or regression), we obtain a nor-
malization function normalize] : [0, 1]! [0, 1] for the pre-analysis.

Surprisingly, the normalization function normalize] for such a pre-analysis is closely related
with the normalization function normalize for the main analysis. For instance, the dotted curve
in Figure 1(a) shows the height progress of our pre-analysis (defined in Section 4.2), which has
a clear resemblance with the height progress (the solid line) of the main analysis. Thanks to
this similarity, it is acceptable in practice to use the normalization function normalize] for the
pre-analysis instead of normalize in our progress estimation. Thus, we revise (2) as follows:

P̄]
i = normalize]

� Hi

Hfinal

�
(3)

That is, at each iteration i of the main analysis, we show the estimated normalized progress P̄]
i to

the users. Figure 1(b) depicts P̄]
i for sendmail-8.14.5 (on the assumption that H]

final = Hfinal).
Note that, unlike the original progress bar (the solid line in Figure 1(a)), the normalized progress
bar progresses at an almost linear rate.

3 Setting

In this section, we define a class of static analyses on top of which we develop our progress
estimation technique. For presentation brevity, we consider non-relational analyses (in particular,
analyses with the interval domain).

However, our overall approach to progress estimation is also applicable to relational analyses.
In Section 6, we discuss the application to a relational analysis with the octagon domain.

3.1 Programs

A program is a tuple hC, ,!i where C is a finite set of program points, (,!) ✓ C⇥C is a relation
that denotes control structures of the program: c ,! c0 indicates that c0 is a next program point
of c. Each program point is associated with a command: cmd(c) denotes the command associated
with program point c.

to that of the main analysis. Based on this observation, we estimate the normalization function
as follows.

We first design a pre-analysis as a further abstraction of the main analysis. Let D] and
F] : D] ! D] be such abstract domain and semantic function of the pre-analysis, respectively,
such that D ���! ���↵

�
D] and ↵ � F v F] � ↵. In Section 4.2, we give the exact definition of the

pre-analysis design we used. Next, we run this pre-analysis, computing the following sequence
until stabilized: G

i2N
F]i(?]) = F]0(?]) t F]1(?]) t F]2(?]) t · · ·

Suppose that the pre-analysis stabilizes in m steps. Then, we collect the following data during
the course of the pre-analysis:

(
H]

0

H]
m

,
0

m
), (

H]
1

H]
m

,
1

m
), · · · , (

H]
i

H]
m

,
i

m
), · · · , (

H]
m

H]
m

,
m

m
)

where H]
i = H(�(F]i(?]))). The second component i

m of each pair represents the actual progress
of the pre-analysis at the ith iteration, and the first represents the corresponding height progress.
Generalizing the data (using techniques such as interpolation or regression), we obtain a nor-
malization function normalize] : [0, 1]! [0, 1] for the pre-analysis.

Surprisingly, the normalization function normalize] for such a pre-analysis is closely related
with the normalization function normalize for the main analysis. For instance, the dotted curve
in Figure 1(a) shows the height progress of our pre-analysis (defined in Section 4.2), which has
a clear resemblance with the height progress (the solid line) of the main analysis. Thanks to
this similarity, it is acceptable in practice to use the normalization function normalize] for the
pre-analysis instead of normalize in our progress estimation. Thus, we revise (2) as follows:

P̄]
i = normalize]

� Hi

Hfinal

�
(3)

That is, at each iteration i of the main analysis, we show the estimated normalized progress P̄]
i to

the users. Figure 1(b) depicts P̄]
i for sendmail-8.14.5 (on the assumption that H]

final = Hfinal).
Note that, unlike the original progress bar (the solid line in Figure 1(a)), the normalized progress
bar progresses at an almost linear rate.

3 Setting

In this section, we define a class of static analyses on top of which we develop our progress
estimation technique. For presentation brevity, we consider non-relational analyses (in particular,
analyses with the interval domain).

However, our overall approach to progress estimation is also applicable to relational analyses.
In Section 6, we discuss the application to a relational analysis with the octagon domain.

3.1 Programs

A program is a tuple hC, ,!i where C is a finite set of program points, (,!) ✓ C⇥C is a relation
that denotes control structures of the program: c ,! c0 indicates that c0 is a next program point
of c. Each program point is associated with a command: cmd(c) denotes the command associated
with program point c.

Thursday, September 11, 14

The Normalization

• Step 2 : Profile the following data during the pre-
analysis (suppose the pre-analysis stabilizes in m steps)

to that of the main analysis. Based on this observation, we estimate the normalization function
as follows.

We first design a pre-analysis as a further abstraction of the main analysis. Let D] and
F] : D] ! D] be such abstract domain and semantic function of the pre-analysis, respectively,
such that D ���! ���↵

�
D] and ↵ � F v F] � ↵. In Section 4.2, we give the exact definition of the

pre-analysis design we used. Next, we run this pre-analysis, computing the following sequence
until stabilized: G

i2N
F]i(?]) = F]0(?]) t F]1(?]) t F]2(?]) t · · ·

Suppose that the pre-analysis stabilizes in m steps. Then, we collect the following data during
the course of the pre-analysis:

(
H]

0

H]
m

,
0

m
), (

H]
1

H]
m

,
1

m
), · · · , (

H]
i

H]
m

,
i

m
), · · · , (

H]
m

H]
m

,
m

m
)

where H]
i = H(�(F]i(?]))). The second component i

m of each pair represents the actual progress
of the pre-analysis at the ith iteration, and the first represents the corresponding height progress.
Generalizing the data (using techniques such as interpolation or regression), we obtain a nor-
malization function normalize] : [0, 1]! [0, 1] for the pre-analysis.

Surprisingly, the normalization function normalize] for such a pre-analysis is closely related
with the normalization function normalize for the main analysis. For instance, the dotted curve
in Figure 1(a) shows the height progress of our pre-analysis (defined in Section 4.2), which has
a clear resemblance with the height progress (the solid line) of the main analysis. Thanks to
this similarity, it is acceptable in practice to use the normalization function normalize] for the
pre-analysis instead of normalize in our progress estimation. Thus, we revise (2) as follows:

P̄]
i = normalize]

� Hi

Hfinal

�
(3)

That is, at each iteration i of the main analysis, we show the estimated normalized progress P̄]
i to

the users. Figure 1(b) depicts P̄]
i for sendmail-8.14.5 (on the assumption that H]

final = Hfinal).
Note that, unlike the original progress bar (the solid line in Figure 1(a)), the normalized progress
bar progresses at an almost linear rate.

3 Setting

In this section, we define a class of static analyses on top of which we develop our progress
estimation technique. For presentation brevity, we consider non-relational analyses (in particular,
analyses with the interval domain).

However, our overall approach to progress estimation is also applicable to relational analyses.
In Section 6, we discuss the application to a relational analysis with the octagon domain.

3.1 Programs

A program is a tuple hC, ,!i where C is a finite set of program points, (,!) ✓ C⇥C is a relation
that denotes control structures of the program: c ,! c0 indicates that c0 is a next program point
of c. Each program point is associated with a command: cmd(c) denotes the command associated
with program point c.

to that of the main analysis. Based on this observation, we estimate the normalization function
as follows.

We first design a pre-analysis as a further abstraction of the main analysis. Let D] and
F] : D] ! D] be such abstract domain and semantic function of the pre-analysis, respectively,
such that D ���! ���↵

�
D] and ↵ � F v F] � ↵. In Section 4.2, we give the exact definition of the

pre-analysis design we used. Next, we run this pre-analysis, computing the following sequence
until stabilized: G

i2N
F]i(?]) = F]0(?]) t F]1(?]) t F]2(?]) t · · ·

Suppose that the pre-analysis stabilizes in m steps. Then, we collect the following data during
the course of the pre-analysis:

(
H]

0

H]
m

,
0

m
), (

H]
1

H]
m

,
1

m
), · · · , (

H]
i

H]
m

,
i

m
), · · · , (

H]
m

H]
m

,
m

m
)

where H]
i = H(�(F]i(?]))). The second component i

m of each pair represents the actual progress
of the pre-analysis at the ith iteration, and the first represents the corresponding height progress.
Generalizing the data (using techniques such as interpolation or regression), we obtain a nor-
malization function normalize] : [0, 1]! [0, 1] for the pre-analysis.

Surprisingly, the normalization function normalize] for such a pre-analysis is closely related
with the normalization function normalize for the main analysis. For instance, the dotted curve
in Figure 1(a) shows the height progress of our pre-analysis (defined in Section 4.2), which has
a clear resemblance with the height progress (the solid line) of the main analysis. Thanks to
this similarity, it is acceptable in practice to use the normalization function normalize] for the
pre-analysis instead of normalize in our progress estimation. Thus, we revise (2) as follows:

P̄]
i = normalize]

� Hi

Hfinal

�
(3)

That is, at each iteration i of the main analysis, we show the estimated normalized progress P̄]
i to

the users. Figure 1(b) depicts P̄]
i for sendmail-8.14.5 (on the assumption that H]

final = Hfinal).
Note that, unlike the original progress bar (the solid line in Figure 1(a)), the normalized progress
bar progresses at an almost linear rate.

3 Setting

In this section, we define a class of static analyses on top of which we develop our progress
estimation technique. For presentation brevity, we consider non-relational analyses (in particular,
analyses with the interval domain).

However, our overall approach to progress estimation is also applicable to relational analyses.
In Section 6, we discuss the application to a relational analysis with the octagon domain.

3.1 Programs

A program is a tuple hC, ,!i where C is a finite set of program points, (,!) ✓ C⇥C is a relation
that denotes control structures of the program: c ,! c0 indicates that c0 is a next program point
of c. Each program point is associated with a command: cmd(c) denotes the command associated
with program point c.

Thursday, September 11, 14

The Normalization

• Step 3 : Generalize the profiled data (via techniques

such as interpolation or regression), and obtain a
normalization function

• We use linear regression.

normalize : [0, 1] ! [0, 1]

Thursday, September 11, 14

Final Height Estimation

• We use pre-analysis result to estimate the final
height.

