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동기
•  프로그램 최적화

더 나은 프로그램  

(계산비용 등)으로 변환

변환규칙(예:  )

반복 적용
x + 0 → x
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프로그램 최적화
입력 
프로그램

…
수동 작성된 

최적화 규칙(패턴)들

최적화된 
프로그램

•기존의 변환규칙

전문가가 수동 작성   

제한된 규칙으로 탐색범위 제한됨

•  기존의 규칙 적용순서

전문가가 정한 순서(휴리스틱) 따름   

최적해 놓침



해결책
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최적화 규칙 발견(프로그램 합성Program synthesis) + 찾은 규칙 잘 적용하기(식 다시쓰기Term rewriting) 

+ 모든 가능한 규칙 적용 순서 고려하기 (동일식 모으기Equality saturation)

프로그램 합성 기반
최적화 규칙 학습기

규칙기반 최적화

2. 온라인 최적화

1. 오프라인 학습

학습용 
프로그램

입력 
프로그램

…

학습된 최적화 규칙들

최적화된 
프로그램

규칙 발견이 오래 걸리는 경우

: 오프라인 학습  

  + 온라인 최적화



해결책
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최적화 규칙 발견(프로그램 합성Program synthesis) + 찾은 규칙 잘 적용하기(식 다시쓰기Term rewriting) 

+ 모든 가능한 규칙 적용 순서 고려하기 (동일식 모으기Equality saturation)

프로그램 합성 기반
최적화 규칙 학습기

규칙기반 최적화입력 
프로그램

…

학습된 최적화 규칙들

최적화된 
프로그램

규칙 발견이 빨리되는 경우

: 온라인 학습 + 최적화



핵심 기반 기술 : 프로그램 합성
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Program
Syntactic constraint

Semantic constraint

Synthesizer

Specification

f(1) = 2 ^ f(3) = 6
<latexit sha1_base64="k8b/+EcyFUK+pATljW8DcAh/RQ0=">AAACAHicbVDLSsNAFL3xWesr6sKFm8Ei1E1JqqgboejGZQX7gDaUyXTSDp1MwsxEKKEbf8WNC0Xc+hnu/BsnbRbaemDg3HPu5c49fsyZ0o7zbS0tr6yurRc2iptb2zu79t5+U0WJJLRBIh7Jto8V5UzQhmaa03YsKQ59Tlv+6DbzW49UKhaJBz2OqRfigWABI1gbqWcfBmX3FF2jKupyLPooKJ9l5UXPLjkVZwq0SNyclCBHvWd/dfsRSUIqNOFYqY7rxNpLsdSMcDopdhNFY0xGeEA7hgocUuWl0wMm6MQoZnckzRMaTdXfEykOlRqHvukMsR6qeS8T//M6iQ6uvJSJONFUkNmiIOFIRyhLA/WZpETzsSGYSGb+isgQS0y0yaxoQnDnT14kzWrFdSru/XmpdpPHUYAjOIYyuHAJNbiDOjSAwASe4RXerCfrxXq3PmatS1Y+cwB/YH3+AFBQkwA=</latexit><latexit sha1_base64="k8b/+EcyFUK+pATljW8DcAh/RQ0=">AAACAHicbVDLSsNAFL3xWesr6sKFm8Ei1E1JqqgboejGZQX7gDaUyXTSDp1MwsxEKKEbf8WNC0Xc+hnu/BsnbRbaemDg3HPu5c49fsyZ0o7zbS0tr6yurRc2iptb2zu79t5+U0WJJLRBIh7Jto8V5UzQhmaa03YsKQ59Tlv+6DbzW49UKhaJBz2OqRfigWABI1gbqWcfBmX3FF2jKupyLPooKJ9l5UXPLjkVZwq0SNyclCBHvWd/dfsRSUIqNOFYqY7rxNpLsdSMcDopdhNFY0xGeEA7hgocUuWl0wMm6MQoZnckzRMaTdXfEykOlRqHvukMsR6qeS8T//M6iQ6uvJSJONFUkNmiIOFIRyhLA/WZpETzsSGYSGb+isgQS0y0yaxoQnDnT14kzWrFdSru/XmpdpPHUYAjOIYyuHAJNbiDOjSAwASe4RXerCfrxXq3PmatS1Y+cwB/YH3+AFBQkwA=</latexit><latexit sha1_base64="k8b/+EcyFUK+pATljW8DcAh/RQ0=">AAACAHicbVDLSsNAFL3xWesr6sKFm8Ei1E1JqqgboejGZQX7gDaUyXTSDp1MwsxEKKEbf8WNC0Xc+hnu/BsnbRbaemDg3HPu5c49fsyZ0o7zbS0tr6yurRc2iptb2zu79t5+U0WJJLRBIh7Jto8V5UzQhmaa03YsKQ59Tlv+6DbzW49UKhaJBz2OqRfigWABI1gbqWcfBmX3FF2jKupyLPooKJ9l5UXPLjkVZwq0SNyclCBHvWd/dfsRSUIqNOFYqY7rxNpLsdSMcDopdhNFY0xGeEA7hgocUuWl0wMm6MQoZnckzRMaTdXfEykOlRqHvukMsR6qeS8T//M6iQ6uvJSJONFUkNmiIOFIRyhLA/WZpETzsSGYSGb+isgQS0y0yaxoQnDnT14kzWrFdSru/XmpdpPHUYAjOIYyuHAJNbiDOjSAwASe4RXerCfrxXq3PmatS1Y+cwB/YH3+AFBQkwA=</latexit><latexit sha1_base64="k8b/+EcyFUK+pATljW8DcAh/RQ0=">AAACAHicbVDLSsNAFL3xWesr6sKFm8Ei1E1JqqgboejGZQX7gDaUyXTSDp1MwsxEKKEbf8WNC0Xc+hnu/BsnbRbaemDg3HPu5c49fsyZ0o7zbS0tr6yurRc2iptb2zu79t5+U0WJJLRBIh7Jto8V5UzQhmaa03YsKQ59Tlv+6DbzW49UKhaJBz2OqRfigWABI1gbqWcfBmX3FF2jKupyLPooKJ9l5UXPLjkVZwq0SNyclCBHvWd/dfsRSUIqNOFYqY7rxNpLsdSMcDopdhNFY0xGeEA7hgocUuWl0wMm6MQoZnckzRMaTdXfEykOlRqHvukMsR6qeS8T//M6iQ6uvJSJONFUkNmiIOFIRyhLA/WZpETzsSGYSGb+isgQS0y0yaxoQnDnT14kzWrFdSru/XmpdpPHUYAjOIYyuHAJNbiDOjSAwASe4RXerCfrxXq3PmatS1Y+cwB/YH3+AFBQkwA=</latexit>

S ! x | S ⇥ S | 1 | 2 | · · ·
<latexit sha1_base64="k1FH0IhI02sm/K95pUFMotzoZl0=">AAACG3icbVA9T8MwEHXKVylfAUYWiwqJqUoqJBgrWBiLoB9SE1WO47RWbSeyHUQV9X+w8FdYGECICYmBf4PTZICWJ1n37t2dfPeChFGlHefbqqysrq1vVDdrW9s7u3v2/kFXxanEpINjFst+gBRhVJCOppqRfiIJ4gEjvWByldd790QqGos7PU2Iz9FI0IhipI00tJu30NMxfIAepyHME8qJykmeu0VoFsHDYawVHNp1p+HMAZeJW5I6KNEe2p9eGOOUE6ExQ0oNXCfRfoakppiRWc1LFUkQnqARGRgqkNnAz+a3zeCJUUIYxdI8oeFc/T2RIa7UlAemkyM9Vou1XPyvNkh1dOFnVCSpJgIXH0Upg8aN3CgYUkmwZlNDEJbU7ArxGEmEtbGzZkxwF09eJt1mw3Ua7s1ZvXVZ2lEFR+AYnAIXnIMWuAZt0AEYPIJn8ArerCfrxXq3PorWilXOHII/sL5+AI90nqE=</latexit><latexit sha1_base64="k1FH0IhI02sm/K95pUFMotzoZl0=">AAACG3icbVA9T8MwEHXKVylfAUYWiwqJqUoqJBgrWBiLoB9SE1WO47RWbSeyHUQV9X+w8FdYGECICYmBf4PTZICWJ1n37t2dfPeChFGlHefbqqysrq1vVDdrW9s7u3v2/kFXxanEpINjFst+gBRhVJCOppqRfiIJ4gEjvWByldd790QqGos7PU2Iz9FI0IhipI00tJu30NMxfIAepyHME8qJykmeu0VoFsHDYawVHNp1p+HMAZeJW5I6KNEe2p9eGOOUE6ExQ0oNXCfRfoakppiRWc1LFUkQnqARGRgqkNnAz+a3zeCJUUIYxdI8oeFc/T2RIa7UlAemkyM9Vou1XPyvNkh1dOFnVCSpJgIXH0Upg8aN3CgYUkmwZlNDEJbU7ArxGEmEtbGzZkxwF09eJt1mw3Ua7s1ZvXVZ2lEFR+AYnAIXnIMWuAZt0AEYPIJn8ArerCfrxXq3PorWilXOHII/sL5+AI90nqE=</latexit><latexit sha1_base64="k1FH0IhI02sm/K95pUFMotzoZl0=">AAACG3icbVA9T8MwEHXKVylfAUYWiwqJqUoqJBgrWBiLoB9SE1WO47RWbSeyHUQV9X+w8FdYGECICYmBf4PTZICWJ1n37t2dfPeChFGlHefbqqysrq1vVDdrW9s7u3v2/kFXxanEpINjFst+gBRhVJCOppqRfiIJ4gEjvWByldd790QqGos7PU2Iz9FI0IhipI00tJu30NMxfIAepyHME8qJykmeu0VoFsHDYawVHNp1p+HMAZeJW5I6KNEe2p9eGOOUE6ExQ0oNXCfRfoakppiRWc1LFUkQnqARGRgqkNnAz+a3zeCJUUIYxdI8oeFc/T2RIa7UlAemkyM9Vou1XPyvNkh1dOFnVCSpJgIXH0Upg8aN3CgYUkmwZlNDEJbU7ArxGEmEtbGzZkxwF09eJt1mw3Ua7s1ZvXVZ2lEFR+AYnAIXnIMWuAZt0AEYPIJn8ArerCfrxXq3PorWilXOHII/sL5+AI90nqE=</latexit><latexit sha1_base64="k1FH0IhI02sm/K95pUFMotzoZl0=">AAACG3icbVA9T8MwEHXKVylfAUYWiwqJqUoqJBgrWBiLoB9SE1WO47RWbSeyHUQV9X+w8FdYGECICYmBf4PTZICWJ1n37t2dfPeChFGlHefbqqysrq1vVDdrW9s7u3v2/kFXxanEpINjFst+gBRhVJCOppqRfiIJ4gEjvWByldd790QqGos7PU2Iz9FI0IhipI00tJu30NMxfIAepyHME8qJykmeu0VoFsHDYawVHNp1p+HMAZeJW5I6KNEe2p9eGOOUE6ExQ0oNXCfRfoakppiRWc1LFUkQnqARGRgqkNnAz+a3zeCJUUIYxdI8oeFc/T2RIa7UlAemkyM9Vou1XPyvNkh1dOFnVCSpJgIXH0Upg8aN3CgYUkmwZlNDEJbU7ArxGEmEtbGzZkxwF09eJt1mw3Ua7s1ZvXVZ2lEFR+AYnAIXnIMWuAZt0AEYPIJn8ArerCfrxXq3PorWilXOHII/sL5+AI90nqE=</latexit>

