Inductive Synthesis of Structurally Recursive

Functional Programs from Non-recursive Expressions

Woosuk Lee, Hangyeol Cho

M. P s
1 @ > |
: .t

@ POPL’23

Recursive Functional Synthesis

tvype nat = Z

| S of nat

Synthesizer tet rec t x =

match x with

B -

23} | S n -> (£ n) + S(S(2))

f : nat -> nat satistying
7 —> 7, - Q

S(Z) —> S(S(2))

using

(+) : nat * nat -> nat

Recursive Functional Synthesis

Input 1: custom data types

tvype nat = Z
| S of nat

Synthesizer tet rec t x =

-ug} - £ L

| S n -> (£ n) + S(S(2))

f : nat -> nat satistying

/. —> 7,

S(Z) —> S(S(2))

using

(+) : nat * nat -> nat

Recursive Functional Synthesis

tvype nat = Z
| S of nat

f : nat -> nat satistying

/. —> 7,

S(Z) —> S(S(2))

using

(+) : nat * nat -> nat

Synthesizer tet rec t x =

» 2w

Input 2: a type signature of the target function

match x with

L —> A

and I/O examples

Recursive Functional Synthesis

tvype nat = Z

| S of nat

Synthesizer tet rec t x =

match x with

B -

gas | S n -> (£ n) + S(S(2))

S(Z) —> S(S(2))

f : nat -> nat satistying
7 — 7, - o

using

(+) : nat * nat -> nat
Input 3: library of external operators

Recursive Functional Synthesis

tvype nat = Z
| S of nat

f : nat -> nat satistying l
/. —> 7,

S(Z) —> S(S(2))

Synthesizer tet rec t x =

match x with

B -

| S n -> (£ n) + S(S(2))

using

(+) : nat * nat -> nat Recursive solution program

Recursive Functional Synthesis

[Long history [Summers 1977]
® Possible applications
o End-user programming |[Feser et al. 2015]
o Invariant inference [Miltner et al. 2020]

o Refactoring [Farzan et al. 2022]

p

e

B, e O o
!

Two Strategies

let rec £ x = ?? (spec:. 0 — O,

1 — 2)

’ e Starts from empty program, fills in holes

{e Prune infeasible partial programs by domain-
i specific reasoning

Bottom-up

4
s Same
Same
outputs - _

(wrt mput
examples)

outputs

{[{® Builds larger programs from smaller ones

{[{l® Prune redundant subexpressions by evaluation]

(equivalence reduction)

Major Hurdle: Recursion

let rec £ x = ?? (spec: 0 — 0, 1 —> 2)

Top-down

match x wi —

Z —> 1 + 727

{ To prune this candidate, we should

lapproximate its possible behaviors, which |
|is not easy due to recursion. f

Bottom-up

| To check if £ (x) +1 is redundant, we
ishould evaluate 1t, which 1s impossible due |
{to recursion.

Previous Approaches for Recursion

_Tlop-down | Bottom-wp 00000

0 Ig0r2 [Kltzelmann et al 2006]
synthesize non-recursive programs 0 Escher [Albarghouthi et al.
, first, and *““fold” them ' , 2013]: same as Myth

i Myth [Osera et al. 2015]: require all ‘e Burst [Miltner et al. 2022]:

| necessary behaviors of recursive repeatedly making and refuting

| calls as part of spec

; SMyth [Lubin et al. 2020]: forward (hke CDCL)

| assumptions over recursive calls |

Prevmus Approaches for Recursion

Unscalable) P Burde‘ .
Top-down " | Bottom-up | '

o IgorZ [Kltzelmann et al 2006] "

synthesize non-recursive proaxams 0 Escher [Albarghouthi et al.
¢G 99 rd Burden i
first, and “fold” them ¢{ 2013]: same as Myth

) ontheuser / | f

' Myth [Osera et al. 2015 reu1re all ||® Burst [Mlltner et al. 2022]:

necessary behyfomplosmsive | repeatedly)

ng and retuting

calls as part d reasomng fa1ls I

e SMyth [Lubm ctal 2020] forward o
|+ backward symbolic evaluation f i T

Slow when too many backtracking

Our Contributions

¢ A novel and general method for synthesis of recursive programs
o Block-based pruning (for handling recursion)

o Library sampling (for handling library w/o complex domain-

specific reasoning)
¢ Soundness & completeness guaranteed

¢ Tool (Tr10) that outperforms the state-of-the-art
https://github.com/pslhy/trio

12

https://github.com/pslhy/trio

Hlustrative Example

tvype nat = Z
| S of nat

f : nat -> nat satistying

(+) : nat * nat -> nat

Synthesize the double function

Synthesizer tet rec t x =

match x with

» o 3 »

+ S(5(2))

13

Hlustrative Example

tvype nat = Z
| S of nat

f : nat -> nat satistying

(+) : nat * nat -> nat

Synthesize the double function

. 1 —
Synthesizer et rec t x
match x with

o -

| S n -> (f n)

|

%

14

Our Key Idea: Two Phased Synthesm

We call them blocks

=

(1) Synthes1ze all poss1ble recursion- and condltlonal free expressions
satisfving each 1/0O example

l (2) During top-down search for a recursive solution, prune candidates
. inconsistent with the blocks obtained in the previous step