A Progress Bar for Static Analyzers 9

of flow cycle headers are separated in our pre-analysis. Then, we decide to dis-
tinguish the following set � ✓ C of program points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special in-

stance of the trace partitioning [16]. The set of partitioning indicies � is defined
by � = �[{•}, where • represents all the other program points not included in
�. That is, we use the following partitioning function � : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the
pre-analysis as follows:

C! S ���! ���↵
�

�! S
where

�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (8)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity

by adjusting the parameter depth 2 [0,1]. A larger depth value yields a more
precise pre-analysis. In our experiments (Section 5), we use 1 for the default
value of depth and show that how the progress estimation quality improves with
higher depth values. It is easy to check that our pre-analysis is sound with respect
to the main analysis regardless of parameter depth.

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of
the final analysis result. Note that Hfinal cannot be computed unless we actually

run the main analysis. Instead, we compute H]
final , an estimation of Hfinal . We

replace the Hfinal in (3) by H]
final as follows:

P̄]
i = normalize]

� Hi

H]
final

�
(9)

Our goal is to compute H]
final such that |H]

final � Hfinal | is as smaller as
possible, for which we use the pre-analysis and a statistical method. First, we
compute Hpre , the final height of the pre-analysis result, i.e.,

Hpre = H(�(lfpF]))

Thursday, September 11, 14

?

>

Pre-analysis
result

Final analysis
result

Hfinal

Final Height Estimation

A Progress Bar for Static Analyzers 9

of flow cycle headers are separated in our pre-analysis. Then, we decide to dis-
tinguish the following set � ✓ C of program points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special in-

stance of the trace partitioning [16]. The set of partitioning indicies � is defined
by � = �[{•}, where • represents all the other program points not included in
�. That is, we use the following partitioning function � : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the
pre-analysis as follows:

C! S ���! ���↵
�

�! S
where

�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (8)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity

by adjusting the parameter depth 2 [0,1]. A larger depth value yields a more
precise pre-analysis. In our experiments (Section 5), we use 1 for the default
value of depth and show that how the progress estimation quality improves with
higher depth values. It is easy to check that our pre-analysis is sound with respect
to the main analysis regardless of parameter depth.

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of
the final analysis result. Note that Hfinal cannot be computed unless we actually

run the main analysis. Instead, we compute H]
final , an estimation of Hfinal . We

replace the Hfinal in (3) by H]
final as follows:

P̄]
i = normalize]

� Hi

H]
final

�
(9)

Our goal is to compute H]
final such that |H]

final � Hfinal | is as smaller as
possible, for which we use the pre-analysis and a statistical method. First, we
compute Hpre , the final height of the pre-analysis result, i.e.,

Hpre = H(�(lfpF]))

Thursday, September 11, 14

?

>

Pre-analysis
result

Final analysis
result

Approximation
Error

Hfinal

Final Height Estimation

A Progress Bar for Static Analyzers 9

of flow cycle headers are separated in our pre-analysis. Then, we decide to dis-
tinguish the following set � ✓ C of program points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special in-

stance of the trace partitioning [16]. The set of partitioning indicies � is defined
by � = �[{•}, where • represents all the other program points not included in
�. That is, we use the following partitioning function � : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the
pre-analysis as follows:

C! S ���! ���↵
�

�! S
where

�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (8)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity

by adjusting the parameter depth 2 [0,1]. A larger depth value yields a more
precise pre-analysis. In our experiments (Section 5), we use 1 for the default
value of depth and show that how the progress estimation quality improves with
higher depth values. It is easy to check that our pre-analysis is sound with respect
to the main analysis regardless of parameter depth.

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of
the final analysis result. Note that Hfinal cannot be computed unless we actually

run the main analysis. Instead, we compute H]
final , an estimation of Hfinal . We

replace the Hfinal in (3) by H]
final as follows:

P̄]
i = normalize]

� Hi

H]
final

�
(9)

Our goal is to compute H]
final such that |H]

final � Hfinal | is as smaller as
possible, for which we use the pre-analysis and a statistical method. First, we
compute Hpre , the final height of the pre-analysis result, i.e.,

Hpre = H(�(lfpF]))

Thursday, September 11, 14

?

>

Pre-analysis
result

Final analysis
result

Hfinal

Final Height Estimation

A Progress Bar for Static Analyzers 9

of flow cycle headers are separated in our pre-analysis. Then, we decide to dis-
tinguish the following set � ✓ C of program points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special in-

stance of the trace partitioning [16]. The set of partitioning indicies � is defined
by � = �[{•}, where • represents all the other program points not included in
�. That is, we use the following partitioning function � : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the
pre-analysis as follows:

C! S ���! ���↵
�

�! S
where

�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (8)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity

by adjusting the parameter depth 2 [0,1]. A larger depth value yields a more
precise pre-analysis. In our experiments (Section 5), we use 1 for the default
value of depth and show that how the progress estimation quality improves with
higher depth values. It is easy to check that our pre-analysis is sound with respect
to the main analysis regardless of parameter depth.

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of
the final analysis result. Note that Hfinal cannot be computed unless we actually

run the main analysis. Instead, we compute H]
final , an estimation of Hfinal . We

replace the Hfinal in (3) by H]
final as follows:

P̄]
i = normalize]

� Hi

H]
final

�
(9)

Our goal is to compute H]
final such that |H]

final � Hfinal | is as smaller as
possible, for which we use the pre-analysis and a statistical method. First, we
compute Hpre , the final height of the pre-analysis result, i.e.,

Hpre = H(�(lfpF]))

Our statistical method predicts

10 Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi

Next, we statistically refine Hpre into H]
final such that |H]

final �Hfinal | is likely
smaller than |Hpre � Hfinal |. The job of the statistical method is to predict

↵ = Hfinal

Hpre
(0  ↵  1) for a given program. With ↵, H]

final is defined as follows:

H]
final = ↵ ·Hpre

We assume that ↵ is defined as a linear combination of a set of program
features in Table 1. We used eight syntactic features and six semantic features.
The features are selected among over 30 features by feature selection for the
purpose of removing redundant or irrelevant ones for better accuracy. We used
L1 based recursive feature elimination to find optimal subset of features using
254 benchmark programs.

The feature values are normalized to real numbers between 0 and 1. The
Post-fixpoint features are about the post-fixpoint property. Since the pre-analysis
result is a post fixpoint of the semantic function F , i.e., �(lfpF]) 2 {x 2 D |
x w F (x)}, we can refine the result by iteratively applying F to the pre-analysis
result. Instead of doing refinement, we designed simple indicators that show
possibility of the refinement to avoid extra cost. For every traning example, a
feature vector is created with a negligible overhead.

We used the ridge linear regression as the learning algorithm. The ridge linear
regression algorithm is known as a quick and e↵ective technique for numerical
prediction.

Table 1. The feature vector used by linear regression to construct prediction models

Category Feature
function calls in the program

Inter-procedural # functions in recursive call cycles
(syntactic) # undefined library function calls

the maximum loop size
the average loop sizes

Loop-related the standard deviation of loop sizes
(syntactic) the standard deviation of depths of loops

loopheads
Numerical analysis # bounded intervals in the pre-analysis result

(semantic) # unbounded intervals in the pre-analysis result
Pointer analysis # points-to sets of cardinality over 4 in the pre-analysis result

(semantic) # points-to sets of cardinality under 4 in the pre-analysis result
Post-fixpoint # program points where applying the transfer function once
(semantic) improves the precision

height decrease when transfer function is applied once

In a way orthogonal to the statistical method, we further reduce |H]
final �

Hfinal | by tuning the height function. We reduce |H]
final �Hfinal | by considering

only subsets of program points and abstract locations. However, it is not the

Thursday, September 11, 14

Final Height Estimation

• Using ridge linear regression, and 254 programs
(GNU, and linux packages)

• 8 syntactic features, 6 semantic features

• Evaluation (3-fold cross validation)

• Interval : 0.06 mean absolute err. (0.007 std dev.)

• Pointer : 0.05 (0.001 std dev.)

Thursday, September 11, 14

Details

Thursday, September 11, 14

Progress Estimation Details

• A class of static analyses we consider

• Pre-analysis design

• Precise estimation of a final height

Thursday, September 11, 14

Static Analysis

• Program :

• Abstract Domain : program points to abstract
states:

• Abstract State : abstract locations to abstract
values:

• Abstract semantic function:

3.2 Static Analysis

We consider a class of static analyses whose abstract domain maps program points to abstract
states:

D = C ! S
where the abstract state is a map from abstract locations to abstract values:

S = L ! V

We assume that the set of abstract locations is finite and V is a complete lattice. The abstract
semantics of the program is characterized by the least fixpoint of abstract semantic function
F 2 (C ! S) ! (C ! S) defined as,

F (X) = �c 2 C.fc(
G

c0,!c

X(c0)) (4)

where fc 2 S ! S is the transfer function for control point c.

Example 1 (Interval Analysis). A typical example of non-relational analyses is the interval anal-
ysis. Consider the following simple imperative language.

x := e | assume(x < n) where e ! n | x | e + e

All basic commands are assignments or assume commands. An expression may be a constant
integer (n), a binary operation (e + e), a variable expression (x). Let Var be the set of all
program variables. We define the abstract state as a map from program variables to the lattice
of intervals:

L = Var
V = {[l, u] | l, u 2 Z [{�1,+1} ^ l  u} [{?}

The transfer function fc : S ! S is defines as follows:

fc(s) =

⇢
s[x 7! V(e)(s)] cmd(c) = x := e
s[x 7! s(x) u [�1, n� 1])] cmd(c) = assume(x < n)

where auxiliary function V(e)(s) computes the abstract value for e under s:

V(e) 2 S ! V
V(n)(s) = [n, n]

V(e1 + e2)(s) = V(e1)(s)� V(e2)(s)
V(x)(s) = s(x)

where � denotes the abstract binary operator for the interval domain.
⇤

3.3 Fixpoint Computation with Widening

When the domain of abstract values (V) has infinite height, we need a widening operator
`

:
V⇥V ! V to approximate the least fixpoint of F . In practice, the widening operator is applied
at only headers of flow cycles [3]. Let W ✓ C be the set of widening points (all loop headers in
the program) in the program.