f(x) = 2x
<latexit sha1_base64="fwIWxt47H0bb+q2Zs6i9pLjudiE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuEfQiFL14rGA/pF1KNs22oUl2SbLSsvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++3k1tY3Nrfy24Wd3b39g+LhUVNHiSK0QSIeqXaANeVM0oZhhtN2rCgWAaetYHQ781tPVGkWyQcziakv8ECykBFsrPQYlsfn6BpVx71iya24c6BV4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE02mhm2gaYzLCA9qxVGJBtZ/OD56iM6v0URgpW9Kgufp7IsVC64kIbKfAZqiXvZn4n9dJTHjlp0zGiaGSLBaFCUcmQrPvUZ8pSgyfWIKJYvZWRIZYYWJsRgUbgrf88ippViueW/HuL0q1myyOPJzAKZTBg0uowR3UoQEEBDzDK7w5ynlx3p2PRWvOyWaO4Q+czx/r048q</latexit><latexit sha1_base64="fwIWxt47H0bb+q2Zs6i9pLjudiE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuEfQiFL14rGA/pF1KNs22oUl2SbLSsvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++3k1tY3Nrfy24Wd3b39g+LhUVNHiSK0QSIeqXaANeVM0oZhhtN2rCgWAaetYHQ781tPVGkWyQcziakv8ECykBFsrPQYlsfn6BpVx71iya24c6BV4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE02mhm2gaYzLCA9qxVGJBtZ/OD56iM6v0URgpW9Kgufp7IsVC64kIbKfAZqiXvZn4n9dJTHjlp0zGiaGSLBaFCUcmQrPvUZ8pSgyfWIKJYvZWRIZYYWJsRgUbgrf88ippViueW/HuL0q1myyOPJzAKZTBg0uowR3UoQEEBDzDK7w5ynlx3p2PRWvOyWaO4Q+czx/r048q</latexit><latexit sha1_base64="fwIWxt47H0bb+q2Zs6i9pLjudiE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuEfQiFL14rGA/pF1KNs22oUl2SbLSsvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++3k1tY3Nrfy24Wd3b39g+LhUVNHiSK0QSIeqXaANeVM0oZhhtN2rCgWAaetYHQ781tPVGkWyQcziakv8ECykBFsrPQYlsfn6BpVx71iya24c6BV4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE02mhm2gaYzLCA9qxVGJBtZ/OD56iM6v0URgpW9Kgufp7IsVC64kIbKfAZqiXvZn4n9dJTHjlp0zGiaGSLBaFCUcmQrPvUZ8pSgyfWIKJYvZWRIZYYWJsRgUbgrf88ippViueW/HuL0q1myyOPJzAKZTBg0uowR3UoQEEBDzDK7w5ynlx3p2PRWvOyWaO4Q+czx/r048q</latexit><latexit sha1_base64="fwIWxt47H0bb+q2Zs6i9pLjudiE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuEfQiFL14rGA/pF1KNs22oUl2SbLSsvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++3k1tY3Nrfy24Wd3b39g+LhUVNHiSK0QSIeqXaANeVM0oZhhtN2rCgWAaetYHQ781tPVGkWyQcziakv8ECykBFsrPQYlsfn6BpVx71iya24c6BV4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE02mhm2gaYzLCA9qxVGJBtZ/OD56iM6v0URgpW9Kgufp7IsVC64kIbKfAZqiXvZn4n9dJTHjlp0zGiaGSLBaFCUcmQrPvUZ8pSgyfWIKJYvZWRIZYYWJsRgUbgrf88ippViueW/HuL0q1myyOPJzAKZTBg0uowR3UoQEEBDzDK7w5ynlx3p2PRWvOyWaO4Q+czx/r048q</latexit>

생김새 조건: 문맥 둔감 문법(context-free grammar). 
논리식 검증기(SMT solver)가 이해할 수 있는 연산자들 

사용 가능. 탐색 공간을 적절히 조절.

행동 조건: 합성 대상 함수 f 가 만족시켜야 하는 제약조건 (논리식)



사례 1: 동형암호 컴파일러 (1/2)
•  동형암호: 암호화된 데이터 위에서 모든 연산 수행가능

•  개인정보 누출 원천차단

•  민감한 개인정보 보관/가공 아웃소싱 가능
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encrypted data

encrypted result

decrypted result

Homomorphic 
Evaluation

3rd Party

User

private data encrypted data

encrypted  
result

private  
key



사례 1: 동형암호 컴파일러 (2/2)

•  동형암호 프로그램 자동생성

•  수동 작성된 최적화 규칙을 쓰는 컴파일러 보다 최적화 효과 우월
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동형 컴파일러

프로그램 
합성

식 다시쓰기 + 
동일식 모으기

평균 2배 성능
향상

평문 프로그램 동형암호 프로그램



사례 2: 비트연산식 난독화 해제 (1/2)

•  난독화Obfuscation: 의미는 같으나 복잡하게 변환

 목적: 악성웨어 탐지 회피 👿  지적재산권 보호 😇

•  역난독화Deobfuscation: 난독화된 코드 단순화
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((((((~ ((b + ~ (((~ b | b) + b) + 1)) + 1) 
| b) - ~ ((b + ~ (((~ b | b) + b) + 1)) + 
1)) & (((b - e) - ((b | ~ e) + (b | ~ e))) - 
2)) * (((~ ((b + ~ (((~ b | b) + b) + 1)) + 
1) | b) - ~ ((b + ~ (((~ b | b) + b) + 1)) + 
1)) | (((b - e) - ((b | ~ e) + (b | ~ e))) - 

2)) + (((~ ((b + ~ (((~ b | b) + b) + 1)) + 
1) | b) - …

Code 
Obfuscation

Code 
Deobfuscation

e x e



사례 2: 비트연산식 난독화 해제 (2/2)

•  역난독화 성공 : 원본 식, 혹은 더 작은 식으로 단순화

•  전문가 알고리즘과 휴리스틱을 쓴 경우보다 높은 역난독화 성공률
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차례

• 최적화 사례 1 : 프로그램 합성 기반 동형암호 최적화

Dongkwon Lee, Woosuk Lee, Hakjoo Oh and Kwangkeun Yi, Optimizing Homomorphic Evaluation 
Circuits by Program Synthesis and Time-Bounded Exhaustive Search, ACM TOPLAS 2023

Dongkwon Lee, Woosuk Lee, Hakjoo Oh and Kwangkeun Yi, Optimizing Homomorphic Evaluation 
Circuits by Program Synthesis and Term Rewriting, ACM PLDI 2020

•  최적화 사례 2 : 프로그램 합성 기반 프로그램 역난독화

•  두 사례로 부터 관찰한 것들

•  기반 원천 기술 : 고성능 프로그램 합성 기술
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평문 프로그램 동형암호 개발자 동형암호 프로그램

Write code in low-level HE instructions

어려움

느림

Add maintenance operations
Generate/manage keys, hints

Track noise level
Choose parameters

피곤함

동형암호 프로그램 작성하기

동형암호 기술(Homomorphic Encrytion) (1/2)

 13



동형 컴파일러

개선가능성 높음
•  동형암호 프로그램 자동생성

•  몇 가지 전문가가 작성한 최적화 규칙들 적용

수동 최적화 규칙

동형암호 기술(Homomorphic Encrytion) (2/2)
동형암호 컴파일러 기존기술

평문 프로그램 동형암호 프로그램
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동형암호 컴파일러 개선점

동형 컴파일러

자동탐색 기반 동형암호 최적화 틀 제안

프로그램 
합성

식 다시쓰기

2배 성능향상

평문 프로그램 동형암호 프로그램

 15

•  동형암호 프로그램 자동생성

•  프로그램 합성으로 규칙 발견 + 식 다시쓰기로 적용



Lobster…   

•최적화 규칙 미리 찾기(프로그램 합성) + 찾은 규칙 잘 적용하기(식 다시쓰기)

HE 
Compiler 
Front-end

Synthesis-based  
Rule Learner

Rule-based Optimization 
via Term-Rewriting

2. Online Optimization

1. Offline Learning

 Training 
Programs

 Training HE Applications

Input 
Program

…

Learned Opt. Patterns

Unoptimized HE Application

Optimized 
HE Application
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간단한 동형암호

 17

• Based on approximate common divisor problem 

•   : 비밀키 (정수) 

•   : 랜덤 수 

•   : 랜덤 수 (교란값. 보안 강화 목적)

• 0과 1을 암호화 / 복호화하는 함수 

p

q

r ( ≪ |p | )

Encp( μ ∈ {0,1} ) = pq + 2r + μ
Decp(c) = (c mod p) mod 2
Decp(Encp(μ)) = Decp(pq + 2r + μ) = μ

• 암호문  에 대해 다음 성립μi ← Encp(μi)

Decp(μ1 + μ2) = μ1 + μ2
Decp(μ1 × μ2) = μ1 × μ2

• 0과 1만 있는 세상에서 덧셈(XOR)과 곱셈

(AND)를 암호화된 채로 수행 가능  

즉, 모든 논리 회로 암호화된 채로 실행 가능



성능의 걸림돌 — 증가하는 교란값Noise

 18

• 교란값이 연산 중 증가

• 암호문   에 대해서μi = pqi + 2ri + μi

μ1 + μ2 = p(q1 + q2) + 2(r1 + r2) + (μ1 + μ2)
μ1 × μ2 = p(pq1q2 + ⋯) + 2(2r1r2 + r1μ2 + r2μ1) + (μ1 × μ2)

교란값

• 만약 (교란값 ) 면 복호화 시 결과가 틀려짐> p

2배 증가
제곱 증가



곱셈깊이 - 가장 중요한 성능척도
곱셈깊이 : 입력에서 출력까지 가는 경로
를 따라 최대로 수행되는 곱셈(AND) 횟수

c1

c3

c3

c2

c1

c4

c2

c5

c1

c2

깊이 4

    곱셈깊이 

   p값 크기

    HE 성능

   교란값
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Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Time-Bounded
Exhaustive Search 111:23

Fig. 7. Correlation log-log plot of multiplicative depth and homomorphic evaluation time

Learning Capability
We investigate the learned rewrite rules. From all the benchmarks, our rule learner mines 502
rewrite rules. The rule sizes (the size of a rule l ! r is measured by |l |) range from 4 to 38. The
average and median sizes are 14 and 13, respectively. Fig. 8 shows how often these rules were applied
to reduce the multiplicative depth during our single-path term rewriting. Relatively small-sized
rules (size 5 – 15) are most frequently used, but also the large-sized rules are sometimes applied
and optimize wide areas of the input boolean circuits.

Fig. 8. Distribution of rule sizes and how o�en they were used during optimization

The machine-found optimization patterns are surprisingly aggressive. For example, the following
intricate rules enable to reduce the depth of a rewritten path by 1 when applied once (we denote
1 � c as ¬c).

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2023.



동형암호 최적화란?

•더 작은 곱셈깊이를 가진 새로운 회로를 찾는것

c1

c3

c3

c2

c1

c4

c2

c5

c1

c2
1

c5

c1

c3

c2

c1

c2

c4

깊이 4 깊이 3
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프로그램 합성을 통한 동형암호 회로 최적화

제약조건 문법+ 원하는 
프로그램

프로그램 합성
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원본과 똑같이 해주세요
(깊이 4)

프로그램 합성을 통한 동형암호 회로 최적화

제약조건 문법+ 원하는 
프로그램

프로그램 합성
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깊이는 더 작게 (3 이하)

프로그램 합성을 통한 동형암호 회로 최적화

제약조건 문법+ 원하는 
프로그램

프로그램 합성
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원본과 똑같이 해주세요
(깊이 4)



깊이는 더 작게 (3이하)
최적화된 회로 (깊이 3)

프로그램 합성을 통한 동형암호 회로 최적화

제약조건 문법+
프로그램 합성

원하는 
프로그램
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원본과 똑같이 해주세요
(깊이 4)



한계점 : 합성기 성능 Scalability

합성

너무 느림
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해결책 1 : 부분적으로 합성하기 Divide-and-Conquer
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해결책 1 : 부분적으로 합성하기 Divide-and-Conquer
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합성 최적화

해결책 1 : 부분적으로 합성하기 Divide-and-Conquer
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현실적

해결책 1 : 부분적으로 합성하기 Divide-and-Conquer

합성 최적화
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갈아끼우기

해결책 1 : 부분적으로 합성하기 Divide-and-Conquer

합성 최적화
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해결책 2 : 성공적인 최적화 패턴 기억하기
•규칙 학습 단계

합성 최적화에 성공한 패턴들을 최적화 규칙으로 학습

•규칙 적용 단계

식 다시쓰기 기술로 학습한 패턴 적용하기
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Offline Learning Cycle
수집한 

최적화 패턴들

…

학습할 동형암호
프로그램

합성 최적화 패턴 수집단계
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Offline Learning Cycle

…

수집한 
최적화 패턴들

학습할 동형암호
프로그램

합성 최적화 패턴 수집단계
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Offline Learning Cycle

합성 최적화

…

수집한 
최적화 패턴들

학습할 동형암호
프로그램

합성 최적화 패턴 수집단계
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Offline Learning Cycle

…

수집한 
최적화 패턴들

학습할 동형암호
프로그램

합성 최적화

합성 최적화 패턴 수집단계
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Offline Learning Cycle

…갈아끼우기

수집한 
최적화 패턴들

학습할 동형암호
프로그램

합성 최적화

합성 최적화 패턴 수집단계
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Offline Learning Cycle

…

수집한 
최적화 패턴들

학습할 동형암호
프로그램

합성 최적화

합성 최적화 패턴 수집단계
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Offline Learning Cycle

…

수집한 
최적화 패턴들

학습할 동형암호
프로그램

합성 최적화

합성 최적화 패턴 수집단계
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Offline Learning Cycle
수집한 

최적화 패턴들

학습할 동형암호
프로그램

합성 최적화

합성 최적화 패턴 수집단계
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Offline Learning Cycle
수집한 

최적화 패턴들

학습할 동형암호
프로그램

합성 최적화

합성 최적화 패턴 수집단계
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Offline Learning Cycle

400여가지 규칙 발견

수집한 
최적화 패턴들

학습할 동형암호
프로그램

합성 최적화 패턴 수집단계
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수집된 최적화 합성 패턴
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최적화 규칙 적용단계
Offline Learning Cycle입력 동형암호 

프로그램 수집한 
최적화 패턴들

 43



Offline Learning Cycle

최적화 규칙 
적용

수집한 
최적화 패턴들

최적화 규칙 적용단계

입력 동형암호 
프로그램
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Offline Learning Cycle

최적화 규칙 
적용

        갈아끼우기

최적화 규칙 적용단계

입력 동형암호 
프로그램
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최적화 규칙 유연하게 적용하기 (1/2)

d1

d2

d1

d2

d3

d4

d5

?