15

Step 1: Synthesizing Blocks

I/0 Example Synthesized Blocks
0 > 0 0, x, 0+0, O0+x, x+0, x+Xx,
1 > 2 2, 1+1, 0+2, 2+0, x+1, 1+x, xX+X,
2 — 4 4, 1+3, 2+2, 3+1, x+2, 2+x, x+X,

16

Step 2: Top-Down Search w/ Block-based Pruning

let rec £ (x) = 2?7

" Suppose N
we want to check
feasibility of this

N _ partial program. \ let rec f

B

match x with

Z —> 0 ?7

| S n -> 3 + f(n) + ?°?

17

Step 2: Top-Down Search w/ Block-based Pruning (1/4)

Blocks for 1/0 example 1

1/0 Example Synthesized Blocks

0 — O 0 x,

match x with Partial eva] Match 7 with Partial eval.
7 => O+?? S Y

/. —> 0+°?2°?
‘ S n —> 3+f(n)+?? | S n -> 3+f(n)+??

Meaning: there exists a completion of the partial program that satisfies I/O example 1. -’

18

Step 2: Top-Down Search w/ Block-based Pruning (2/4)

Blocks for 1/0 example 2
1/0 Example Synthesized Blocks
1 — 2 2, 1+1, 0+2, 2+0, x+1, 1+x, xX+X,
match x with match S(Z2) with

Partial eval. Partial eval.

Z —> 047?27 Z —> 047?27

| S n -> 3+f(n)+?2? | S n => 3+f(n)+?2?

Step 2: Top-Down Search w/ Block-based Pruning (3/4)

Blocks for 1/0 example 2

1/0 Example Synthesized Blocks

1 — 2 2, 1+1, 0+2, 2+0, x+1, 1+x, x+X,

3 +
(match Z with

Z —> 0+7?2°?

Partial

Partial
_Q¢3+f(z)+?? S "t

Partial
evaLth.ﬂ”_mm_ﬁm_u;.w_..~m¢_»hw

N matched block! .
(- 3+0+2?2+2? > 2 but]

eval. eval.

| S n -> ...) + ?29?

Meaning: there 1s no completion of the partial program that satisties I/O example 2. 7
S 20

Step 2: Top-Down Search w/ Block-based Pruning (4/4)

The candidate 1s discarded since no completion of 1t satisfies the
second I/0O example.

F

let rec £ (x) =

match x with

Z —=> 0 + 27

| S n —-> 3 + £(n) + ?2°7?

21

Challenges

) Challenge 1

(how to efficiently synthesize all the blocks 1n *
Our two-phased synthesis ™~ an enormous amount? __—

(l) Synthesize all possible rcursion- and conditional-free expressions (1.e.,

straight line code) satistying each I/O example (called blocks)

1(2) During top-down search for a recursive solution, prune candidates

inconsistent h the blocks

% Challenge 2: how to efficiently '
~check the consistency with many

22

Key to Scalability 1: Top-Down + Bottom-Up

e Adapted the previous bidirectional search strategy’ to our setting

o With version spaces, we can synthesize 1010 blocks within 0.1 sec!

Top-down Bottom-up

Can qu1cl<ly synthemze all p0551ble blocks (address challenge 1)

lWoosuk Lee Combmmg the Top -Down Propagatmn and Bottom-Up Enumeratlon for Inductive Program Synthesis, POPL 21

Key to Scalability 2: Version Spaces

Version space
Explicit set + Join

(141, 14x, 142, / \ T
x+1, x+xX, X+2, U ()
U U U

2+1, 2+x, 2+2 } m m m

#. of nodes = O(log #. of programs)

| Compactly represent

Our Trio System

--

Specification
(/0O examples +

library functions f g,.) . Block
. Components ' enerator

. ofsize<n TP
Bottom-Up c‘éﬁ ocs ,
Enumerator / ' Success : Final program
}nlllerse_ {naps Candidate »,*.*, - spec satisfiecl o
: § R Generator -** § =
» Increasen = T g
Initial component size n Complete
Program

25

Bottom-Up Enumerator

. Components |
. ofsize<sn §

i | Bottom-Up g c‘éﬁ
i | Enumerator §

. Inverse maps

26

Generation of Components

e Components = sub-expressions that may be used 1n a solution
e Components of size <n are generated

® Suppose we obtain the following component set:

C=1{x,01,2,x+1}

27

Library Sampling: Generation of Inverse Maps (1/2)

¢ Inverse map: output — 1nputs of a library function

—|—_1(()) — {(0,0)}, +_1(1) — {(091)9(190)}9
+12) = {(0,2),2,0), (1,1}, +7'(3) = {(1,2),(2,1)},
+'(4) = {(2,2)}

¢ From input-output samples of library functions

23

Library Sampling: Generation of Inverse Maps (1/2)

¢ Inputs for sampling: values NOT greater than the “maximum”™
input example

© C.2., USC (090)9 (091)9 EEY (292) when SPpEC 1S { 0w O’ 2r 4 }

o Reason: we target structurally recursive programs where
arguments of recursive calls are strictly decreasing
(to guarantee termination of synthesized programs)

29

Block Generator

! Block
:| Generator

. Blocks |

30

Generation of Blocks

e For each I/O example, we generate satistying blocks.

e Each set of blocks 1s represented by a version space.