Example 2 (Widening Operator for Intervals). We use the following widening operator in our
interval analysis:

[l, u]
`
[l0, u0] = [if (l0 < l) then �1 else l, if (u0 > u) then +1 else u].

⇤

3.2 Static Analysis

We consider a class of static analyses whose abstract domain maps program points to abstract
states:

D = C ! S
where the abstract state is a map from abstract locations to abstract values:

S = L ! V

We assume that the set of abstract locations is finite and V is a complete lattice. The abstract
semantics of the program is characterized by the least fixpoint of abstract semantic function
F 2 (C ! S) ! (C ! S) defined as,

F (X) = �c 2 C.fc(
G

c0,!c

X(c0)) (4)

where fc 2 S ! S is the transfer function for control point c.

Example 1 (Interval Analysis). A typical example of non-relational analyses is the interval anal-
ysis. Consider the following simple imperative language.

x := e | assume(x < n) where e ! n | x | e + e

All basic commands are assignments or assume commands. An expression may be a constant
integer (n), a binary operation (e + e), a variable expression (x). Let Var be the set of all
program variables. We define the abstract state as a map from program variables to the lattice
of intervals:

L = Var
V = {[l, u] | l, u 2 Z [{�1,+1} ^ l  u} [{?}

The transfer function fc : S ! S is defines as follows:

fc(s) =

⇢
s[x 7! V(e)(s)] cmd(c) = x := e
s[x 7! s(x) u [�1, n� 1])] cmd(c) = assume(x < n)

where auxiliary function V(e)(s) computes the abstract value for e under s:

V(e) 2 S ! V
V(n)(s) = [n, n]

V(e1 + e2)(s) = V(e1)(s)� V(e2)(s)
V(x)(s) = s(x)

where � denotes the abstract binary operator for the interval domain.
⇤

3.3 Fixpoint Computation with Widening

When the domain of abstract values (V) has infinite height, we need a widening operator
`

:
V⇥V ! V to approximate the least fixpoint of F . In practice, the widening operator is applied
at only headers of flow cycles [3]. Let W ✓ C be the set of widening points (all loop headers in
the program) in the program.

Example 2 (Widening Operator for Intervals). We use the following widening operator in our
interval analysis:

[l, u]
`
[l0, u0] = [if (l0 < l) then �1 else l, if (u0 > u) then +1 else u].

⇤

3.2 Static Analysis

We consider a class of static analyses whose abstract domain maps program points to abstract
states:

D = C ! S
where the abstract state is a map from abstract locations to abstract values:

S = L ! V

We assume that the set of abstract locations is finite and V is a complete lattice. The abstract
semantics of the program is characterized by the least fixpoint of abstract semantic function
F 2 (C ! S) ! (C ! S) defined as,

F (X) = �c 2 C.fc(
G

c0,!c

X(c0)) (4)

where fc 2 S ! S is the transfer function for control point c.

Example 1 (Interval Analysis). A typical example of non-relational analyses is the interval anal-
ysis. Consider the following simple imperative language.

x := e | assume(x < n) where e ! n | x | e + e

All basic commands are assignments or assume commands. An expression may be a constant
integer (n), a binary operation (e + e), a variable expression (x). Let Var be the set of all
program variables. We define the abstract state as a map from program variables to the lattice
of intervals:

L = Var
V = {[l, u] | l, u 2 Z [{�1,+1} ^ l  u} [{?}

The transfer function fc : S ! S is defines as follows:

fc(s) =

⇢
s[x 7! V(e)(s)] cmd(c) = x := e
s[x 7! s(x) u [�1, n� 1])] cmd(c) = assume(x < n)

where auxiliary function V(e)(s) computes the abstract value for e under s:

V(e) 2 S ! V
V(n)(s) = [n, n]

V(e1 + e2)(s) = V(e1)(s)� V(e2)(s)
V(x)(s) = s(x)

where � denotes the abstract binary operator for the interval domain.
⇤

3.3 Fixpoint Computation with Widening

When the domain of abstract values (V) has infinite height, we need a widening operator
`

:
V⇥V ! V to approximate the least fixpoint of F . In practice, the widening operator is applied
at only headers of flow cycles [3]. Let W ✓ C be the set of widening points (all loop headers in
the program) in the program.

Example 2 (Widening Operator for Intervals). We use the following widening operator in our
interval analysis:

[l, u]
`
[l0, u0] = [if (l0 < l) then �1 else l, if (u0 > u) then +1 else u].

⇤

3.2 Static Analysis

We consider a class of static analyses whose abstract domain maps program points to abstract
states:

D = C ! S
where the abstract state is a map from abstract locations to abstract values:

S = L ! V

We assume that the set of abstract locations is finite and V is a complete lattice. The abstract
semantics of the program is characterized by the least fixpoint of abstract semantic function
F 2 (C ! S) ! (C ! S) defined as,

F (X) = �c 2 C.fc(
G

c0,!c

X(c0)) (4)

where fc 2 S ! S is the transfer function for control point c.

Example 1 (Interval Analysis). A typical example of non-relational analyses is the interval anal-
ysis. Consider the following simple imperative language.

x := e | assume(x < n) where e ! n | x | e + e

All basic commands are assignments or assume commands. An expression may be a constant
integer (n), a binary operation (e + e), a variable expression (x). Let Var be the set of all
program variables. We define the abstract state as a map from program variables to the lattice
of intervals:

L = Var
V = {[l, u] | l, u 2 Z [{�1,+1} ^ l  u} [{?}

The transfer function fc : S ! S is defines as follows:

fc(s) =

⇢
s[x 7! V(e)(s)] cmd(c) = x := e
s[x 7! s(x) u [�1, n� 1])] cmd(c) = assume(x < n)

where auxiliary function V(e)(s) computes the abstract value for e under s:

V(e) 2 S ! V
V(n)(s) = [n, n]

V(e1 + e2)(s) = V(e1)(s)� V(e2)(s)
V(x)(s) = s(x)

where � denotes the abstract binary operator for the interval domain.
⇤

3.3 Fixpoint Computation with Widening

When the domain of abstract values (V) has infinite height, we need a widening operator
`

:
V⇥V ! V to approximate the least fixpoint of F . In practice, the widening operator is applied
at only headers of flow cycles [3]. Let W ✓ C be the set of widening points (all loop headers in
the program) in the program.

Example 2 (Widening Operator for Intervals). We use the following widening operator in our
interval analysis:

[l, u]
`
[l0, u0] = [if (l0 < l) then �1 else l, if (u0 > u) then +1 else u].

⇤

3.2 Static Analysis

We consider a class of static analyses whose abstract domain maps program points to abstract
states:

D = C ! S
where the abstract state is a map from abstract locations to abstract values:

S = L ! V

We assume that the set of abstract locations is finite and V is a complete lattice. The abstract
semantics of the program is characterized by the least fixpoint of abstract semantic function
F 2 (C ! S) ! (C ! S) defined as,

F (X) = �c 2 C.fc(
G

c0,!c

X(c0)) (4)

where fc 2 S ! S is the transfer function for control point c.

Example 1 (Interval Analysis). A typical example of non-relational analyses is the interval anal-
ysis. Consider the following simple imperative language.

x := e | assume(x < n) where e ! n | x | e + e

All basic commands are assignments or assume commands. An expression may be a constant
integer (n), a binary operation (e + e), a variable expression (x). Let Var be the set of all
program variables. We define the abstract state as a map from program variables to the lattice
of intervals:

L = Var
V = {[l, u] | l, u 2 Z [{�1,+1} ^ l  u} [{?}

The transfer function fc : S ! S is defines as follows:

fc(s) =

⇢
s[x 7! V(e)(s)] cmd(c) = x := e
s[x 7! s(x) u [�1, n� 1])] cmd(c) = assume(x < n)

where auxiliary function V(e)(s) computes the abstract value for e under s:

V(e) 2 S ! V
V(n)(s) = [n, n]

V(e1 + e2)(s) = V(e1)(s)� V(e2)(s)
V(x)(s) = s(x)

where � denotes the abstract binary operator for the interval domain.
⇤

3.3 Fixpoint Computation with Widening

When the domain of abstract values (V) has infinite height, we need a widening operator
`

:
V⇥V ! V to approximate the least fixpoint of F . In practice, the widening operator is applied
at only headers of flow cycles [3]. Let W ✓ C be the set of widening points (all loop headers in
the program) in the program.

Example 2 (Widening Operator for Intervals). We use the following widening operator in our
interval analysis:

[l, u]
`
[l0, u0] = [if (l0 < l) then �1 else l, if (u0 > u) then +1 else u].

⇤

to that of the main analysis. Based on this observation, we estimate the normalization function
as follows.

We first design a pre-analysis as a further abstraction of the main analysis. Let D] and
F] : D] ! D] be such abstract domain and semantic function of the pre-analysis, respectively,
such that D ���! ���↵

�
D] and ↵ � F v F] � ↵. In Section 4.2, we give the exact definition of the

pre-analysis design we used. Next, we run this pre-analysis, computing the following sequence
until stabilized: G

i2N
F]i(?]) = F]0(?]) t F]1(?]) t F]2(?]) t · · ·

Suppose that the pre-analysis stabilizes in m steps. Then, we collect the following data during
the course of the pre-analysis:

(
H]

0

H]
m

,
0

m
), (

H]
1

H]
m

,
1

m
), · · · , (

H]
i

H]
m

,
i

m
), · · · , (

H]
m

H]
m

,
m

m
)

where H]
i = H(�(F]i(?]))). The second component i

m of each pair represents the actual progress
of the pre-analysis at the ith iteration, and the first represents the corresponding height progress.
Generalizing the data (using techniques such as interpolation or regression), we obtain a nor-
malization function normalize] : [0, 1]! [0, 1] for the pre-analysis.