학습한 
최적화 규칙

입력 회로 
최적화

단순 모양비교로는 명확한 한계
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?Mismatch

최적화 규칙 유연하게 적용하기 (1/2)
단순 모양비교로는 명확한 한계

학습한 
최적화 규칙

입력 회로 
최적화
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?
d1

d2

d1

d2

d3

d4

d5

회로 간소화(Normalization) + E-매칭(Equational Matching)

최적화 규칙 유연하게 적용하기 (2/2)

학습한 
최적화 규칙

입력 회로 
최적화
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?
d1

d2

d1

d2

d3

d4

d5

최적화 규칙 유연하게 적용하기 (2/2)
회로 간소화(Normalization) + E-매칭(Equational Matching)

학습한 
최적화 규칙

입력 회로 
최적화
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c5

n1

n1

c4

n1

c5

1
c4

?
d1

d2

d1

d2

d3

d4

d5

최적화 규칙 유연하게 적용하기 (2/2)
회로 간소화(Normalization) + E-매칭(Equational Matching)

학습한 
최적화 규칙

입력 회로 
최적화
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c5

n1

n1

c4

n1

c5

1
c4

?
d1

d2

d1

d2

d3

d4

d5

old

target

new

최적화 규칙 유연하게 적용하기 (2/2)
회로 간소화(Normalization) + E-매칭(Equational Matching)

학습한 
최적화 규칙

입력 회로 
최적화
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c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

회로 변환식 σ 찾기

old

target

new

?

최적화 규칙 유연하게 적용하기 (2/2)
회로 간소화(Normalization) + E-매칭(Equational Matching)

학습한 
최적화 규칙

입력 회로 
최적화
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c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

old

target

new

?

σ = {n1 ↦ d1 and d2,  

최적화 규칙 유연하게 적용하기 (2/2)
회로 간소화(Normalization) + E-매칭(Equational Matching)

학습한 
최적화 규칙

입력 회로 
최적화

회로 변환식 σ 찾기

학습한 
최적화 규칙

입력 회로 
최적화
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c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

old

target

new

?

σ = {n1 ↦ d1 and d2,  
        c4 ↦ d3 xor d4, 

최적화 규칙 유연하게 적용하기 (2/2)
회로 간소화(Normalization) + E-매칭(Equational Matching)

회로 변환식 σ 찾기

학습한 
최적화 규칙

입력 회로 
최적화
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c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

σ = {n1 ↦ d1 and d2,  
        c4 ↦ d3 xor d4, 
        c5 ↦ d5}

old

target

new

?

최적화 규칙 유연하게 적용하기 (2/2)
회로 간소화(Normalization) + E-매칭(Equational Matching)

회로 변환식 σ 찾기

학습한 
최적화 규칙

입력 회로 
최적화
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c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

old

target

new

찾은 변환식 σ 적용

d3

d4

d1

d2

d5

1

optimized target

σ = {n1 ↦ d1 and d2,  
        c4 ↦ d3 xor d4, 
        c5 ↦ d5}

최적화 규칙 유연하게 적용하기 (2/2)
회로 간소화(Normalization) + E-매칭(Equational Matching)

회로 변환식 σ 찾기

학습한 
최적화 규칙

입력 회로 
최적화
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d3

d4

d1

d2

d5

1d1

d2

d1

d2

d3

d4

d5

깊이 3 깊이 2

c5

n1

n1

c4

n1

c5

1
c4

old

target

new

optimized target

σ = {n1 ↦ d1 and d2,  
        c4 ↦ d3 xor d4, 
        c5 ↦ d5}

최적화 규칙 유연하게 적용하기 (2/2)
회로 간소화(Normalization) + E-매칭(Equational Matching)

회로 변환식 σ 찾기

학습한 
최적화 규칙

입력 회로 
최적화

찾은 변환식 σ 적용
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순서문제Phase-Ordering Problem : 최적화 세계의 고질적인 문제점

 58

규칙 1 규칙 2 규칙 3 규칙 4

규칙 3 규칙 1 규칙 4 규칙 2

VS 순서에 따라 
결과 다름



전통적인 해결책

 59

규칙 1,3 규칙 1,2 규칙 2,4 규칙 1

•정교한 휴리스틱으로 순서 정해주기(예 : LLVM 최적화순서)

•최적화 흔적 기억하기backtracking(예 : n개 후보 한꺼번에 기억하면서 최적화)

규칙 1 규칙 4

규칙 3
규칙 1

………..………..규칙 2



동일식 모으기 Equality Saturation

•  모든 경우의 수를 전부 기록하며 원본 식과 동일한 후보군 효율적으로 탐색

•  효율적인 자료구조(동일식 그래프E-graph)로 후보군 프로그램들을 압축적으
로 표현

•  계산 비용이 비싸지만, 끝난다면 최적해 탐색 보장
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동일식 모으기 도구 : 동일식 그래프E-graph

•  동일식 그래프 구조 = 동일식 노드E-node + 동일식 클래스E-class

동일식 클래스 : 동일식 노드들의 모음

동일식 노드 : 동일식 클래스들을 자식으로 가짐

•  동일식 그래프 의미

동일식 노드(    ) : 해당 노드에서 자식노드로  

내려가며 만들 수 있는 식의 모음 (1가지가 아님)

동일식 클래스(    ) : 같은 클래스의 노드들은  

모두 동일한 의미의 식을 생성함 (모양은 달라도)
 61

 ≪

 n  1

 /

 2

 ×

 ×  /

ecn

ec2n ec1

ec2

1 2

3 4 5

6 7 8



동일식 모으기 예

•  원본 식   을 다음 변환 규칙들로 변환 

            (1)              (2)         
            (3)                         (4)         

(a × 2)/2
x × 2 → x << 1 (x × y)/z → x × (y/z)

x/x → 1 1 × x → x
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egg: Fast and Extensible Equality Saturation 23:5
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Fig. 2. An e-graph consists of e-classes (dashed boxes) containing equivalent e-nodes (solid boxes). Edges
connect e-nodes to their child e-classes. Additions and modifications are emphasized in black. Applying
rewrites to an e-graph adds new e-nodes and edges, but nothing is removed. Expressions added by rewrites
are merged with the matched e-class. In Figure 2d, the rewrites do not add any new nodes, only merge
e-classes. The resulting e-graph has a cycle, representing infinitely many expressions: !, ! × 1, ! × 1 × 1, and
so on.

2.1.3 Interface and Rewriting. E-graphs bear many similarities to the classic union-!nd data struc-
ture that they employ internally, and they inherit much of the terminology. E-graphs provide two
main low-level mutating operations:

• add takes an e-node % and:
– if lookup(%) = !, return !;
– if lookup(%) = ∅, then set& [!] = {%} and return the id !.

• merge (sometimes called assert or union) takes two e-class ids ! and ', unions them in the
union-!nd( , and combines the e-classes by setting both& [!] and& ['] to& [!] ∪& ['].

Both of these operations must take additional steps to maintain the congruence invariant.
Invariant maintenance is discussed in Section 3.

E-graphs also o"ers operations for querying the data structure.

• find canonicalizes e-class ids using the union-!nd( as described in de!nition 2.1.
• ematch performs the e-matching [de Moura and Bjørner 2007; Detlefs et al. 2005] procedure
for !nding patterns in the e-graph. ematch takes a pattern term ) with variable placeholders
and returns a list of tuples (*, +) where * is a substitution of variables to e-class ids such that
) [*] is represented in e-class + .

These can be composed to perform rewriting over the e-graph. To apply a rewrite ℓ → - to
an e-graph, ematch !nds tuples (*, +) where e-class + represents ℓ [*]. Then, for each tuple,
merge(+, add(- [*])) adds - [*] to the e-graph and uni!es it with the matching e-class c.

Figure 2 shows an e-graph undergoing a series of rewrites. Note how the process is only additive;
the initial term (!×2)/2 is still represented in the e-graph. Rewriting in an e-graph can also saturate,
meaning the e-graph has learned every possible equivalence derivable from the given rewrites. If
the user tried to apply " ×# → # × " to an e-graph twice, the second time would add no additional
e-nodes and perform no new merges; the e-graph can detect this and stop applying that rule.

2.2 Equality Saturation

Term rewriting [Dershowitz 1993] is a time-tested approach for equational reasoning in program
optimization [Joshi et al. 2002; Tate et al. 2009], theorem proving [De Moura and Bjørner 2008;
Detlefs et al. 2005], and program transformation [Andries et al. 1999]. In this setting, a tool repeatedly
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Fig. 2. An e-graph consists of e-classes (dashed boxes) containing equivalent e-nodes (solid boxes). Edges
connect e-nodes to their child e-classes. Additions and modifications are emphasized in black. Applying
rewrites to an e-graph adds new e-nodes and edges, but nothing is removed. Expressions added by rewrites
are merged with the matched e-class. In Figure 2d, the rewrites do not add any new nodes, only merge
e-classes. The resulting e-graph has a cycle, representing infinitely many expressions: !, ! × 1, ! × 1 × 1, and
so on.

2.1.3 Interface and Rewriting. E-graphs bear many similarities to the classic union-!nd data struc-
ture that they employ internally, and they inherit much of the terminology. E-graphs provide two
main low-level mutating operations:

• add takes an e-node % and:
– if lookup(%) = !, return !;
– if lookup(%) = ∅, then set& [!] = {%} and return the id !.

• merge (sometimes called assert or union) takes two e-class ids ! and ', unions them in the
union-!nd( , and combines the e-classes by setting both& [!] and& ['] to& [!] ∪& ['].

Both of these operations must take additional steps to maintain the congruence invariant.
Invariant maintenance is discussed in Section 3.

E-graphs also o"ers operations for querying the data structure.

• find canonicalizes e-class ids using the union-!nd( as described in de!nition 2.1.
• ematch performs the e-matching [de Moura and Bjørner 2007; Detlefs et al. 2005] procedure
for !nding patterns in the e-graph. ematch takes a pattern term ) with variable placeholders
and returns a list of tuples (*, +) where * is a substitution of variables to e-class ids such that
) [*] is represented in e-class + .

These can be composed to perform rewriting over the e-graph. To apply a rewrite ℓ → - to
an e-graph, ematch !nds tuples (*, +) where e-class + represents ℓ [*]. Then, for each tuple,
merge(+, add(- [*])) adds - [*] to the e-graph and uni!es it with the matching e-class c.

Figure 2 shows an e-graph undergoing a series of rewrites. Note how the process is only additive;
the initial term (!×2)/2 is still represented in the e-graph. Rewriting in an e-graph can also saturate,
meaning the e-graph has learned every possible equivalence derivable from the given rewrites. If
the user tried to apply " ×# → # × " to an e-graph twice, the second time would add no additional
e-nodes and perform no new merges; the e-graph can detect this and stop applying that rule.

2.2 Equality Saturation

Term rewriting [Dershowitz 1993] is a time-tested approach for equational reasoning in program
optimization [Joshi et al. 2002; Tate et al. 2009], theorem proving [De Moura and Bjørner 2008;
Detlefs et al. 2005], and program transformation [Andries et al. 1999]. In this setting, a tool repeatedly
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rewrites to an e-graph adds new e-nodes and edges, but nothing is removed. Expressions added by rewrites
are merged with the matched e-class. In Figure 2d, the rewrites do not add any new nodes, only merge
e-classes. The resulting e-graph has a cycle, representing infinitely many expressions: !, ! × 1, ! × 1 × 1, and
so on.

2.1.3 Interface and Rewriting. E-graphs bear many similarities to the classic union-!nd data struc-
ture that they employ internally, and they inherit much of the terminology. E-graphs provide two
main low-level mutating operations:

• add takes an e-node % and:
– if lookup(%) = !, return !;
– if lookup(%) = ∅, then set& [!] = {%} and return the id !.

• merge (sometimes called assert or union) takes two e-class ids ! and ', unions them in the
union-!nd( , and combines the e-classes by setting both& [!] and& ['] to& [!] ∪& ['].

Both of these operations must take additional steps to maintain the congruence invariant.
Invariant maintenance is discussed in Section 3.

E-graphs also o"ers operations for querying the data structure.

• find canonicalizes e-class ids using the union-!nd( as described in de!nition 2.1.
• ematch performs the e-matching [de Moura and Bjørner 2007; Detlefs et al. 2005] procedure
for !nding patterns in the e-graph. ematch takes a pattern term ) with variable placeholders
and returns a list of tuples (*, +) where * is a substitution of variables to e-class ids such that
) [*] is represented in e-class + .

These can be composed to perform rewriting over the e-graph. To apply a rewrite ℓ → - to
an e-graph, ematch !nds tuples (*, +) where e-class + represents ℓ [*]. Then, for each tuple,
merge(+, add(- [*])) adds - [*] to the e-graph and uni!es it with the matching e-class c.

Figure 2 shows an e-graph undergoing a series of rewrites. Note how the process is only additive;
the initial term (!×2)/2 is still represented in the e-graph. Rewriting in an e-graph can also saturate,
meaning the e-graph has learned every possible equivalence derivable from the given rewrites. If
the user tried to apply " ×# → # × " to an e-graph twice, the second time would add no additional
e-nodes and perform no new merges; the e-graph can detect this and stop applying that rule.

2.2 Equality Saturation

Term rewriting [Dershowitz 1993] is a time-tested approach for equational reasoning in program
optimization [Joshi et al. 2002; Tate et al. 2009], theorem proving [De Moura and Bjørner 2008;
Detlefs et al. 2005], and program transformation [Andries et al. 1999]. In this setting, a tool repeatedly
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Fig. 2. An e-graph consists of e-classes (dashed boxes) containing equivalent e-nodes (solid boxes). Edges
connect e-nodes to their child e-classes. Additions and modifications are emphasized in black. Applying
rewrites to an e-graph adds new e-nodes and edges, but nothing is removed. Expressions added by rewrites
are merged with the matched e-class. In Figure 2d, the rewrites do not add any new nodes, only merge
e-classes. The resulting e-graph has a cycle, representing infinitely many expressions: !, ! × 1, ! × 1 × 1, and
so on.

2.1.3 Interface and Rewriting. E-graphs bear many similarities to the classic union-!nd data struc-
ture that they employ internally, and they inherit much of the terminology. E-graphs provide two
main low-level mutating operations:

• add takes an e-node % and:
– if lookup(%) = !, return !;
– if lookup(%) = ∅, then set& [!] = {%} and return the id !.

• merge (sometimes called assert or union) takes two e-class ids ! and ', unions them in the
union-!nd( , and combines the e-classes by setting both& [!] and& ['] to& [!] ∪& ['].

Both of these operations must take additional steps to maintain the congruence invariant.
Invariant maintenance is discussed in Section 3.

E-graphs also o"ers operations for querying the data structure.

• find canonicalizes e-class ids using the union-!nd( as described in de!nition 2.1.
• ematch performs the e-matching [de Moura and Bjørner 2007; Detlefs et al. 2005] procedure
for !nding patterns in the e-graph. ematch takes a pattern term ) with variable placeholders
and returns a list of tuples (*, +) where * is a substitution of variables to e-class ids such that
) [*] is represented in e-class + .

These can be composed to perform rewriting over the e-graph. To apply a rewrite ℓ → - to
an e-graph, ematch !nds tuples (*, +) where e-class + represents ℓ [*]. Then, for each tuple,
merge(+, add(- [*])) adds - [*] to the e-graph and uni!es it with the matching e-class c.

Figure 2 shows an e-graph undergoing a series of rewrites. Note how the process is only additive;
the initial term (!×2)/2 is still represented in the e-graph. Rewriting in an e-graph can also saturate,
meaning the e-graph has learned every possible equivalence derivable from the given rewrites. If
the user tried to apply " ×# → # × " to an e-graph twice, the second time would add no additional
e-nodes and perform no new merges; the e-graph can detect this and stop applying that rule.

2.2 Equality Saturation

Term rewriting [Dershowitz 1993] is a time-tested approach for equational reasoning in program
optimization [Joshi et al. 2002; Tate et al. 2009], theorem proving [De Moura and Bjørner 2008;
Detlefs et al. 2005], and program transformation [Andries et al. 1999]. In this setting, a tool repeatedly
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Fig. 2. An e-graph consists of e-classes (dashed boxes) containing equivalent e-nodes (solid boxes). Edges
connect e-nodes to their child e-classes. Additions and modifications are emphasized in black. Applying
rewrites to an e-graph adds new e-nodes and edges, but nothing is removed. Expressions added by rewrites
are merged with the matched e-class. In Figure 2d, the rewrites do not add any new nodes, only merge
e-classes. The resulting e-graph has a cycle, representing infinitely many expressions: !, ! × 1, ! × 1 × 1, and
so on.

2.1.3 Interface and Rewriting. E-graphs bear many similarities to the classic union-!nd data struc-
ture that they employ internally, and they inherit much of the terminology. E-graphs provide two
main low-level mutating operations:

• add takes an e-node % and:
– if lookup(%) = !, return !;
– if lookup(%) = ∅, then set& [!] = {%} and return the id !.

• merge (sometimes called assert or union) takes two e-class ids ! and ', unions them in the
union-!nd( , and combines the e-classes by setting both& [!] and& ['] to& [!] ∪& ['].

Both of these operations must take additional steps to maintain the congruence invariant.
Invariant maintenance is discussed in Section 3.

E-graphs also o"ers operations for querying the data structure.

• find canonicalizes e-class ids using the union-!nd( as described in de!nition 2.1.
• ematch performs the e-matching [de Moura and Bjørner 2007; Detlefs et al. 2005] procedure
for !nding patterns in the e-graph. ematch takes a pattern term ) with variable placeholders
and returns a list of tuples (*, +) where * is a substitution of variables to e-class ids such that
) [*] is represented in e-class + .

These can be composed to perform rewriting over the e-graph. To apply a rewrite ℓ → - to
an e-graph, ematch !nds tuples (*, +) where e-class + represents ℓ [*]. Then, for each tuple,
merge(+, add(- [*])) adds - [*] to the e-graph and uni!es it with the matching e-class c.

Figure 2 shows an e-graph undergoing a series of rewrites. Note how the process is only additive;
the initial term (!×2)/2 is still represented in the e-graph. Rewriting in an e-graph can also saturate,
meaning the e-graph has learned every possible equivalence derivable from the given rewrites. If
the user tried to apply " ×# → # × " to an e-graph twice, the second time would add no additional
e-nodes and perform no new merges; the e-graph can detect this and stop applying that rule.

2.2 Equality Saturation

Term rewriting [Dershowitz 1993] is a time-tested approach for equational reasoning in program
optimization [Joshi et al. 2002; Tate et al. 2009], theorem proving [De Moura and Bjørner 2008;
Detlefs et al. 2005], and program transformation [Andries et al. 1999]. In this setting, a tool repeatedly
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Fig. 2. An e-graph consists of e-classes (dashed boxes) containing equivalent e-nodes (solid boxes). Edges
connect e-nodes to their child e-classes. Additions and modifications are emphasized in black. Applying
rewrites to an e-graph adds new e-nodes and edges, but nothing is removed. Expressions added by rewrites
are merged with the matched e-class. In Figure 2d, the rewrites do not add any new nodes, only merge
e-classes. The resulting e-graph has a cycle, representing infinitely many expressions: !, ! × 1, ! × 1 × 1, and
so on.

2.1.3 Interface and Rewriting. E-graphs bear many similarities to the classic union-!nd data struc-
ture that they employ internally, and they inherit much of the terminology. E-graphs provide two
main low-level mutating operations:

• add takes an e-node % and:
– if lookup(%) = !, return !;
– if lookup(%) = ∅, then set& [!] = {%} and return the id !.

• merge (sometimes called assert or union) takes two e-class ids ! and ', unions them in the
union-!nd( , and combines the e-classes by setting both& [!] and& ['] to& [!] ∪& ['].

Both of these operations must take additional steps to maintain the congruence invariant.
Invariant maintenance is discussed in Section 3.

E-graphs also o"ers operations for querying the data structure.

• find canonicalizes e-class ids using the union-!nd( as described in de!nition 2.1.
• ematch performs the e-matching [de Moura and Bjørner 2007; Detlefs et al. 2005] procedure
for !nding patterns in the e-graph. ematch takes a pattern term ) with variable placeholders
and returns a list of tuples (*, +) where * is a substitution of variables to e-class ids such that
) [*] is represented in e-class + .

These can be composed to perform rewriting over the e-graph. To apply a rewrite ℓ → - to
an e-graph, ematch !nds tuples (*, +) where e-class + represents ℓ [*]. Then, for each tuple,
merge(+, add(- [*])) adds - [*] to the e-graph and uni!es it with the matching e-class c.

Figure 2 shows an e-graph undergoing a series of rewrites. Note how the process is only additive;
the initial term (!×2)/2 is still represented in the e-graph. Rewriting in an e-graph can also saturate,
meaning the e-graph has learned every possible equivalence derivable from the given rewrites. If
the user tried to apply " ×# → # × " to an e-graph twice, the second time would add no additional
e-nodes and perform no new merges; the e-graph can detect this and stop applying that rule.

2.2 Equality Saturation

Term rewriting [Dershowitz 1993] is a time-tested approach for equational reasoning in program
optimization [Joshi et al. 2002; Tate et al. 2009], theorem proving [De Moura and Bjørner 2008;
Detlefs et al. 2005], and program transformation [Andries et al. 1999]. In this setting, a tool repeatedly
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connect e-nodes to their child e-classes. Additions and modifications are emphasized in black. Applying
rewrites to an e-graph adds new e-nodes and edges, but nothing is removed. Expressions added by rewrites
are merged with the matched e-class. In Figure 2d, the rewrites do not add any new nodes, only merge
e-classes. The resulting e-graph has a cycle, representing infinitely many expressions: !, ! × 1, ! × 1 × 1, and
so on.

2.1.3 Interface and Rewriting. E-graphs bear many similarities to the classic union-!nd data struc-
ture that they employ internally, and they inherit much of the terminology. E-graphs provide two
main low-level mutating operations:

• add takes an e-node % and:
– if lookup(%) = !, return !;
– if lookup(%) = ∅, then set& [!] = {%} and return the id !.

• merge (sometimes called assert or union) takes two e-class ids ! and ', unions them in the
union-!nd( , and combines the e-classes by setting both& [!] and& ['] to& [!] ∪& ['].

Both of these operations must take additional steps to maintain the congruence invariant.
Invariant maintenance is discussed in Section 3.

E-graphs also o"ers operations for querying the data structure.

• find canonicalizes e-class ids using the union-!nd( as described in de!nition 2.1.
• ematch performs the e-matching [de Moura and Bjørner 2007; Detlefs et al. 2005] procedure
for !nding patterns in the e-graph. ematch takes a pattern term ) with variable placeholders
and returns a list of tuples (*, +) where * is a substitution of variables to e-class ids such that
) [*] is represented in e-class + .

These can be composed to perform rewriting over the e-graph. To apply a rewrite ℓ → - to
an e-graph, ematch !nds tuples (*, +) where e-class + represents ℓ [*]. Then, for each tuple,
merge(+, add(- [*])) adds - [*] to the e-graph and uni!es it with the matching e-class c.

Figure 2 shows an e-graph undergoing a series of rewrites. Note how the process is only additive;
the initial term (!×2)/2 is still represented in the e-graph. Rewriting in an e-graph can also saturate,
meaning the e-graph has learned every possible equivalence derivable from the given rewrites. If
the user tried to apply " ×# → # × " to an e-graph twice, the second time would add no additional
e-nodes and perform no new merges; the e-graph can detect this and stop applying that rule.

2.2 Equality Saturation

Term rewriting [Dershowitz 1993] is a time-tested approach for equational reasoning in program
optimization [Joshi et al. 2002; Tate et al. 2009], theorem proving [De Moura and Bjørner 2008;
Detlefs et al. 2005], and program transformation [Andries et al. 1999]. In this setting, a tool repeatedly
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connect e-nodes to their child e-classes. Additions and modifications are emphasized in black. Applying
rewrites to an e-graph adds new e-nodes and edges, but nothing is removed. Expressions added by rewrites
are merged with the matched e-class. In Figure 2d, the rewrites do not add any new nodes, only merge
e-classes. The resulting e-graph has a cycle, representing infinitely many expressions: !, ! × 1, ! × 1 × 1, and
so on.