Surprisingly, the normalization function normalize] for such a pre-analysis is closely related
with the normalization function normalize for the main analysis. For instance, the dotted curve
in Figure 1(a) shows the height progress of our pre-analysis (defined in Section 4.2), which has
a clear resemblance with the height progress (the solid line) of the main analysis. Thanks to
this similarity, it is acceptable in practice to use the normalization function normalize] for the
pre-analysis instead of normalize in our progress estimation. Thus, we revise (2) as follows:

P̄]
i = normalize]

� Hi

Hfinal

�
(3)

That is, at each iteration i of the main analysis, we show the estimated normalized progress P̄]
i to

the users. Figure 1(b) depicts P̄]
i for sendmail-8.14.5 (on the assumption that H]

final = Hfinal).
Note that, unlike the original progress bar (the solid line in Figure 1(a)), the normalized progress
bar progresses at an almost linear rate.

3 Setting

In this section, we define a class of static analyses on top of which we develop our progress
estimation technique. For presentation brevity, we consider non-relational analyses (in particular,
analyses with the interval domain).

However, our overall approach to progress estimation is also applicable to relational analyses.
In Section 6, we discuss the application to a relational analysis with the octagon domain.

3.1 Programs

A program is a tuple hC, ,!i where C is a finite set of program points, (,!) ✓ C⇥C is a relation
that denotes control structures of the program: c ,! c0 indicates that c0 is a next program point
of c. Each program point is associated with a command: cmd(c) denotes the command associated
with program point c.

Thursday, September 11, 14

Static Analysis

• Fixpoint computation with widening : If abstract
value domain is of infinite height, a widening
operator is applied at a set of widening points

• In our case, all loop headers are widening points.

3.2 Static Analysis

We consider a class of static analyses whose abstract domain maps program points to abstract
states:

D = C ! S
where the abstract state is a map from abstract locations to abstract values:

S = L ! V

We assume that the set of abstract locations is finite and V is a complete lattice. The abstract
semantics of the program is characterized by the least fixpoint of abstract semantic function
F 2 (C ! S) ! (C ! S) defined as,

F (X) = �c 2 C.fc(
G

c0,!c

X(c0)) (4)

where fc 2 S ! S is the transfer function for control point c.

Example 1 (Interval Analysis). A typical example of non-relational analyses is the interval anal-
ysis. Consider the following simple imperative language.

x := e | assume(x < n) where e ! n | x | e + e

All basic commands are assignments or assume commands. An expression may be a constant
integer (n), a binary operation (e + e), a variable expression (x). Let Var be the set of all
program variables. We define the abstract state as a map from program variables to the lattice
of intervals:

L = Var
V = {[l, u] | l, u 2 Z [{�1,+1} ^ l  u} [{?}

The transfer function fc : S ! S is defines as follows:

fc(s) =

⇢
s[x 7! V(e)(s)] cmd(c) = x := e
s[x 7! s(x) u [�1, n� 1])] cmd(c) = assume(x < n)

where auxiliary function V(e)(s) computes the abstract value for e under s:

V(e) 2 S ! V
V(n)(s) = [n, n]

V(e1 + e2)(s) = V(e1)(s)� V(e2)(s)
V(x)(s) = s(x)

where � denotes the abstract binary operator for the interval domain.
⇤

3.3 Fixpoint Computation with Widening

When the domain of abstract values (V) has infinite height, we need a widening operator
`

:
V⇥V ! V to approximate the least fixpoint of F . In practice, the widening operator is applied
at only headers of flow cycles [3]. Let W ✓ C be the set of widening points (all loop headers in
the program) in the program.

Example 2 (Widening Operator for Intervals). We use the following widening operator in our
interval analysis:

[l, u]
`
[l0, u0] = [if (l0 < l) then �1 else l, if (u0 > u) then +1 else u].

⇤

Thursday, September 11, 14

Progress Estimation Details

• A class of static analyses we consider

• Pre-analysis design

• Precise estimation of a final height

Thursday, September 11, 14

Pre-analysis

• Partially flow-sensitive version of the main
analysis (the main analysis is fully flow-sensitive)

• Our pre-analysis only distinguishes program points
around loop headers, i.e., widening points

• as widening increases lattice height significantly.

Thursday, September 11, 14

Partially flow-sensitive analysis

• Abstract domain

• Distinguishable program points

• Semantic function

flow cycles. For instance, when the analysis uses widening, significant changes in abstract states
occur at flow cycle headers. Thus, it is reasonable to pay particular attention to height increases
occurred at widening points (W). To control the level of flow-sensitivity, we also distinguish
some preceding points of widening points.

Formally, the set of distinguished program points is defined as follows. Suppose that a pa-
rameter depth is given, which indicates how many preceding points of flow cycle headers are
separated in our pre-analysis. Then, we decide to distinguish the following set � ✓ C of program
points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special instance of the trace

partitioning [15]. The set of partitioning indicies � is defined by � = �[{•}, where • represents
all the other program points not included in �. That is, we use the following partitioning function
� : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the pre-analysis as
follows:

C! S ���! ���↵
�

�! S

where
�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (6)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity by adjusting

the parameter depth 2 [0,1]. A larger depth value yields a more precise pre-analysis. In our
experiments (Section 5), we use 1 for the default value of depth and show that how the progress
estimation quality improves with higher depth values.

It is easy to check that our pre-analysis is sound with respect to the main analysis regardless
of parameter depth:

Lemma 1 (Pre-analysis Soundness). lfpF̂ v �(lfpF]).

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of the final analysis
result.

Basically, we estimate Hfinal by the height of the final analysis result of our pre-analysis

designed in the previous subsection. We write H]
final for the estimated final height:

H]
final = H(�(lfpF])).

Because of the soundness of the pre-analysis and monotonicity of H, H]
final over-approximates

Hfinal :

Hfinal = H(lfpF)  H(�(lfpF])) = H]
final

flow cycles. For instance, when the analysis uses widening, significant changes in abstract states
occur at flow cycle headers. Thus, it is reasonable to pay particular attention to height increases
occurred at widening points (W). To control the level of flow-sensitivity, we also distinguish
some preceding points of widening points.

Formally, the set of distinguished program points is defined as follows. Suppose that a pa-
rameter depth is given, which indicates how many preceding points of flow cycle headers are
separated in our pre-analysis. Then, we decide to distinguish the following set � ✓ C of program
points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special instance of the trace

partitioning [15]. The set of partitioning indicies � is defined by � = �[{•}, where • represents
all the other program points not included in �. That is, we use the following partitioning function
� : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the pre-analysis as
follows:

C! S ���! ���↵
�

�! S

where
�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (6)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity by adjusting

the parameter depth 2 [0,1]. A larger depth value yields a more precise pre-analysis. In our
experiments (Section 5), we use 1 for the default value of depth and show that how the progress
estimation quality improves with higher depth values.

It is easy to check that our pre-analysis is sound with respect to the main analysis regardless
of parameter depth:

Lemma 1 (Pre-analysis Soundness). lfpF̂ v �(lfpF]).

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of the final analysis
result.

Basically, we estimate Hfinal by the height of the final analysis result of our pre-analysis

designed in the previous subsection. We write H]
final for the estimated final height:

H]
final = H(�(lfpF])).

Because of the soundness of the pre-analysis and monotonicity of H, H]
final over-approximates

Hfinal :

Hfinal = H(lfpF)  H(�(lfpF])) = H]
final

flow cycles. For instance, when the analysis uses widening, significant changes in abstract states
occur at flow cycle headers. Thus, it is reasonable to pay particular attention to height increases
occurred at widening points (W). To control the level of flow-sensitivity, we also distinguish
some preceding points of widening points.

Formally, the set of distinguished program points is defined as follows. Suppose that a pa-
rameter depth is given, which indicates how many preceding points of flow cycle headers are
separated in our pre-analysis. Then, we decide to distinguish the following set � ✓ C of program
points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special instance of the trace

partitioning [15]. The set of partitioning indicies � is defined by � = �[{•}, where • represents
all the other program points not included in �. That is, we use the following partitioning function
� : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the pre-analysis as
follows:

C! S ���! ���↵
�

�! S

where
�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (6)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity by adjusting

the parameter depth 2 [0,1]. A larger depth value yields a more precise pre-analysis. In our
experiments (Section 5), we use 1 for the default value of depth and show that how the progress
estimation quality improves with higher depth values.

It is easy to check that our pre-analysis is sound with respect to the main analysis regardless
of parameter depth:

Lemma 1 (Pre-analysis Soundness). lfpF̂ v �(lfpF]).

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of the final analysis
result.

Basically, we estimate Hfinal by the height of the final analysis result of our pre-analysis

designed in the previous subsection. We write H]
final for the estimated final height:

H]
final = H(�(lfpF])).

Because of the soundness of the pre-analysis and monotonicity of H, H]
final over-approximates

Hfinal :

Hfinal = H(lfpF)  H(�(lfpF])) = H]
final

flow cycles. For instance, when the analysis uses widening, significant changes in abstract states
occur at flow cycle headers. Thus, it is reasonable to pay particular attention to height increases
occurred at widening points (W). To control the level of flow-sensitivity, we also distinguish
some preceding points of widening points.

Formally, the set of distinguished program points is defined as follows. Suppose that a pa-
rameter depth is given, which indicates how many preceding points of flow cycle headers are
separated in our pre-analysis. Then, we decide to distinguish the following set � ✓ C of program
points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special instance of the trace

partitioning [15]. The set of partitioning indicies � is defined by � = �[{•}, where • represents
all the other program points not included in �. That is, we use the following partitioning function
� : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the pre-analysis as
follows:

C! S ���! ���↵
�

�! S

where
�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (6)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity by adjusting

the parameter depth 2 [0,1]. A larger depth value yields a more precise pre-analysis. In our
experiments (Section 5), we use 1 for the default value of depth and show that how the progress
estimation quality improves with higher depth values.

It is easy to check that our pre-analysis is sound with respect to the main analysis regardless
of parameter depth:

Lemma 1 (Pre-analysis Soundness). lfpF̂ v �(lfpF]).

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of the final analysis
result.

Basically, we estimate Hfinal by the height of the final analysis result of our pre-analysis

designed in the previous subsection. We write H]
final for the estimated final height:

H]
final = H(�(lfpF])).