2.1.3 Interface and Rewriting. E-graphs bear many similarities to the classic union-!nd data struc-
ture that they employ internally, and they inherit much of the terminology. E-graphs provide two
main low-level mutating operations:

• add takes an e-node % and:
– if lookup(%) = !, return !;
– if lookup(%) = ∅, then set& [!] = {%} and return the id !.

• merge (sometimes called assert or union) takes two e-class ids ! and ', unions them in the
union-!nd( , and combines the e-classes by setting both& [!] and& ['] to& [!] ∪& ['].

Both of these operations must take additional steps to maintain the congruence invariant.
Invariant maintenance is discussed in Section 3.

E-graphs also o"ers operations for querying the data structure.

• find canonicalizes e-class ids using the union-!nd( as described in de!nition 2.1.
• ematch performs the e-matching [de Moura and Bjørner 2007; Detlefs et al. 2005] procedure
for !nding patterns in the e-graph. ematch takes a pattern term ) with variable placeholders
and returns a list of tuples (*, +) where * is a substitution of variables to e-class ids such that
) [*] is represented in e-class + .

These can be composed to perform rewriting over the e-graph. To apply a rewrite ℓ → - to
an e-graph, ematch !nds tuples (*, +) where e-class + represents ℓ [*]. Then, for each tuple,
merge(+, add(- [*])) adds - [*] to the e-graph and uni!es it with the matching e-class c.

Figure 2 shows an e-graph undergoing a series of rewrites. Note how the process is only additive;
the initial term (!×2)/2 is still represented in the e-graph. Rewriting in an e-graph can also saturate,
meaning the e-graph has learned every possible equivalence derivable from the given rewrites. If
the user tried to apply " ×# → # × " to an e-graph twice, the second time would add no additional
e-nodes and perform no new merges; the e-graph can detect this and stop applying that rule.

2.2 Equality Saturation

Term rewriting [Dershowitz 1993] is a time-tested approach for equational reasoning in program
optimization [Joshi et al. 2002; Tate et al. 2009], theorem proving [De Moura and Bjørner 2008;
Detlefs et al. 2005], and program transformation [Andries et al. 1999]. In this setting, a tool repeatedly
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모두 모은 뒤에 최적해 추출
•  계속 규칙을 적용하다가 더 규칙을 적용해도 E-graph 에 변화가 없다면

Saturation† 가장 좋은 해를 추출

 동일식노드의 종류별 계산비용을 지정해주면 자동으로 추출가능

 더 복잡한 계산비용 사용시 선형계획법Integer Linear Programming을 쓰기도
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egg: Fast and Extensible Equality Saturation 23:5
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union-!nd( , and combines the e-classes by setting both& [!] and& ['] to& [!] ∪& ['].

Both of these operations must take additional steps to maintain the congruence invariant.
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E-graphs also o"ers operations for querying the data structure.

• find canonicalizes e-class ids using the union-!nd( as described in de!nition 2.1.
• ematch performs the e-matching [de Moura and Bjørner 2007; Detlefs et al. 2005] procedure
for !nding patterns in the e-graph. ematch takes a pattern term ) with variable placeholders
and returns a list of tuples (*, +) where * is a substitution of variables to e-class ids such that
) [*] is represented in e-class + .

These can be composed to perform rewriting over the e-graph. To apply a rewrite ℓ → - to
an e-graph, ematch !nds tuples (*, +) where e-class + represents ℓ [*]. Then, for each tuple,
merge(+, add(- [*])) adds - [*] to the e-graph and uni!es it with the matching e-class c.

Figure 2 shows an e-graph undergoing a series of rewrites. Note how the process is only additive;
the initial term (!×2)/2 is still represented in the e-graph. Rewriting in an e-graph can also saturate,
meaning the e-graph has learned every possible equivalence derivable from the given rewrites. If
the user tried to apply " ×# → # × " to an e-graph twice, the second time would add no additional
e-nodes and perform no new merges; the e-graph can detect this and stop applying that rule.

2.2 Equality Saturation

Term rewriting [Dershowitz 1993] is a time-tested approach for equational reasoning in program
optimization [Joshi et al. 2002; Tate et al. 2009], theorem proving [De Moura and Bjørner 2008;
Detlefs et al. 2005], and program transformation [Andries et al. 1999]. In this setting, a tool repeatedly
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동일식 모으기의 근본적 의미
•  E-graph ≅ 의미가 동일한 식들을 표현하는 문법 

 E-class ≅ 비말단기호non-terminal, E-node ≅ 문법규칙production rule

•  즉, 의미가 동일한 식들을 표현하는 문법을 유추하는 것Grammar induction
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실험

•  작은 회로는 동일식 모으기, 큰 회로는 식 다시쓰기

•  4가지 카테고리, 25개의 동형암호 알고리즘

Cingulata benchmarks

Sorting benchmarks

Hackers Delight benchmarks

EPFL benchmarks

•  비교대상: Cingulata 

 전문가가 작성한 최적화 규칙들을 사용하는 동형암호 컴파일러
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실험결과

•  수동 작성된 최적화 규칙을 사용하는 동형암호 컴파일러 Cingulata 대비 

평균 2배, 최대 3.1배 빠른 성능 달성 (곱셈깊이 최대 40% 감소)
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Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Time-Bounded
Exhaustive Search 111:21

Fig. 6. Main results comparing the optimization performance of L������ and Carpov et al. [14] – Speedups
in overall homomorphic evaluation time (le�) and depth reduction ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with Carpov et al. [14]. Both of the tools
are provided circuits initially generated by C��������. We aim to determine whether L������
can learn rewrite rules from training circuits and e�ectively generalize them for optimizing other
unseen circuits. To this end, we conduct leave-one-out cross validation; for each benchmark,
we use rewrite rules learned from the other remaining 24 benchmarks. Both of the tools are given
the timeout limit of 12 hours for the online optimization tasks; in case of exceeding the limit, we
use the best intermediate results computed so far.
We measure L������’s reduction ratios of the multiplicative depth and speedups in overall

homomorphic evaluation time against the initial C��������-generated circuits, and compared
them with Carpov et al. [14]. The results can be found in Table 2. L������ is able to optimize 22
out of 25 benchmarks within the timeout limit. L������ achieves 1.08x – 5.43x speedups with the
geometric mean of 2.05x. The number of AND gates increases up to 1.9x more with the geometric
mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with the geometric mean
of 25.1%. Fig. 6 illustrates the summarized results comparing the optimization performance of
L������ and Carpov et al. [14].
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements. For the four sorting
benchmarks, we used single-path term rewriting, since EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25. L������ reduces the depth by 20% for each
of them. The osort benchmark shows a 3.17x speedup, and the other three benchmarks show
2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe improvements. The
speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and 3.3x, respectively).
For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both of the two optimizers
fail to optimize the other 2 benchmarks, which are relatively simple. Based on the fact that these
small and tricky algorithms are designed to e�ciently perform computations on plaintexts, we
suspect most of these benchmarks to be depth-optimal.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2023.



동일식 모으기의 효과
 최적화 성공률 증가 : 19   22개 최적화 
성공

최적화 성능 증가 (실행시간 감소율) : 

x2.03   x2.26 

최적화 성능 증가 (곱셈깊이 감소율) : 

21.9%   25.1%

→

→

→
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111:26 Dongkwon Lee et al

Fig. 10. Impact of changing rewrite rules

Answer to Q3: Reusing learned rules enhances L������’s scalability and exploration power.
(1 week vs 12 hour opt. time, 2.6% vs 23.7% vs 25.1% depth reduction)

5.5 E�icacy of Equality Saturation
We now evaluate the e�ectiveness of saturation-based rewriting, which we used for online op-
timization. We compare L������ to a previous version [39] that uses single-path rewriting only.
Both of the tools use the same pre-learned rewrite rules.
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차례

•  최적화 사례 1 : 프로그램 합성 기반 동형암호 최적화

• 최적화 사례 2 : 프로그램 합성 기반 프로그램 역난독화

Jaehyung Lee and Woosuk Lee, Simplifying Mixed Boolean-Arithmetic Obfuscation by Program 
Synthesis and Term Rewriting, ACM CCS 2023

Jaehyung Lee, Seoksu Lee, Eunsun Cho and Woosuk Lee, Simplifying Mixed Boolean-Arithmetic 
Obfuscation by Program Synthesis and Equality Saturation, IEEE TDSC (Submitted)

•  두 사례로 부터 관찰한 것들

•  기반 원천 기술 : 고성능 프로그램 합성 기술
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Mixed Boolean Arithmetic (MBA)

•  변수들 간 논리연산 (AND, OR, XOR 등) 과 산술연산 (사칙연산, 쉬프
트 등) 이 얽혀있는 연산식

•  예 :  

•  MBA 난독화 : 프로그램에 등장하는 임의의 연산식을 복잡한 MBA 식으
로 변환하는 과정

Information Hiding in Software with Mixed Boolean-Arithmetic Transforms 65

where ai are constants, ei,j are bitwise expressions of variables x1, . . . , xt over
Bn, and I, Ji ⊂ Z, are finite index sets, ∀i ∈ I, is a polynomial mixed Boolean-
arithmetic expression, abbreviated to a polynomial mba expression. (If each of
x1, . . . , xt is itself a polynomial mba expression of other variables, the composed
function is likewise a polynomial mba expression over Bn.) Each non-zero sum-
mand in the expression is a term. A linear mba expression is a polynomial mba
expression of the form ∑

i∈I

ai ei(x1, . . . , xt),

where ei are bitwise expressions of x1, . . . , xt and ai are constants.

Two examples of polynomial mba expressions over BA[n] are:

f(x, y, z, t) = 8458(x ∨ y ∧ z)3 ((xy) ∧ x ∨ t) + x + 9(x ∨ y)yz3,
f(x, y) = x + y − (x ⊕ (¬y))) − 2(x ∨ y) + 12564.

The latter is a linear mba expression. As indicated in [20], all integer comparison
operations can be represented by polynomial mba expressions with results in
their most significant bit (msb). For example, the msb of

(x − y) ⊕ ((x ⊕ y) ∧ ((x − y) ⊕ x))

is 1 if and only if x <s y.

3.2 Linear MBA Identities and Expressions

We now show the existence of an unlimited number of linear mba identities. We
use truth tables, where the relationship of variables of the expression in the table
and conjuncts is shown by example in Table 1.

Theorem 1. Let n, s, t be positive integers, let xi be variables over Bn for i =
1, . . . , t, let ej be bitwise expressions on xi’s for j=0, . . . , s−1. Let e=

∑s−1
j=0 aj ej

be a linear mba expression, where aj are integers, j=0, . . . , s− 1. Let fj be the
deduced Boolean expression from ej, and let (v0,j , . . . , vi,j , . . . , v2t−1,j)T be the
column vector of the truth table of fj, j = 0, . . . s − 1, and i = 0, . . . , 2t − 1. Let
A = (vi,j)2t×s, be the {0,1}-matrix of truth tables over Z/(2n). Then e = 0 if
and only if the linear system AY = 0 has a solution over ring Z/(2n), where
Ys×1 = (y0, · · · , ys−1)T is a vector of s variables over Z/(2n).

Proof. If e = 0, (a0, a1, · · · , as−1)T is plainly a solution of the linear system.
Assume a solution exists. Let zji represent the i−th bit value of ej , j =

0, 1, · · · , s−1, i=0, 1, · · · , n−1. Truth tables run over all inputs, so row vectors
of matrix A run over all values of i-th bit vector (z0,i, . . . , zs−1,i) in the Boolean
expressions, and via the above solution,

∑s−1
j=0 ajzj,i = 0, for i = 0, . . . , n − 1.

From the arithmetic point of view, ej =
∑n−1

i=0 zj,i2i. Thus we have
s−1∑

j=0

ajej =
s−1∑

j=0

n−1∑

i=0

ajzj,i2i =
n−1∑

i=0

s−1∑

j=0

ajzj,i2i =
n−1∑

i=0

2i(
s−1∑

j=0

ajzj,i) = 0,

as required. !
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MBA 난독화의 인기
•  난독화 및 난독화된 코드의 실행을 위한 비용이 쌈

 기본적인 연산들만 추가되고 실행흐름이 바뀌지 않음 (유저/시스템 함
수 추가 호출 등 없음)

•  이론적 탄탄함: 임의의 비트연산식을 복잡한 MBA 식으로 변환하는 방
법이 무한히 많음. 원본 식을 유추하는 것은 NP-hard.