Because of the soundness of the pre-analysis and monotonicity of H, H]
final over-approximates

Hfinal :

Hfinal = H(lfpF)  H(�(lfpF])) = H]
final

flow cycles. For instance, when the analysis uses widening, significant changes in abstract states
occur at flow cycle headers. Thus, it is reasonable to pay particular attention to height increases
occurred at widening points (W). To control the level of flow-sensitivity, we also distinguish
some preceding points of widening points.

Formally, the set of distinguished program points is defined as follows. Suppose that a pa-
rameter depth is given, which indicates how many preceding points of flow cycle headers are
separated in our pre-analysis. Then, we decide to distinguish the following set � ✓ C of program
points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special instance of the trace

partitioning [15]. The set of partitioning indicies � is defined by � = �[{•}, where • represents
all the other program points not included in �. That is, we use the following partitioning function
� : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the pre-analysis as
follows:

C! S ���! ���↵
�

�! S

where
�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (6)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity by adjusting

the parameter depth 2 [0,1]. A larger depth value yields a more precise pre-analysis. In our
experiments (Section 5), we use 1 for the default value of depth and show that how the progress
estimation quality improves with higher depth values.

It is easy to check that our pre-analysis is sound with respect to the main analysis regardless
of parameter depth:

Lemma 1 (Pre-analysis Soundness). lfpF̂ v �(lfpF]).

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of the final analysis
result.

Basically, we estimate Hfinal by the height of the final analysis result of our pre-analysis

designed in the previous subsection. We write H]
final for the estimated final height:

H]
final = H(�(lfpF])).

Because of the soundness of the pre-analysis and monotonicity of H, H]
final over-approximates

Hfinal :

Hfinal = H(lfpF)  H(�(lfpF])) = H]
final

�

flow cycles. For instance, when the analysis uses widening, significant changes in abstract states
occur at flow cycle headers. Thus, it is reasonable to pay particular attention to height increases
occurred at widening points (W). To control the level of flow-sensitivity, we also distinguish
some preceding points of widening points.

Formally, the set of distinguished program points is defined as follows. Suppose that a pa-
rameter depth is given, which indicates how many preceding points of flow cycle headers are
separated in our pre-analysis. Then, we decide to distinguish the following set � ✓ C of program
points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special instance of the trace

partitioning [15]. The set of partitioning indicies � is defined by � = �[{•}, where • represents
all the other program points not included in �. That is, we use the following partitioning function
� : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the pre-analysis as
follows:

C! S ���! ���↵
�

�! S

where
�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (6)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity by adjusting

the parameter depth 2 [0,1]. A larger depth value yields a more precise pre-analysis. In our
experiments (Section 5), we use 1 for the default value of depth and show that how the progress
estimation quality improves with higher depth values.

It is easy to check that our pre-analysis is sound with respect to the main analysis regardless
of parameter depth:

Lemma 1 (Pre-analysis Soundness). lfpF̂ v �(lfpF]).

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of the final analysis
result.

Basically, we estimate Hfinal by the height of the final analysis result of our pre-analysis

designed in the previous subsection. We write H]
final for the estimated final height:

H]
final = H(�(lfpF])).

Because of the soundness of the pre-analysis and monotonicity of H, H]
final over-approximates

Hfinal :

Hfinal = H(lfpF)  H(�(lfpF])) = H]
final

flow cycles. For instance, when the analysis uses widening, significant changes in abstract states
occur at flow cycle headers. Thus, it is reasonable to pay particular attention to height increases
occurred at widening points (W). To control the level of flow-sensitivity, we also distinguish
some preceding points of widening points.

Formally, the set of distinguished program points is defined as follows. Suppose that a pa-
rameter depth is given, which indicates how many preceding points of flow cycle headers are
separated in our pre-analysis. Then, we decide to distinguish the following set � ✓ C of program
points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special instance of the trace

partitioning [15]. The set of partitioning indicies � is defined by � = �[{•}, where • represents
all the other program points not included in �. That is, we use the following partitioning function
� : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the pre-analysis as
follows:

C! S ���! ���↵
�

�! S

where
�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (6)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity by adjusting

the parameter depth 2 [0,1]. A larger depth value yields a more precise pre-analysis. In our
experiments (Section 5), we use 1 for the default value of depth and show that how the progress
estimation quality improves with higher depth values.

It is easy to check that our pre-analysis is sound with respect to the main analysis regardless
of parameter depth:

Lemma 1 (Pre-analysis Soundness). lfpF̂ v �(lfpF]).

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of the final analysis
result.

Basically, we estimate Hfinal by the height of the final analysis result of our pre-analysis

designed in the previous subsection. We write H]
final for the estimated final height:

H]
final = H(�(lfpF])).

Because of the soundness of the pre-analysis and monotonicity of H, H]
final over-approximates

Hfinal :

Hfinal = H(lfpF)  H(�(lfpF])) = H]
final

adjustable parameter ∈[0,∞]
default : 1

Thursday, September 11, 14

Progress Estimation Details

• A class of static analyses we consider

• Pre-analysis design

• Precise estimation of a final height

Thursday, September 11, 14

?

>

Pre-analysis
result

Final analysis
result

Hfinal

Final Height Estimation

A Progress Bar for Static Analyzers 9

of flow cycle headers are separated in our pre-analysis. Then, we decide to dis-
tinguish the following set � ✓ C of program points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special in-

stance of the trace partitioning [16]. The set of partitioning indicies � is defined
by � = �[{•}, where • represents all the other program points not included in
�. That is, we use the following partitioning function � : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the
pre-analysis as follows:

C! S ���! ���↵
�

�! S
where

�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (8)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity

by adjusting the parameter depth 2 [0,1]. A larger depth value yields a more
precise pre-analysis. In our experiments (Section 5), we use 1 for the default
value of depth and show that how the progress estimation quality improves with
higher depth values. It is easy to check that our pre-analysis is sound with respect
to the main analysis regardless of parameter depth.

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of
the final analysis result. Note that Hfinal cannot be computed unless we actually

run the main analysis. Instead, we compute H]
final , an estimation of Hfinal . We

replace the Hfinal in (3) by H]
final as follows:

P̄]
i = normalize]

� Hi

H]
final

�
(9)

Our goal is to compute H]
final such that |H]

final � Hfinal | is as smaller as
possible, for which we use the pre-analysis and a statistical method. First, we
compute Hpre , the final height of the pre-analysis result, i.e.,

Hpre = H(�(lfpF]))

Our statistical method predicts

10 Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi

Next, we statistically refine Hpre into H]
final such that |H]

final �Hfinal | is likely
smaller than |Hpre � Hfinal |. The job of the statistical method is to predict

↵ = Hfinal

Hpre
(0  ↵  1) for a given program. With ↵, H]

final is defined as follows:

H]
final = ↵ ·Hpre

We assume that ↵ is defined as a linear combination of a set of program
features in Table 1. We used eight syntactic features and six semantic features.
The features are selected among over 30 features by feature selection for the
purpose of removing redundant or irrelevant ones for better accuracy. We used
L1 based recursive feature elimination to find optimal subset of features using
254 benchmark programs.

The feature values are normalized to real numbers between 0 and 1. The
Post-fixpoint features are about the post-fixpoint property. Since the pre-analysis
result is a post fixpoint of the semantic function F , i.e., �(lfpF]) 2 {x 2 D |
x w F (x)}, we can refine the result by iteratively applying F to the pre-analysis
result. Instead of doing refinement, we designed simple indicators that show
possibility of the refinement to avoid extra cost. For every traning example, a
feature vector is created with a negligible overhead.

We used the ridge linear regression as the learning algorithm. The ridge linear
regression algorithm is known as a quick and e↵ective technique for numerical
prediction.

Table 1. The feature vector used by linear regression to construct prediction models

Category Feature
function calls in the program

Inter-procedural # functions in recursive call cycles
(syntactic) # undefined library function calls

the maximum loop size
the average loop sizes

Loop-related the standard deviation of loop sizes
(syntactic) the standard deviation of depths of loops

loopheads
Numerical analysis # bounded intervals in the pre-analysis result

(semantic) # unbounded intervals in the pre-analysis result
Pointer analysis # points-to sets of cardinality over 4 in the pre-analysis result

(semantic) # points-to sets of cardinality under 4 in the pre-analysis result
Post-fixpoint # program points where applying the transfer function once
(semantic) improves the precision

height decrease when transfer function is applied once

In a way orthogonal to the statistical method, we further reduce |H]
final �

Hfinal | by tuning the height function. We reduce |H]
final �Hfinal | by considering

only subsets of program points and abstract locations. However, it is not the

Thursday, September 11, 14

?

>

Hfinal

Final Height Estimation

A Progress Bar for Static Analyzers 9

of flow cycle headers are separated in our pre-analysis. Then, we decide to dis-
tinguish the following set � ✓ C of program points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special in-

stance of the trace partitioning [16]. The set of partitioning indicies � is defined
by � = �[{•}, where • represents all the other program points not included in
�. That is, we use the following partitioning function � : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the
pre-analysis as follows:

C! S ���! ���↵
�

�! S
where

�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (8)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity

by adjusting the parameter depth 2 [0,1]. A larger depth value yields a more
precise pre-analysis. In our experiments (Section 5), we use 1 for the default
value of depth and show that how the progress estimation quality improves with
higher depth values. It is easy to check that our pre-analysis is sound with respect
to the main analysis regardless of parameter depth.

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of
the final analysis result. Note that Hfinal cannot be computed unless we actually

run the main analysis. Instead, we compute H]
final , an estimation of Hfinal . We

replace the Hfinal in (3) by H]
final as follows:

P̄]
i = normalize]

� Hi

H]
final

�
(9)

Our goal is to compute H]
final such that |H]

final � Hfinal | is as smaller as
possible, for which we use the pre-analysis and a statistical method. First, we
compute Hpre , the final height of the pre-analysis result, i.e.,

Hpre = H(�(lfpF]))

postfp(F) = {x | x w F(x)}

Pre-analysis
result

Final analysis
result

�(lfpF#)

Thursday, September 11, 14

?

>

Hfinal

Final Height Estimation

postfp(F) = {x | x w F(x)}

ui2NF
i(�(lfpF#))

�(lfpF#) Approx. err.
decreased

Thursday, September 11, 14

Final Height Estimation

• However, the refinement requires significant time
overhead.

• We use simple indicators that show possibility of
the refinement to avoid extra cost.

• Height decrease when semantic function F is
applied once.

Thursday, September 11, 14

Feature Vector

Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 9

Our goal is to compute H]final such that |H]final � Hfinal| is as smaller as possible, for which we use the pre-analysis
and a statistical method. First, we compute Hpre, the final height of the pre-analysis result, i.e.,

Hpre = H(�(lfpF]))

Next, we statistically refine Hpre into H]final such that |H]final � Hfinal| is likely smaller than |Hpre � Hfinal|. The job of the

statistical method is to predict ↵ = Hfinal

Hpre
(0  ↵  1) for a given program. With ↵, H]final is defined as follows:

H]final = ↵ · Hpre

We assume that ↵ is defined as a linear combination of a set of program features in Table 1. We used eight
syntactic features and six semantic features. The features are selected among over 30 features by feature selection
for the purpose of removing redundant or irrelevant ones for better accuracy. We used L1 based recursive feature
elimination to find optimal subset of features using 254 benchmark programs.

The feature values are normalized to real numbers between 0 and 1. The Post-fixpoint features are about the post-
fixpoint property. Since the pre-analysis result is a post fixpoint of the semantic function F, i.e., �(lfpF]) 2 {x 2 D |
x w F(x)}, we can refine the result by iteratively applying F to the pre-analysis result. Instead of doing refinement,
we designed simple indicators that show possibility of the refinement to avoid extra cost. For every traning example,
a feature vector is created with a negligible overhead.

We used the ridge linear regression as the learning algorithm. The ridge linear regression algorithm is known as a
quick and e↵ective technique for numerical prediction.

Table 1. The feature vector used by linear regression to construct prediction models
Category Feature

function calls in the program
Inter-procedural # functions in recursive call cycles

(syntactic) # undefined library function calls
the maximum loop size
the average loop sizes

Loop-related the standard deviation of loop sizes
(syntactic) the standard deviation of depths of loops

loopheads
Numerical analysis # bounded intervals in the pre-analysis result

(semantic) # unbounded intervals in the pre-analysis result
Pointer analysis # points-to sets of cardinality over 4 in the pre-analysis result

(semantic) # points-to sets of cardinality under 4 in the pre-analysis result
Post-fixpoint # program points where applying the transfer function once
(semantic) improves the precision

height decrease when transfer function is applied once

In a way orthogonal to the statistical method, we further reduce |H]final � Hfinal| by tuning the height function. We

reduce |H]final �Hfinal| by considering only subsets of program points and abstract locations. However, it is not the best
way to choose the smallest subsets of them when computing heights. For example, we may simply set both of them
to be an empty set. Then, |H]final � Hfinal| will be zero, but both Hfinal and H]final will be also zero. Undoubtedly, that
results in a useless progress bar as estimated progress is always zero in that case.

Our goal is to choose program points and abstract locations as small as possible, while maintaining the progress
estimation quality. To this end, we used the following two heuristics:

• We focus only on abstract locations that contribute to increases of heights during the main analysis. Let D(c) an
over-approximation of the set of such abstract locations at program point c:

D(c) ◆ {l 2 L | 9i 2 {1 . . . n}.h(Xi(c)(l)) � h(Xi�1(c)(l)) > 0}
9

Thursday, September 11, 14

Evaluation Metric

• Our progress bar :

• We quantifiably measure quality of estimation
(n : total iteraion, i : current iteration, best : 1)

Table 1. Progress estimation results (interval analysis). LOC shows the lines of code before pre-processing. Main
reports the main analysis time. Pre reports the time spent by our pre-analysis. Refine shows the additional time
spent in refining the pre-analysis result for the final height approximation. Linearity indicates the quality of
progress estimation (0 (worst) – 1 (best)). Height-Approx. denotes the precision of our height approximation
(0 (worst) – 1 (best)).

Time(s) Height-
Program LOC Main Pre Refine Linearity Overhead Approx.
nano-2.1.9 24041 28.5 2.1 1.9 0.68 14.0% 0.97
wget-1.9 35018 18.7 2.2 3.3 0.52 29.4% 0.98
lighttpd-1.4.25 56518 16.5 1.6 1.9 0.92 21.2% 0.79
a2ps-4.14 64590 26.2 10.4 2.7 0.83 50.2% 0.97
gnugo-3.8 87575 1809.1 85.3 63.3 0.83 8.2% 0.97
lsh-2.0.4 110898 225.9 8.7 13.3 0.75 9.7% 0.97
gcal-3.6 132568 457.8 59.1 19.5 0.74 17.2% 0.94
sendmail-8.14.5 136146 873.8 20.5 99.4 0.91 13.7% 0.99
TOTAL 647,354 3456.5 189.9 205.3 0.78 11.4% 0.95

5.1 Setting

We evaluate our progress estimation technique with Sparrow [1], an industrial-strength C
static analyzer that detects memory errors such as bu↵er-overruns and null dereferences. Spar-
row basically performs a flow-sensitive and context-insensitive analysis with the interval ab-
stract domain. The abstract state is a map from abstract locations (including program vari-
ables, allocation-sites, and structure fields) to abstract values (including intervals, points-to
sets, array and structure blocks). Details on Sparrow’s abstract semantics is available at [13].
Sparrow performs a sparse analysis [14] and the analysis has two phases: data dependency gen-
eration and fixpoint computation. Our technique aims to estimate the progress of the fixpoint
computation step and, in this paper, we mean by analysis time the fixpoint computation time.

We have implemented our technique as described in Section 2 and 4. We used the height
function defined in Example 3. We did not consider other parts of abstract values such as pointers
and arrays in the height computation. The pre-analysis is based on the partial flow-sensitivity
defined in Section 4.2, where we set the parameter depth as 1 by default. That is, the pre-analysis
is flow-sensitive only for flow cycle headers and their immediate preceding points.

All our experiments were performed on a machine with a 3.07 GHz Intel Core i7 processor
and 24 GB of memory.

5.2 Results

We tested our progress estimation techniques on 8 GNU software packages. Table 1 shows our
benchmarks.

Figure 2 presents the resulting progress bars for each benchmark program. Overall, our
method produces useful progress bars. In particular, the progress bar proceeds almost linearly
for programs lighttpd-1.4.25 and sendmail-8.14.5. For some programs (nano-2.1.9 and
wget-1.9) the progress estimation is comparatively rough but still useful.

The Linearity column in Table 1 quantifies the “linearity”, which we define as follows:

1�
P

1in(
i
n � P̄]

i)
2

P
1in(

i
n � n+1

2n)2

where n is the number of iterations required for the analysis to stabilize and P̄]
i is the estimated

progress at ith iteration of the analysis. This metric is just a simple application of the coe�cient
of determination in statistics, i.e., R2, which presents how well P̄] fits the actual progress rate

Linearity(P̄#
i) =

A Progress Bar for Static Analyzers 9

of flow cycle headers are separated in our pre-analysis. Then, we decide to dis-
tinguish the following set � ✓ C of program points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special in-

stance of the trace partitioning [16]. The set of partitioning indicies � is defined
by � = �[{•}, where • represents all the other program points not included in
�. That is, we use the following partitioning function � : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F]) of the
pre-analysis as follows:

C! S ���! ���↵
�

�! S
where

�(X) = �c. X(�(c)).

The semantic function F] : (�! S)! (�! S) is defined as,

F](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (8)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity

by adjusting the parameter depth 2 [0,1]. A larger depth value yields a more
precise pre-analysis. In our experiments (Section 5), we use 1 for the default
value of depth and show that how the progress estimation quality improves with
higher depth values. It is easy to check that our pre-analysis is sound with respect
to the main analysis regardless of parameter depth.

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of
the final analysis result. Note that Hfinal cannot be computed unless we actually

run the main analysis. Instead, we compute H]
final , an estimation of Hfinal . We

replace the Hfinal in (3) by H]
final as follows:

P̄]
i = normalize

� Hi

↵ ·Hpre

�
(9)

Our goal is to compute H]
final such that |H]

final � Hfinal | is as smaller as
possible, for which we use the pre-analysis and a statistical method. First, we
compute Hpre , the final height of the pre-analysis result, i.e.,

Hpre = H(�(lfpF]))

Thursday, September 11, 14

Interval Analysis

12 Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi

blocks). Details on Sparrow’s abstract semantics is available at [13]. Spar-
row performs a sparse analysis [14] and the analysis has two phases: data de-
pendency generation and fixpoint computation. Our technique aims to estimate
the progress of the fixpoint computation step and, in this paper, we mean by
analysis time the fixpoint computation time.

We have implemented our technique as described in Section 2 and 4. We used
the height function defined in Example 4 and 5. To estimate numerical, and
pointer analysis progresses, we split the Sparrow into two analyzers so that
each of them may analyze only numeric or pointer-related property respectively.
The pre-analysis is based on the partial flow-sensitivity defined in Section 4.2,
where we set the parameter depth as 1 by default. That is, the pre-analysis is
flow-sensitive only for flow cycle headers and their immediate preceding points.

All our experiments were performed on a machine with a 3.07 GHz Intel Core
i7 processor and 24 GB of memory. For statistical estimation of the final height,
we used the scikit-learn machine learning library [15].

5.2 Results

We tested our progress estimation techniques on 8 GNU software packages for
each of analyses. Table 2 and 3 show our results.

Table 2. Progress estimation results (interval analysis). LOC shows the lines of code
before pre-processing.Main reports the main analysis time. Pre reports the time spent
by our pre-analysis. Linearity indicates the quality of progress estimation (best : 1).
Height-Approx. denotes the precision of our height approximation (best : 1). Err
denotes mean of absolute di↵erence between Height-Approx. and 1 (best : 0).