•  여러 상용 도구에 사용됨

코드 난독화: Tigress, VMProtect 등, DRM

악성웨어들에도 사용되는 중
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기존 접근법들

•  식 다시쓰기 : SSPAM [Eyrolles et al. 2016]

•  프로그램 합성 : Syntia [Blazytko et al. 2017], QSynth [David et al. 2020], 

Xyntia [Menguy et al. 2021]

•  신경망 추론 : NeuReduce [Feng et al. 2020]

•  대수적 방법 : MBA-Solver [Xu et al. 2021], SiMBA [Reichenwallner et al. 

2022]
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다양한 MBA 난독화 규칙 다루지 못함

결과의 올바름 보장 X

크고 복잡한 MBA 식 다루지 못함

특정 유형의 MBA식만 다룰 수 있음



기존 접근법들

•  식 다시쓰기 : SSPAM [Eyrolles et al. 2016]

•  프로그램 합성 : Syntia [Blazytko et al. 2017], QSynth [David et al. 2020], 

Xyntia [Menguy et al. 2021]

•  신경망 추론 : NeuReduce [Feng et al. 2020]

•  대수적 방법 : MBA-Solver [Xu et al. 2021], SiMBA [Reichenwallner et al. 

2022]
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다양한 MBA 난독화 규칙 다루지 못함

결과의 올바름 보장 X

크고 복잡한 MBA 식 다루지 못함

특정 유형의 MBA식만 다룰 수 있음

우리의 목표:

• 안전성 : 역난독화 결과의 올바름 보장

• 일반성 : 임의의 MBA 식 다룰 수 있어야.

• 유연성 : 임의의 난독화 규칙들이 사용되어도 문제없이 역난독화

• 확장성 : 거대한 MBA 식도 단순화 할 수 있어야



프로그램 합성 기반 MBA 역난독화
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제약조건
합성

결과

임의의 MBA 식 표현 가능원본과 똑같은 의미, 
가능한 작은 것

문법+

(((((~ e) + 1) & (~ ((((- e) - 
1) | (- a)) + (((- e) - 1) & (- 
a))))) + (((~ e) + 1) & (~ 

((((- e) - 1) | (- a)) + (((- e) - 
1) & (- a)))))) - (((~ e) + 1) ^ 
((((- e) - 1) | (- a)) + (((- e) - 

1) & (- a))))) …

<latexit sha1_base64="zIdYqKfS/qc8F8sO22P4pjGr39I="></latexit>

S ! !S | S � S | S ^ S

| S _ S | �S | S + S

| S ⇥ S | S � S | S >> S

| S << S | V | C

V ! b | e | · · ·

C ! 0x00 | 0x01 | · · ·

1 + a
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한계점 : 합성기 성능(Scalability)

합성

너무 느림

(((((~ e) + 1) & (~ ((((- e) - 1) | (- a)) + (((- 
e) - 1) & (- a))))) + (((~ e) + 1) & (~ ((((- e) - 
1) | (- a)) + (((- e) - 1) & (- a)))))) - (((~ e) + 

1) ^ ((((- e) - 1) | (- a)) + (((- e) - 1) & (- 
a))))) …

1 + a

난독화 식 크기   ⇨  합성 성능 



해결책 1 : 부분적으로 합성하기
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•  일부분 선택

((((- e) & (~ (((~ e) | (- a)) + ((~ e) & (- a))))) + 
((- e) & (~ (((~ e) | (- a)) + ((~ e) & (- a)))))) … 

(v1 & ((v2 * v3) & (v2 - v1))) 
…

(((v2 * v3) & (~ v1)) + v2)  
- ((v1 & (v2 * v3)) & (v2 - v1)) 

합성 (v1 & ((v2 * v3) & 
(v2 - v1)))

가능 🙂



해결책 2 : 성공적인 최적화 패턴 기억하고 적용
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합성 (v1 & ((v2 * v3) & 
(v2 - v1)))

((((- e) & (~ (((~ e) | (- a)) + ((~ e) & (- a))))) + 
((- e) & (~ (((~ e) | (- a)) + ((~ e) & (- a)))))) … 

(v1 & ((v2 * v3) & (v2 - v1))) 
…

변환 규칙

…

규칙 학습

(((v2 * v3) & (~ v1)) + v2)  
- ((v1 & (v2 * v3)) & (v2 - v1)) 



수집된 역난독화 패턴 예
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((((((b - e) - ((b | (~ e)) << 1)) - 2) | b) - ((((b - e) - ((b | (~ e)) << 1)) - 2) & b)) | ((((~ e) | e) + e) + 1))  →  e 

(((d & d) * (d | d)) + ((d & (~ d)) * ((~ d) & d)))   →   ((d * d) & (d * d)) 

(((b - e) - ((b | (~ e)) + (b | (~ e)))) - 2)   →   ((b ^ e) & (b | e)) 

((- (b | 1)) & (~ b))   →   (~ b) 



동형암호 최적화와 공통점 / 차이점

•  공통점 : 부분적으로 합성 → 규칙 학습 → 식 다시쓰기 + 동일식 모으기

•  주된 차이점 : 오프라인 규칙 학습 없이 온라인으로 바로 규칙 학습 및 적용

 MBA 난독화에 사용되는 규칙이 너무나 다양 — 오프라인으로 배운 규칙
이 새로운 MBA식 역난독화에 쓸모 없음

 합성기의 발전으로 규칙 합성이 빠르게 됨

•  그 외 차이점: 특정 유형의 MBA식(linear MBA)은 대수적 방법으로 변환. 

교체대상 부분식 선택하는 방법 등
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실험

•  툴 ProMBA 구현. 식 다시쓰기 끝까지. 이 후 동일식 모으기 적용

•  기존 연구에서 사용된 4000여개의 MBA 난독화 된 식들 대상

3개 카테고리. 작은~큰 그기 다양한 원본 식들을 난독화 

•  비교대상

MBASolver [PLDI ‘22] : 올바름 보장. 대수적 방법

Syntia [USENIX ’17] : 올바름 보장 X. 휴리스틱 기반 

GAMBA [WORMA’23] : 올바름 보장. 대수적 방법 + 휴릭스틱

•  성공여부: 역난독화 결과와 원본 의미 동일 + 결과 크기 ≤ 원본 크기
 83



결과

•  평균 역난독화 성공률 95.3%로 타 도구 압도 (13%, 82.5%, 39.4%)
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동일식 모으기의 효과

•  역난독화 성공률 증가 : 

84% → 95%

•  역난독화 결과의 평균 

크기 감소 : 9.4 → 7.9 

(AST노드 갯수 기준)
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관찰 1 : 식 다시쓰기, 동일식 모으기 둘다필요 (1/2)

•  동일식 모으기는 식 다시쓰기의 한계Phase-ordering problem를 극복한다고 알려
짐.  그러나 실제로는 동일식 모으기 만으로는 부족

•  동일식 모으기의 가장 큰 문제는 비용

•동형암호 최적화의 경우 — 식 다시쓰기 없이 처음부터 동일식 모으기만 
적용 시, 큰 동형암호 회로(깊이 25이상)들은 메모리(256G) 부족으로 실패.  
작은 회로도 saturation 안되기도 (12시간 시간제한)

• MBA 역난독화의 경우 — 식 다시쓰기 없이 처음부터 동일식 모으기만 적
용 시 (단, 높은 비용을 피하기 위해 saturation 전에 적절히 끝냄), 식 다시
쓰기 이 후 동일식 모으기 적용 대비 낮은 성공률 (92% → 61.8% 로 감소)
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관찰 1 : 식 다시쓰기, 동일식 모으기 둘다필요 (2/2)

•동일식 모으기 수행 시 원본식이 클수록, 규칙이 많을수록 탐색범위 및 

계산비용 증가

•  그러므로 식 다시쓰기를 끝까지 한 후, 동일식 모으기 적용이 유리

 원본식을 작게 만들어 탐색범위 감소. 탐색에 방향성 부여
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관찰 2 : 프로그램 합성의 성능이 중요 (1/2)
•  더 좋은 합성기로 찾은 규칙이 더 좋은 최적화

•  MBA 역난독화의 경우 (합성기 성능 Simba > Duet > EUSolver)

 89
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관찰 2 : 프로그램 합성의 성능이 중요 (2/2)

•  동형암호 최적화의 경우 (합성기 성능 Duet > EUSolver)
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Fig. 10. Impact of changing rewrite rules

Answer to Q3: Reusing learned rules enhances L������’s scalability and exploration power.
(1 week vs 12 hour opt. time, 2.6% vs 23.7% vs 25.1% depth reduction)

5.5 E�icacy of Equality Saturation
We now evaluate the e�ectiveness of saturation-based rewriting, which we used for online op-
timization. We compare L������ to a previous version [39] that uses single-path rewriting only.
Both of the tools use the same pre-learned rewrite rules.
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합성의 두 갈래 — 상향식 (Bottom-Up)

 92

0 1 x

-1 -x

1+1 1+x 1+(-x)

x+(-1) x*x

…

장점: 실행가능한 완성된 후보들이 탐색되므로 동적분석 기반 최적화 가능  
(실행결과 같은 중복후보들 제거)

단점: 전체 프로그램 얼개에 대한 정보없이 목표와 상관없는 많은 후보들 탐색

<latexit sha1_base64="qWCXQcuBEpf0q+FQk2cQMfMfDmE="></latexit>

E ! 0
| 1
| x
| E +E
| E §E
| °E



합성의 두 갈래 — 하향식 (Top-Down)
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<latexit sha1_base64="qWCXQcuBEpf0q+FQk2cQMfMfDmE="></latexit>

E ! 0
| 1
| x
| E +E
| E §E
| °E

0 1 x E+E E*E -E

1+1 1+x x+x

-E+E E*E+E E*(E+E)

E*(-E)

…

장점: 전체 프로그램 얼개가 탐색되므로 정적분석을 활용한 최적화 (불가능한 후보쳐내기)

단점: 실행할 수 없는 후보들만 탐색되므로 동적분석 기반 최적화 불가 



양방향 탐색

 94
*(POPL’21) Woosuk Lee, “Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis”

<latexit sha1_base64="qWCXQcuBEpf0q+FQk2cQMfMfDmE="></latexit>

E ! 0
| 1
| x
| E +E
| E §E
| °E



양방향 탐색 + 정적분석
•  싹수없는 뼈대를 빨리 판단해서 버리면 유리함

• 싹수없는 = 아직 미완성 프로그램이지만 빈 칸에 어떤 부품을 끼워봐도 조
건을 만족하지 못할 것이 확실한

• 후보 부품 갯수가 많을 수록 버리기의 효과 큼

• “매우 정교한” 정적분석(이하, 싹수분석)으로 잘 할 수 있지 않을까?

• 입력: 조건(입출력 쌍)과 미완성 프로그램

• 출력: “정답일수도 있음” or “싹수없음”
 95



알고리즘 개요
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Fig. 1. High-level architecture of our synthesis algorithm.

In this paper, we propose a new abstract interpretation-based pruning method for inductive
program synthesis that uses both forward and backward reasoning in an iterative manner. For
each partial program with missing expressions, a forward analysis computes (over-approximated)
invariants over the program’s �nal outputs and the results of intermediary operations from the
given input examples. Based on the result of the forward analysis and the desired output examples,
a backward analysis computes necessary preconditions that must be satis�ed by the missing expres-
sions in order for the program to produce the desired output. These two analyses are synergistically
combined in a way that the result of one analysis re�nes the result of the other, and are iterated
until convergence. If any of the necessary preconditions cannot be satis�ed, the partial program is
discarded because it cannot produce the desired output.

Fig. 1 depicts the overall architecture of our synthesis algorithm, inspired by a recently proposed
synthesis strategy [Lee 2021]. The algorithm takes synthesis speci�cation comprising input-output
examples, initial partial programs with missing parts as input. Additionally, it requires an abstract
domain designed by domain experts that characterizes the abstract semantics of the target language.
Our algorithm consists of three key modules, namely Bottom-up enumerator, Necessary precondition
generator, and Composer :

• Bo�om-up enumerator: Given input-output examples and a number n which is initially 1,
the bottom-up enumerator generates components. The components are expressions (of size
 n) that are to be used to complete the missing parts of partial programs. The bottom-up
enumerator exhaustively generates components of the size bound modulo observational
equivalence.

• Necessary precondition generator: Given a partial program with missing parts, the nec-
essary precondition generator computes necessary preconditions that must be satis�ed by
the missing expressions in order for the program to satisfy the speci�cation. To do so, it
iteratively performs a forward and a backward abstract interpretations. The resulting nec-
essary precondition maps each missing expression to abstract values, which represent an
over-approximation of the possible values that the missing expression is allowed to generate
in order for the program to satisfy the speci�cation.