Time(s) Height-
Program LOC Main Pre Linearity Overhead Approx.
bison-1.875 38841 3.66 0.91 0.73 24.86% 1.03
screen-4.0.2 44745 40.04 2.37 0.86 5.92% 0.96
lighttpd-1.4.25 56518 27.30 1.21 0.89 4.43% 0.92
a2ps-4.14 64590 32.05 11.26 0.51 35.13% 1.06
gnu-cobol-1.1 67404 413.54 99.33 0.54 24.02% 0.91
gnugo 87575 1541.35 7.35 0.89 0.48% 1.12
bash-2.05 102406 16.55 2.26 0.80 13.66% 0.93
sendmail-8.14.6 136146 1348.97 5.81 0.69 0.43% 0.93
TOTAL 686380 3423.46 130.5 0.74 3.81% Err : 0.07

The Linearity column in Table 2, and 3 quantifies the “linearity”, which we
define as follows:

1�
P

1in(
i
n � P̄]

i)
2

P
1in(

i
n � n+1

2n)2

where n is the number of iterations required for the analysis to stabilize and
P̄]
i is the estimated progress at ith iteration of the analysis. This metric is

Thursday, September 11, 14

Pointer AnalysisA Progress Bar for Static Analyzers 13

Table 3. Progress estimation results (pointer analysis).

Time(s) Height-
Program LOC Main Pre Linearity Overhead Approx.
screen-4.0.2 44745 15.89 1.56 0.90 9.82% 0.98
lighttpd 56518 11.54 0.87 0.76 7.54% 1.03
a2ps-4.14 64590 10.06 3.48 0.65 34.59% 1.04
gnu-cobol-1.1 67404 32.27 12.22 0.91 37.87% 1.03
gnugo 87575 217.77 3.88 0.64 1.78% 0.97
bash-2.05 102406 3.68 0.78 0.56 21.20% 1.04
proftpd-1.3.2 126996 74.64 11.14 0.82 14.92% 1.03
sendmail-8.14.6 136146 145.62 3.15 0.58 2.16% 0.98
TOTAL 686380 511.47 37.08 0.73 7.25% Err : 0.03

just a simple application of the coe�cient of determination in statistics, i.e.,
R2, which presents how well P̄] fits the actual progress rate i

n . The closer to 1

linearity is, the more similar to the ideal progress bar P̄]
i is. Figure 3 in appendix

presents the resulting progress bars for each of benchmark programs providing
graphical descriptions of the linearity. In particular, the progress bar proceeds
almost linearly for programs of the linearity close to 0.9 (lighttpd-1.4.25,
gnugo-3.8 in interval analysis, gnu-cobol-1.1, bash-2.05 in pointer analysis).
For some programs of relatively low linearity (gnu-cobol-1.1, bash-2.05 in
interval analysis, gnugo-3.8, proftpd-1.3.2 in pointer analysis), the progress
estimation is comparatively rough but still useful.

The Height-Approx. column stands for the accuracy of final height approx-
imation Hfinal

H]
final

where H]
final is estimated final height via the statistical technique

described in section 4.3. Err denotes an average of absolute errors |Height-
Approx. �1|. To prove our statistical method avoids overfitting problem, we
performed 3-fold cross validation using 254 benchmarks including GNU soft-
wares and linux packages. For interval analysis, we obtained 0.063 Err with
0.007 standard deviation. For pointer analysis, 0.053 Err with 0.001 standard
deviation. These results show our method avoids overfitting, evenly yielding pre-
cise estimations at the same time.

The Overhead column shows the total overhead of our method, which in-
cludes the pre-analysis running time (Section 4.2). The average performance
overheads of our method are 3.8% in interval analysis, and 7.3% in pointer anal-
ysis respectively.

5.3 Discussion

Linearity vs. Overhead In our progress estimation method, we can make
tradeo↵s between the linearity and overhead. Table 2, 3 show our progress esti-
mations when we use the default parameter value (depth = 1) in the pre-analysis.
By using a higher depth value, we can improve the precision of the pre-analysis
and hence the quality of the resulting progress estimation at the cost of extra

Thursday, September 11, 14

Octagon Analysis

Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 12

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

main
pre

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

he
ig

ht
pr

og
re

ss

(a) original height-progress (b) normalized height-progress

Figure 4. Our method is also applicable to octagon domain–based static analyses.

Height Approximation Error. In our experiments, we noticed that our progress estimation method is sensitive to
the height approximation error (H]final � Hfinal). Although we precisely estimate heights of the fixpoints, there are
cases where even small error sometimes leads to unsatisfactory results. For instance, the reason why the progress for
gnu-cobol-1.1 is under-estimated is the height approximation error(0.09).

We believe enhancing the precision will be achieved by increasing training examples and relevant features.

6. Application to Relational Analyses

The overall approach of our progress estimation technique may adapt easily to relational analyses as well. In this
section, we check the possibility of applying our technique to the octagon domain–based static analysis [?].

We have implemented a prototype progress estimator for the octagon analysis as follows. For pre-analysis, we
used the same partial flow-sensitive abstraction described in Section 4.2 with depth = 1. Regarding the height function
H, we also used that of the interval analysis. Note that, since an octagon domain element is a collection of intervals
denoting ranges of program variables such as x and y, their sum x + y, and their di↵erence x � y, we can use the same
height function in Example 5. In this prototype implementation, we assumed that we are given heights of the final
analysis results.

Figure 4 shows that our technique e↵ectively normalizes the height progress of the octagon analysis. The solid
lines in Figure 4(a) depicts the height progress of the main octagon analysis of program wget-1.9 and the dotted
line shows that of the pre-analysis. By normalizing the main analysis’ progress behavior, we obtain the progress bar
depicted in Figure 4(b), which is almost linear.

Figure A.7 depicts the resulting progress bar for other benchmark programs, and the following table reports de-
tailed experimental results.

Time(s)
Program LOC Main Pre Linearity Overhead
httptunnel-3.3 6174 49.5 8.2 0.91 16.6%
combine-0.3.3 11472 478.2 16 0.89 3.4%
bc-1.06 14288 63.9 43.8 0.96 68.6%
tar-1.17 18336 977.0 73.1 0.82 7.5%
parser 18923 190.1 104.8 0.97 55.1%
wget-1.9 35018 3895.36 1823.15 0.92 46.8%
TOTAL 69193 5654.0 2069.49 0.91 36.6%

Even though we completely reused the pre-analysis design and height function for the interval analysis, the resulting
progress bars are almost linear. This preliminary results suggest that our method could be applicable to relational
analyses.

12

Thursday, September 11, 14

Precision-Overhead Tradeoff

• More finer partitioned pre-analysis → more
precise progress estimation

Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 11

Table 2. Progress estimation results (interval analysis). LOC shows the lines of code before pre-processing. Main reports the main analysis time.
Pre reports the time spent by our pre-analysis. Linearity indicates the quality of progress estimation (best : 1). Height-Approx. denotes the
precision of our height approximation (best : 1). Err denotes mean of absolute di↵erence between Height-Approx. and 1 (best : 0).

Time(s) Height-
Program LOC Main Pre Linearity Overhead Approx.
bison-1.875 38841 3.66 0.91 0.73 24.86% 1.03
screen-4.0.2 44745 40.04 2.37 0.86 5.92% 0.96
lighttpd-1.4.25 56518 27.30 1.21 0.89 4.43% 0.92
a2ps-4.14 64590 32.05 11.26 0.51 35.13% 1.06
gnu-cobol-1.1 67404 413.54 99.33 0.54 24.02% 0.91
gnugo 87575 1541.35 7.35 0.89 0.48% 1.12
bash-2.05 102406 16.55 2.26 0.80 13.66% 0.93
sendmail-8.14.6 136146 1348.97 5.81 0.69 0.43% 0.93
TOTAL 686380 3423.46 130.5 0.74 3.81% Err : 0.07

Table 3. Progress estimation results (pointer analysis).
Time(s) Height-

Program LOC Main Pre Linearity Overhead Approx.
screen-4.0.2 44745 15.89 1.56 0.90 9.82% 0.98
lighttpd 56518 11.54 0.87 0.76 7.54% 1.03
a2ps-4.14 64590 10.06 3.48 0.65 34.59% 1.04
gnu-cobol-1.1 67404 32.27 12.22 0.91 37.87% 1.03
gnugo 87575 217.77 3.88 0.64 1.78% 0.97
bash-2.05 102406 3.68 0.78 0.56 21.20% 1.04
proftpd-1.3.2 126996 74.64 11.14 0.82 14.92% 1.03
sendmail-8.14.6 136146 145.62 3.15 0.58 2.16% 0.98
TOTAL 686380 511.47 37.08 0.73 7.25% Err : 0.03

pointer analysis). For some programs of relatively low linearity (gnu-cobol-1.1, bash-2.05 in interval analysis,
gnugo-3.8, proftpd-1.3.2 in pointer analysis), the progress estimation is comparatively rough but still useful.

The Height-Approx. column stands for the accuracy of final height approximation Hfinal

H]final

where H]final is estimated

final height via the statistical technique described in section 4.3. Err denotes an average of absolute errors |Height-
Approx. �1|. To prove our statistical method avoids overfitting problem, we performed 3-fold cross validation using
254 benchmarks including GNU softwares and linux packages. For interval analysis, we obtained 0.063 Err with
0.007 standard deviation. For pointer analysis, 0.053 Err with 0.001 standard deviation. These results show our
method avoids overfitting, evenly yielding precise estimations at the same time.

The Overhead column shows the total overhead of our method, which includes the pre-analysis running time
(Section 4.2). The average performance overheads of our method are 3.8% in interval analysis, and 7.3% in pointer
analysis respectively.

5.3. Discussion
Linearity vs. Overhead. In our progress estimation method, we can make tradeo↵s between the linearity and over-
head. Table 2, 3 show our progress estimations when we use the default parameter value (depth = 1) in the pre-
analysis. By using a higher depth value, we can improve the precision of the pre-analysis and hence the quality of the
resulting progress estimation at the cost of extra overhead. For two programs, the following table shows the changes
in linearity and overhead when we change depth from 1 to 3:

Program Linearity change Overhead change
bash-2.05 (pointer) 0.56! 0.70 21.2%! 37.5%
sendmail-8.14.6 (interval) 0.69! 0.95 0.4%! 18.4%

11

Thursday, September 11, 14

Conclusion

• For the first time, we propose a technique for
estimating static analysis progress.

• Our method combines a semantic-based pre-
analysis with machine learning.

• We show its applicability on a suit of real C
benchmarks.

Thursday, September 11, 14

Backup

Thursday, September 11, 14

Height Function

• Interval

• Pointer

• Octagon : we reuse interval’s height function.

4 Details on Our Progress Estimation

As described in Section 2, our progress estimation is done in two steps: (1) we first run a pre-
analysis to obtain an estimated normalization function normalize] and an estimated final height
H]

final ; (2) using them, at each iteration of the main analysis, we measure the height progress,
convert it to the estimated actual progress, and show it to users. However, Section 2 has left out
a number of details. In this section, we give the details that we tried:

– In Section 4.1, we define our height function H.
– In Section 4.2, we describe our pre-analysis design.
– In Section 4.3, we present techniques for precise estimation of the final height.

4.1 The Height Function

We first define height function H : (C ! S) ! N that takes an abstract domain element and
computes its height. Since our analysis is non-relational, we assume that the height of an abstract
domain element is computed point-wise as follows:

H(X) =
X

c2C

X

l2L
h(X(c)(l)) (5)

where h : V ! N is the height function for abstract values.

Example 3. For the interval domain, we use the following height function:

h(?) = 0

h([a, b]) =

8
>>>><

>>>>:

1 a = b ^ a, b 2 Z
2 a < b ^ a, b 2 Z
3 a 2 Z ^ b = +1
3 a = �1 ^ b 2 Z
4 a = �1 ^ b = +1

We defined this height function based on the actual workings of our interval analysis. Constant
intervals (the first case) have height 1 since they are usually immediately generated from program
texts. The finite intervals (the second case) are often introduced by joining two constant intervals.
Intervals with one infinite bound (the third and fourth cases) are due to the widening operator.
Note that our widening operator (Example 2) immediately assigns ±1 to unstable bounds.
[�1,+1] is generated with the widening is applied to both bounds. ⇤

4.2 Pre-analysis via Partial Flow-Sensitivity

A key component of our method is the pre-analysis that is used to estimate both the height-
progress behavior and the maximum height of the main analysis. One natural method for further
abstracting static analyses in Section 3 is to approximate the level of flow-sensitivity. In this
subsection, we design a pre-analysis that is parameterized by a class of flow-sensitivity that was
found to be useful in progress estimation.

We consider a class of pre-analysis that is partially flow-sensitive version of the main analysis.
While the main analysis is fully flow-sensitive (i.e., the orders of program statements are fully
respected), our pre-analysis only respects the orders of some selected program points and regards
other program points flow-insensitively.

In particular, we are interested in a pre-analysis that only distinguishes program points
around headers of flow cycles. In static analysis, the most interesting things usually happen in

4 Details on Our Progress Estimation

As described in Section 2, our progress estimation is done in two steps: (1) we first run a pre-
analysis to obtain an estimated normalization function normalize] and an estimated final height
H]

final ; (2) using them, at each iteration of the main analysis, we measure the height progress,
convert it to the estimated actual progress, and show it to users. However, Section 2 has left out
a number of details. In this section, we give the details that we tried:

– In Section 4.1, we define our height function H.
– In Section 4.2, we describe our pre-analysis design.
– In Section 4.3, we present techniques for precise estimation of the final height.

4.1 The Height Function

We first define height function H : (C ! S) ! N that takes an abstract domain element and
computes its height. Since our analysis is non-relational, we assume that the height of an abstract
domain element is computed point-wise as follows:

H(X) =
X

c2C

X

l2L
h(X(c)(l)) (5)

where h : V ! N is the height function for abstract values.

Example 3. For the interval domain, we use the following height function:

h(?) = 0

h([a, b]) =

8
>>>><

>>>>:

1 a = b ^ a, b 2 Z
2 a < b ^ a, b 2 Z
3 a 2 Z ^ b = +1
3 a = �1 ^ b 2 Z
4 a = �1 ^ b = +1

We defined this height function based on the actual workings of our interval analysis. Constant
intervals (the first case) have height 1 since they are usually immediately generated from program
texts. The finite intervals (the second case) are often introduced by joining two constant intervals.
Intervals with one infinite bound (the third and fourth cases) are due to the widening operator.
Note that our widening operator (Example 2) immediately assigns ±1 to unstable bounds.
[�1,+1] is generated with the widening is applied to both bounds. ⇤

4.2 Pre-analysis via Partial Flow-Sensitivity

A key component of our method is the pre-analysis that is used to estimate both the height-
progress behavior and the maximum height of the main analysis. One natural method for further
abstracting static analyses in Section 3 is to approximate the level of flow-sensitivity. In this
subsection, we design a pre-analysis that is parameterized by a class of flow-sensitivity that was
found to be useful in progress estimation.

We consider a class of pre-analysis that is partially flow-sensitive version of the main analysis.
While the main analysis is fully flow-sensitive (i.e., the orders of program statements are fully
respected), our pre-analysis only respects the orders of some selected program points and regards
other program points flow-insensitively.

In particular, we are interested in a pre-analysis that only distinguishes program points
around headers of flow cycles. In static analysis, the most interesting things usually happen in

4 Details on Our Progress Estimation

As described in Section 2, our progress estimation is done in two steps: (1) we first run a pre-
analysis to obtain an estimated normalization function normalize] and an estimated final height
H]

final ; (2) using them, at each iteration of the main analysis, we measure the height progress,
convert it to the estimated actual progress, and show it to users. However, Section 2 has left out
a number of details. In this section, we give the details that we tried:

– In Section 4.1, we define our height function H.
– In Section 4.2, we describe our pre-analysis design.
– In Section 4.3, we present techniques for precise estimation of the final height.

4.1 The Height Function

We first define height function H : (C ! S) ! N that takes an abstract domain element and
computes its height. Since our analysis is non-relational, we assume that the height of an abstract
domain element is computed point-wise as follows:

H(X) =
X

c2C

X

l2L
h(X(c)(l)) (5)

where h : V ! N is the height function for abstract values.

Example 3. For the interval domain, we use the following height function:

h(?) = 0

h([a, b]) =

8
>>>><

>>>>:

1 a = b ^ a, b 2 Z
2 a < b ^ a, b 2 Z
3 a 2 Z ^ b = +1
3 a = �1 ^ b 2 Z
4 a = �1 ^ b = +1

We defined this height function based on the actual workings of our interval analysis. Constant
intervals (the first case) have height 1 since they are usually immediately generated from program
texts. The finite intervals (the second case) are often introduced by joining two constant intervals.
Intervals with one infinite bound (the third and fourth cases) are due to the widening operator.
Note that our widening operator (Example 2) immediately assigns ±1 to unstable bounds.
[�1,+1] is generated with the widening is applied to both bounds. ⇤

4.2 Pre-analysis via Partial Flow-Sensitivity

A key component of our method is the pre-analysis that is used to estimate both the height-
progress behavior and the maximum height of the main analysis. One natural method for further
abstracting static analyses in Section 3 is to approximate the level of flow-sensitivity. In this
subsection, we design a pre-analysis that is parameterized by a class of flow-sensitivity that was
found to be useful in progress estimation.

We consider a class of pre-analysis that is partially flow-sensitive version of the main analysis.
While the main analysis is fully flow-sensitive (i.e., the orders of program statements are fully
respected), our pre-analysis only respects the orders of some selected program points and regards
other program points flow-insensitively.

In particular, we are interested in a pre-analysis that only distinguishes program points
around headers of flow cycles. In static analysis, the most interesting things usually happen in

Woosuk Lee et al. / Science of Computer Programming 00 (2014) 1–?? 7

Fixpoint Computation with Widening. When the domain of abstract values (V) has infinite height, we need a
widening operator

`
: V⇥V! V to approximate the least fixpoint of F. In practice, the widening operator is applied

at only headers of flow cycles [?]. Let W ✓ C be the set of widening points (all loop headers in the program) in the
program.

Example 4. We use the following widening operator in our interval analysis:

[l, u]
`

[l0, u0] = [if (l0 < l) then �1 else l, if (u0 > u) then +1 else u].

4. Details on Our Progress Estimation

As described in Section 2, our progress estimation is done in two steps: (1) we first run a pre-analysis to obtain
an estimated normalization function normalize] and an estimated final height H]final; (2) using them, at each iteration
of the main analysis, we measure the height progress, convert it to the estimated actual progress, and show it to users.
However, Section 2 has left out a number of details. In this section, we give the details that we tried:

• In Section 4.1, we define our height function H.

• In Section 4.2, we describe our pre-analysis design.

• In Section 4.3, we present techniques for precise estimation of the final height.

4.1. The Height Function

We first define height function H : (C ! S) ! N that takes an abstract domain element and computes its height.
Since our analysis is non-relational, we assume that the height of an abstract domain element is computed point-wise
as follows:

H(X) =
X

c2C

X

l2L
h(X(c)(l)) (7)

where h : V! N is the height function for the abstract value domain (V).

Example 5. For the interval domain V in (5), we use the following height function:

h(?) = 0

h([a, b]) =

8>>>>>>>><
>>>>>>>>:

1 a = b ^ a, b 2 Z
2 a < b ^ a, b 2 Z
3 a 2 Z ^ b = +1
3 a = �1 ^ b 2 Z
4 a = �1 ^ b = +1

We defined this height function based on the actual workings of our interval analysis. Constant intervals (the first
case) have height 1 since they are usually immediately generated from program texts. The finite intervals (the second
case) are often introduced by joining two constant intervals. Intervals with one infinite bound (the third and fourth
cases) are due to the widening operator. Note that our widening operator (Example 4) immediately assigns ±1 to
unstable bounds. [�1,+1] is generated with the widening is applied to both bounds.

Example 6. For the pointer domain V in (6), we use the following height function:

h(S) =
(

4 || S ||� 4
|| S || otherwise

This definition is based on our observation that, in flow-sensitive pointer analysis of C programs, most of the points-to
sets have sizes less than 4.

7
Thursday, September 11, 14