• Composer: Given a partial program annotated with necessary preconditions and components,
the composer selects which hole to �ll with which component and generates a new partial
program. When putting a component in a missing part, the composer checks if the necessary
precondition of the missing part is satis�ed by the component. If no component satis�es
any of the necessary preconditions, the partial program is discarded. If a solution cannot be
found until all the combinations of components and missing parts are tried, the current set
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예제 합성 문제

 97

• 목표: 입력 비트벡터의 가장 오른쪽의 0 왼쪽에 있는 1들을 0으로 바꾸기

• 합성 대상 : f(x: BitVec) : BitVec. 

• 생김새 조건:  

 
 
 
 
                               . . .

• 제약 조건: 

• 해답:

Example: Programming by Examples

• Find a program P for bit-vector transformation such that

• P is constructed from standard bit-vector operations 
( |, &, ~, +, -, <<, >>, 0, 1, … )

• P is consistent with the following input-output examples  
( 00101 → 00100,   
  10111 → 10000,   
  00111 → 00000 )

• Resets rightmost substring of contiguous 1’s to 0’s. 

• Desired solution: x & ( 1 + ( x | (x - 1) ) )
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of components is determined to be insu�cient. In this case, the bottom-up enumerator is
invoked to add larger components (by increasing n), and the process is repeated.

Our algorithm is guaranteed to �nd a solution if it exists because the Bottom-up enumerator will
eventually generate components to complete the synthesis that satis�es the input-output examples.

We have applied our approach to the SyGuS [Alur et al. 2013] speci�cation language. SyGuS is a
standard formation that has established various synthesis benchmarks through annual competi-
tions [Past SyGuS Competition 2020]. SyGuS employs a formal grammar to describe the space of
possible programs. Such a grammar is expressible in some SMT theory. We devise highly precise
abstract domains specialized for the operators in theories of bitvectors and SAT. By targetting the
standard formulation, our synthesis algorithm is applicable for a broad class of SyGuS problems
with arbitrary grammars in those theories.

We implemented our algorithm in a tool called A��S����. We evaluated A��S���� on a set
of 4 benchmarks from the prior work on various applications: 500 benchmarks from program
deobfuscation [David et al. 2020], 369 benchmarks from program optimization [Lee et al. 2020],
and 256 benchmarks from the SyGuS competition (synthesizing side-channel resistant circuits and
bit-twiddling tricks) [Past SyGuS Competition 2020]. Our evaluation results show that A��S����
is more scalable than the state-of-the-art tools for inductive SyGuS problems D��� [Lee 2021] and
P���� [Barke et al. 2020]. For example, for the 544 bitvector-manipulation problems, A��S����
is able to solve 516 problems in less than 39.2 seconds on average per problem, compared to only
456 and 409 by D��� and P���� using 165.3 and 63.7 seconds on average, respectively. A��S����
provides signi�cant speedup over the state-of-the-art tools.

We summarize the main contributions of our work:
• A novel and general synthesis algorithm that prunes the search space e�ectively by using
both forward and backward abstract interpretation: Unlike existing synthesis algorithms, our
algorithm uses both forward and backward reasoning thus fully exploit the power of abstract
interpretation to prune the search space.

• A highly precise abstract domain for bitvectors and SAT: We devise precise forward and
backward abstract transfer functions for bitvector and boolean operators. The resulting
abstract domains are highly precise and can be used for inductive SyGuS problems with
arbitrary grammars in the theories of bitvectors and SAT.

• Implementation and evaluation of our algorithm: We implemented our algorithm in a tool
called A��S���� and evaluated it on a set of 4 benchmarks from a variety of applications.
The results show signi�cant performance gains over the existing state-of-the-art synthesis
techniques.

2 OVERVIEW
We illustrate our method on the problem of synthesizing a bit-manipulating program. The desired
program is a function f that takes as input a bit-vector of �xed-width 4 denoted x and turns o� all
bits left to the rightmost 0-bit in x . Let us represent bit-vectors as binary numbers. For example,
given a bit-vector 10112, the function is supposed to return 00112.
This problem is represented in SyGuS language, which formulates a synthesis problem as a

combination of a syntactic speci�cation and a semantic speci�cation. The syntactic speci�cation
for f is the following grammar:

S ! x | 00012 input bit-vector and bit-vector literals
| S ^ S | S _ S | S � S bitwise logical binary operators
| S + S | S ⇥ S | S/S | S >> S bitwise arithmetic binary operators
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
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we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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정적 분석
•  실제 값 대신 "요약 값”으로 프로그램 실행을 모사(simulation)

• 요약 : 빠짐없이 포섭 (예: 실제 값 : {0, 2, 6} → 요약 : 짝수) 
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 0 ⊤  1 ⊤

 ⊤ ⊤

 ⊤ 0  ⊤ 1
• 비트필드 도메인

각 비트를   중 하나로 표현

 : 무슨 비트인지 모름,     : 존재하는 비트가 없음

• 예: 01 은 집합 {00102, 00112, 10102,  10112} 을 
표현함

• 요약연산들은 #와 함께 표현할 예정 

예:  

{0,1, ⊥ , ⊤ }
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⊤ ⊤
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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미완성 프로그램 생성

 99

• 하향식 탐색을 수행하여 미완성 프로그램들 집합   생성

• 시작 비말단기호  에서 시작하여 문법규칙을 반복적용하여 생성

• 이 예제에서는 아래 집합을 생성하였다고 가정: 

Q

S

Q = {(S1 × S2, (S3 ⊕ x) >> 00012, (S4/x) >> 00012}



부품 생성
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• 상향식 탐색을 수행하여 부품식 집합   생성

• 가장 작은 부품식들( )부터 시작하여 이들을 조합하여 점차 더 큰 식들 생성 

• 크기  이하의 부품식들 생성 (맨 처음에는  )

• 이 때 입력에 대해서 같은 출력을 생성하는 부품식들 중 하나만 남기는 최적화 수행

예:   가 이미 부품식에 있는 상태에서   은 생성 안함  

• 처음에는   이므로 

C

x,00012

n n = 1

00012 x ∧ 00012

n = 1
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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필요조건 분석

 101

• 각 미완성 프로그램의 비말단기호마다 필요조건 유추 

• 필요조건은 요약도메인의 한 원소로 표현됨

• 필요조건 추출을 위해 정방향, 역방향 분석 사용



정방향(Forward) 및 역방향(Backward) 분석
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a b

+

정방향

a의 요약을 계산하고

b의 요약을 계산하고


그것으로 a+b의 요약을 계산

역방향

a b

+

a+b가 만족해야할 조건 P가 주어졌을 때

a, b 각각의 요약이 만족해야할 조건을 계산


(a, b의 정방향 요약이 계산되어있으면 활용 가능)

a + b a + b = P



필요조건 분석
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• 제약조건: 

• 미완성 프로그램: 

• 부품식 집합:

• 필요조건들:   
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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o1 := ? 
o2 := ? 
o3 := o1 x o2

코드 형태로: 정방향 (forward) 비트필드 도메인 분석:

TTTT 
TTTT 
TTTT

o1 := ? 
o2 := ? 
o3 := o1 x o2

Q = {(S1 × S2, (S3 ⊕ x) >> 00012, (S4/x) >> 00012}



필요조건 분석
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• 제약조건: 

• 미완성 프로그램: 

• 부품식 집합:

• 필요조건들:   

o1 := ? 
o2 := ? 
o3 := o1 x o2

코드 형태로: 정방향 (forward) 비트필드 도메인 분석:

TTTT 
TTTT 
TTTT   0011 = 0011⊓

o1 := ? 
o2 := ? 
o3 := o1 x o2

바람직한 출력과 교집합이 
있으므로 싹수있음
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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TTTT 
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TTTT   0011 = 0011⊓

o1 := ? 
o2 := ? 
o3 := o1 x o2
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012, (S4/x) >> 00012}

o1 := ? 
o2 := x 
o3 := o1   o2 
o4 := o3 >> 00012

⊕

코드 형태로: 정방향 (forward) 비트필드 도메인 분석:

TTTT 
1011 
TTTT 
TTTT

o1 := ? 
o2 := x 
o3 := o1   o2 
o4 := o3 >> 00012

⊕
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012, (S4/x) >> 00012}

o1 := ? 
o2 := x 
o3 := o1   o2 
o4 := o3 >> 00012

⊕

코드 형태로: 정방향 (forward) 비트필드 도메인 분석:

TTTT 
1011 
TTTT 
TTTT   0011 = 0011⊓

o1 := ? 
o2 := x 
o3 := o1   o2 
o4 := o3 >> 00012

⊕

바람직한 출력과 교집합이 
있으므로 싹수있음
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012, (S4/x) >> 00012}

o1 := ? 
o2 := x 
o3 := o1   o2 
o4 := o3 >> 00012

⊕

코드 형태로:

TTTT 
1011 
011T 
0011

o1 := ? 
o2 := x 
o3 := o1   o2 
o4 := o3 >> 00012

⊕

011T >># 0001 = 0011

역방향 (backward) 비트필드 도메인 분석:
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012, (S4/x) >> 00012}

o1 := ? 
o2 := x 
o3 := o1   o2 
o4 := o3 >> 00012

⊕

코드 형태로:

110T 
1011 
011T 
0011

o1 := ? 
o2 := x 
o3 := o1   o2 
o4 := o3 >> 00012

⊕

110T # 1011 = 011T⊕

역방향 (backward) 비트필드 도메인 분석:
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether

, Vol. 1, No. 1, Article 1. Publication date: February 2023.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012, (S4/x) >> 00012}

o1 := ? 
o2 := x 
o3 := o1   o2 
o4 := o3 >> 00012

⊕

코드 형태로:

o1 := ? 
o2 := x 
o3 := o1   o2 
o4 := o3 >> 00012

⊕

역방향 (backward) 비트필드 도메인 분석:

110T 
1011 
011T 
0011
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012, (S4/x) >> 00012}

o1 := ? 
o2 := x 
o3 := o1 / o2 
o4 := o3 >> 00012

코드 형태로:

TTTT 
1011 
TTTT 
TTTT   0011 = 0011⊓

o1 := ? 
o2 := x 
o3 := o1 / o2 
o4 := o3 >> 00012

정방향 (forward) 비트필드 도메인 분석:

바람직한 출력과 교집합이 
있으므로 싹수있음
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012, (S4/x) >> 00012}

o1 := ? 
o2 := x 
o3 := o1 / o2 
o4 := o3 >> 00012

코드 형태로:

TTTT 
1011 
011T 
TTTT   0011 = 0011⊓

o1 := ? 
o2 := x 
o3 := o1 / o2 
o4 := o3 >> 00012

역방향 (backward) 비트필드 도메인 분석:

011T >># 0001 = 0011
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012, (S4/x) >> 00012}

o1 := ? 
o2 := x 
o3 := o1 / o2 
o4 := o3 >> 00012

코드 형태로:

TTTT 
1011   00TT = ⊥011 
011T 
TTTT   0011 = 0011

⊓

⊓

o1 := ? 
o2 := x 
o3 := o1 / o2 
o4 := o3 >> 00012

역방향 (backward) 비트필드 도메인 분석:

o1 / o2 가 011T이 되어야함. o1은 최대 11112 (즉 15)를 값으로 가질 수 있음
011T는 {01102, 01112} (즉 6과 7)을 의미. o2의 가능 값은 00012과 00102 (즉 00TT)
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012, (S4/x) >> 00012}

o1 := ? 
o2 := x 
o3 := o1 / o2 
o4 := o3 >> 00012

코드 형태로:

TTTT 
1011   00TT = ⊥011 
011T 
TTTT   0011 = 0011

⊓

⊓

o1 := ? 
o2 := x 
o3 := o1 / o2 
o4 := o3 >> 00012

역방향 (backward) 비트필드 도메인 분석:

그런데 o2의 요약값은 이미 1011인 상태. 00TT이 될 수 없음. 
그러므로 이 미완성 프로그램은 싹수없음! 
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012, (S4/x) >> 00012}

o1 := ? 
o2 := x 
o3 := o1 / o2 
o4 := o3 >> 00012

코드 형태로:

TTTT 
1011   00TT = ⊥011 
011T 
TTTT   0011 = 0011

⊓

⊓

o1 := ? 
o2 := x 
o3 := o1 / o2 
o4 := o3 >> 00012

역방향 (backward) 비트필드 도메인 분석:
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012}

S1 × S2

출력값의 요약이 TTTT인 부품을 넣어봄
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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1:4 Anon.

where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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the abstract output of the partial program is consistent with the desired output example. This
check can be simply done by applying the meet operator (u) to the abstract output of the
partial program and the abstraction of the desired output. Because the result does not contain
? (>>>> u 0011 = 0011), the partial program is feasible. Now the backward analysis can
be performed to obtain necessary preconditions over the non-terminals. From the desired
output 00112, considering possible over�ows in the multiplication, S1 and S2 can be any value.
Therefore, the necessary precondition of S1 (and S2) is >>>>.

• (S � x) >> 00012 (necessary precondition: S 7! 110>): By the forward analysis, the abstract
output of (S � x) is >>>>, and the abstract output of (S � x) >> 00012 is >>>> >>#
0001 = >>>>. Now we check the feasiblity of the partial program. Becaues the result is not
inconsistent with the desired output (>>>> u 0011 = 0011), the partial program is feasible.
Now the backward analysis is performed. From the desired output 00112, we can derive the
necessary precondition over (S � x) as 011> because 011> >># 0001 = 0011. The necessary
precondition over S is 110> because, for the input 10112 for x , 110> �# 1011 = 011>.

• (S/x) >> 00012 (the program is infeasible): By the forward analysis, the abstract output of
(S/x) is >>>>, and the abstract output of (S/x) >> 00012 is >>>> >># 0001 = >>>>.
Now the backward analysis is performed. From the desired output 00112, we can derive the
necessary precondition over (S/x) as 011> because 011> >># 0001 = 0011. From the fact
that the maximum possible value of S is 11112 (which is 15 in decimal), and the concretization
of 011> is {01102, 01112} (which are 6 and 7 in decimal), the possible values of x are 1 and 2,
which is represented as 00>> in the bitwise domain. However, the input x ’s abstract value
1011 is not consistent with the necessary precondition 00>> over x (00>> u 1011 = ?).
Therefore, the partial program is not feasible.

As shown in the above, the partial program (S/x) >> 00012 is determined to be infeasible by the
interaction of the forward and backward analyses. Only the other two partial programs will be
considered in the composition phase.

Composition Process. Given the partial programs in Q with necessary preconditions and the
set C of components, the composer generates new (partial) programs by replacing non-terminal
symbols in the partial programs with components.

The composer �rst chooses (S �x) >> 00012. It then searches for a component c inC = {x , 00012}
such that the necessary precondition over S is subsumed by the abstract output of c . There is no such
component because the necessary precondition 110> is not subsumed by neither of the abstract
outputs of x (1011) and 00012 (0001). Therefore, the composer discards the partial program.
The next partial program is S1 ⇥ S2. Suppose the composer replaces S1 with x , obtaining a new

partial program x ⇥ S2. Whenever a new partial program is generated, the necessary precondition
generator is invoked to derive necessary preconditions over the non-terminals. Because the multi-
plication operation is modulo 24, computing the necessary precondition over S2 amounts to solving
the following equation:

10112 ⇥ � = 00112 mod 16

where � represents the unknown value of S2. Using the extended Euclidean algorithm, we can �nd
the solution to the equation as � = 10012. Thus, the necessary precondition over S2 is 1001. Unfor-
tunately, there is no component in C whose abstract output subsumes the necessary precondition.
Therefore, the composer discards the partial program.

Because the composer exhausts all the partial programs inQ without �nding a solution, it invokes
the component generator to generate more components.
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1:5

the abstract output of the partial program is consistent with the desired output example. This
check can be simply done by applying the meet operator (u) to the abstract output of the
partial program and the abstraction of the desired output. Because the result does not contain
? (>>>> u 0011 = 0011), the partial program is feasible. Now the backward analysis can
be performed to obtain necessary preconditions over the non-terminals. From the desired
output 00112, considering possible over�ows in the multiplication, S1 and S2 can be any value.
Therefore, the necessary precondition of S1 (and S2) is >>>>.

• (S � x) >> 00012 (necessary precondition: S 7! 110>): By the forward analysis, the abstract
output of (S � x) is >>>>, and the abstract output of (S � x) >> 00012 is >>>> >>#
0001 = >>>>. Now we check the feasiblity of the partial program. Becaues the result is not
inconsistent with the desired output (>>>> u 0011 = 0011), the partial program is feasible.
Now the backward analysis is performed. From the desired output 00112, we can derive the
necessary precondition over (S � x) as 011> because 011> >># 0001 = 0011. The necessary
precondition over S is 110> because, for the input 10112 for x , 110> �# 1011 = 011>.

• (S/x) >> 00012 (the program is infeasible): By the forward analysis, the abstract output of
(S/x) is >>>>, and the abstract output of (S/x) >> 00012 is >>>> >># 0001 = >>>>.
Now the backward analysis is performed. From the desired output 00112, we can derive the
necessary precondition over (S/x) as 011> because 011> >># 0001 = 0011. From the fact
that the maximum possible value of S is 11112 (which is 15 in decimal), and the concretization
of 011> is {01102, 01112} (which are 6 and 7 in decimal), the possible values of x are 1 and 2,
which is represented as 00>> in the bitwise domain. However, the input x ’s abstract value
1011 is not consistent with the necessary precondition 00>> over x (00>> u 1011 = ?).
Therefore, the partial program is not feasible.

As shown in the above, the partial program (S/x) >> 00012 is determined to be infeasible by the
interaction of the forward and backward analyses. Only the other two partial programs will be
considered in the composition phase.

Composition Process. Given the partial programs in Q with necessary preconditions and the
set C of components, the composer generates new (partial) programs by replacing non-terminal
symbols in the partial programs with components.

The composer �rst chooses (S �x) >> 00012. It then searches for a component c inC = {x , 00012}
such that the necessary precondition over S is subsumed by the abstract output of c . There is no such
component because the necessary precondition 110> is not subsumed by neither of the abstract
outputs of x (1011) and 00012 (0001). Therefore, the composer discards the partial program.
The next partial program is S1 ⇥ S2. Suppose the composer replaces S1 with x , obtaining a new

partial program x ⇥ S2. Whenever a new partial program is generated, the necessary precondition
generator is invoked to derive necessary preconditions over the non-terminals. Because the multi-
plication operation is modulo 24, computing the necessary precondition over S2 amounts to solving
the following equation:

10112 ⇥ � = 00112 mod 16

where � represents the unknown value of S2. Using the extended Euclidean algorithm, we can �nd
the solution to the equation as � = 10012. Thus, the necessary precondition over S2 is 1001. Unfor-
tunately, there is no component in C whose abstract output subsumes the necessary precondition.
Therefore, the composer discards the partial program.

Because the composer exhausts all the partial programs inQ without �nding a solution, it invokes
the component generator to generate more components.
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Fig. 1. High-level architecture of our synthesis algorithm.

In this paper, we propose a new abstract interpretation-based pruning method for inductive
program synthesis that uses both forward and backward reasoning in an iterative manner. For
each partial program with missing expressions, a forward analysis computes (over-approximated)
invariants over the program’s �nal outputs and the results of intermediary operations from the
given input examples. Based on the result of the forward analysis and the desired output examples,
a backward analysis computes necessary preconditions that must be satis�ed by the missing expres-
sions in order for the program to produce the desired output. These two analyses are synergistically
combined in a way that the result of one analysis re�nes the result of the other, and are iterated
until convergence. If any of the necessary preconditions cannot be satis�ed, the partial program is
discarded because it cannot produce the desired output.

Fig. 1 depicts the overall architecture of our synthesis algorithm, inspired by a recently proposed
synthesis strategy [Lee 2021]. The algorithm takes synthesis speci�cation comprising input-output
examples, initial partial programs with missing parts as input. Additionally, it requires an abstract
domain designed by domain experts that characterizes the abstract semantics of the target language.
Our algorithm consists of three key modules, namely Bottom-up enumerator, Necessary precondition
generator, and Composer :

• Bo�om-up enumerator: Given input-output examples and a number n which is initially 1,
the bottom-up enumerator generates components. The components are expressions (of size
 n) that are to be used to complete the missing parts of partial programs. The bottom-up
enumerator exhaustively generates components of the size bound modulo observational
equivalence.

• Necessary precondition generator: Given a partial program with missing parts, the nec-
essary precondition generator computes necessary preconditions that must be satis�ed by
the missing expressions in order for the program to satisfy the speci�cation. To do so, it
iteratively performs a forward and a backward abstract interpretations. The resulting nec-
essary precondition maps each missing expression to abstract values, which represent an
over-approximation of the possible values that the missing expression is allowed to generate
in order for the program to satisfy the speci�cation.

• Composer: Given a partial program annotated with necessary preconditions and components,
the composer selects which hole to �ll with which component and generates a new partial
program. When putting a component in a missing part, the composer checks if the necessary
precondition of the missing part is satis�ed by the component. If no component satis�es
any of the necessary preconditions, the partial program is discarded. If a solution cannot be
found until all the combinations of components and missing parts are tried, the current set
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모든 미완성 프로그램, 부품식 조
합을 다 해봤는데 솔루션 못찾음. 

부품크기 늘림



부품 늘리기
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• 제약조건: 

• 미완성 프로그램: 

• 부품식 집합:

• 필요조건들:    ,  ,  S1 ↦ ⊤ ⊤ ⊤ ⊤ S2 ↦ ⊤ ⊤ ⊤ ⊤ S3 ↦ 110 ⊤
크기 3 이하의 부품들 생성
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012}

C = {x,00012, x + 00012, ⋯}



부품 조합
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012}

C = {x,00012, x + 00012, ⋯}

(S3 ⊕ x) >> 00012

출력값의 요약이 110T인 부품을 찾아봄. 
있음!  x + 00012



부품 조합
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where S is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (� denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are �lled with the most signi�cant bit of the left operand). The
semantic speci�cation for f follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
f (10112) = 00112. A solution to the synthesis problem is f (x) = ((x + 00012) � x) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,?,>} where > represents the unknown value and ? represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1>10 ^# 00>> = 00>0.

Generation of Initial Partial Programs. We �rst generate a �xed set Q of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol S ,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the Q set has three partial programs:

Q = {(S � x) >> 00012, (S/x) >> 00012, S1 ⇥ S2}

Component Generation. The component generator then generates a set C of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size  n where n is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insu�cient to synthesize a solution. The number
of components is potentially exponential to n, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if x is in the component set,
x _ 00002 is not added to the set because they are observationally equivalent. Because initially
n = 1, the component set is

C = {x , 00012}.
These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in Q in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in Q using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in Q .

• S1 ⇥ S2 (necessary preconditions: S1 7! >>>>, S2 7! >>>>): We �rst perform a forward
analysis on the partial program to obtain invariants over the program’s �nal output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is >>>>. Thus, the abstract output of the entire
program is >>>>. Now we check the feasiblity of the partial program by checking whether
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Q = {(S1 × S2, (S3 ⊕ x) >> 00012}

C = {x,00012, x + 00012, ⋯}

((x + 00012) ⊕ x) >> 00012

해당 부품을 껴 넣어봄 ⇨ 솔루션



실험
•구현체:  Simba

•벤치마크: 총 1,125개 프로그램 합성 경진대회에 사용된 문제들 

•HD: hacker’s delight 문제 44개 

•Deobfsc: QSynth VR-EA 데이터셋 500개

•Lobster: 369 회로 최적화 문제 (동형암호 가속화) 

•Crypto: 212 회로 최적화 문제 (부채널 공격 회피)

•비교대상 합성기들 

•duet: Woosuk Lee, “Combining the Top-Down Propagation and Bottom-Up Enumeration for 
Inductive Program Synthesis”, POPL’21

•probe: Barke et al., Just-in-Time Learning for Bottom-Up Enumerative Synthesis, OOPSLA’20
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•  타 도구 대비 압도적인 성능

실험결과

 128

Evaluation: Simba Performance
Solve Faster

• Outperformed baseline solvers for conditional-free program 
• Comparable to baseline solvers for conditional program

# of the fastest-solved problems for each domain



•  타 도구 대비 압도적인 성능

실험결과
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Evaluation: Simba Performance
Overall

• SIMBA(plot ○) shows the best performance for branch-free benchmarks 
• DUET(plot �) is better than SIMBA for branch benchmarks in average

Cactus-plots



결론

•  자동탐색 시스템을 사용하면

현대 컴퓨터의 높은 성능을 활용

프로그램 합성 (Program Synthesis), 동일식 모으기 (Equality Saturation) 등

•특정한 경우에는

사람이 다루기 힘든 영역에 대해

논리회로, 비트정수 등 저수준 언어

•전문가의 수동 알고리즘보다 나은 결과를 낼 수 있다.

새로운 최적화 규칙 발견

최적의 결과를 내는 기기묘묘한 규칙 적용순서 발견
 130