31

Generation of Blocks for 1/0 example 1 +— 2

C=1{x01,2,x+1} U

We will generate

32

Generation of Blocks for 1/0 example 1 +— 2

C=1{x01,2,x+1} U

Components

. satisfyingl — 2/

33

Generation of Blocks for 1/0 example 1 +— 2

34

Generation of Blocks for 1/0 example 1 +— 2

C=1{x01,2,x+1} U

/

VAN

x+1 /

Blocks of form
e T+ &9

\ satisfyingl — 2 /

Generation of Blocks for 1/0 example 1 +— 2

C={x0,1,2, y U +71(2) = {(0,2), (2,0), (1,1)}

VAN

x+71

Z

Blocks of form
e T+ &9

\ satisfyingl — 2 /

36

Generation of Blocks for 1/0 example 1 +— 2

C={x0,1,2, y U +71(2) = {(0,2), (2,0), (1,1)}
U

Y Neinvin s
VAN e }LN [N\ E

x+1 /

Generation of Blocks for 1/0 example 1 +— 2

C=1{x01,2,x+1} U

/

U

x+71

/ e

& U 7\

Components

\._ satisfyingl ~— 0 _“/

33

Generation of Blocks for 1/0 example 1 +— 2

C={x[0/1,2,x+1} [u
/ U F
U T ull 7 T
X-I-{ \2 (}LN LY
U
) / \

l 1
m

U
C=1{x012,x+1} U |
— ’ ’ \ |
\ /l _|_[X] . coo
+{ g U 7 \
O X

/N +710) = {(0,0))

Generation of Blocks for 1/0 example 1 +— 2

C=1{x01,2,x+1} U

/

] e u\ —
/N e W R
x+1 2 U U 7\
¢ A

O < 12

Generation of Blocks for 1/0 example 1 +— 2

C={X309192’}fyu
U +N/ U\\’+N
/0 . o N
xt1 U U 7\
<\ \
O X
/

Candidate Generator

43

Top-Down Search for Recursive Programs

let rec £ (x) = 2?7

we want to check
feasibility of this

\ artial program.

B
—~
X
~—"
|

match x with
7 —> 0

S X' -> f£(x") + 27

44

Search for Recursive Programs

For I/O example 1 — 2

match x with

Partial eval®

0 + 27

Z —> 0

S x' => f(x") + 2?7

45

Version Space Matching

Check 1f

27

0 + 27

— ™\

2| can be matched with any block satistying 1 —— 2

T

[N

+>4‘/ U\—
. M
U U 7\
O\ \
T
/\

46

Check 1f

Version Space Matching

27

2| can be matched with any block satistying 1 —— 2

47

Check 1f

Version Space Matching

27

2| can be matched with any block satistying 1 —— 2

43

Check 1f

Version Space Matching

27

2| can be matched with any block satistying 1 —— 2

[N

49

Check 1f

Version Space Matching

27

2| can be matched with any block satistying 1 —— 2

50

Version Space Matching

Check 11 |0 ??|can be matched with any block satisfying 1 +— 2

U
U N [T ~ +,
0 + 27 /\ e \ N\
1 U U / N\
7\ \
0 | |+,
/ \

“Temporary” Unsoundness of Block-based Pruning

e For termination of the block generation process, we limit the
height of version space.

e Because of this, blocks of a solution may not be generated.

¢ |n this case, block-based pruning may be unsound.
(1.e., partial programs leading to a solution may be pruned)

e Despite this pruning unsoundness, we never miss a solution.

52

Search Completeness

® If valid partial programs are pruned and we can’t find the solution,

we repeat the process after adding larger components.
® More components — More blocks

® Eventually the valid partial programs will not be pruned.

______________________________ Block
Components Generator

; of size <n § BIk ------

’ i ocks |

Bottom-Up c% - .
Enumerator ‘

Inverse maps

i , Candidate _ *.
i ’) e Generator
Increase n o *
Complete

$ f=tg?
Program

Failure: all candidates exhausted

53

Evaluation

e Benchmark suite (60 programs)

® 45 from SMyth benchmark suite + 15 from OCaml tutorial
e Specifications : (1) IO examples, (2) Reference implementation
e Basclines

® SMyth (ICFP’20): best top-down synthesizer

® Burst (POPL’22) : best bottom-up synthesizer

e) minute timeout

54

Synthesis Time (s)

Comparison to Prior Work

Trio (our tool) outperforms SMyth and Burst.

200 -

-
Ul
o

-
o
o

Ul
o

0 10 20 30 40 50 60

1O Spec

—A— SMyth (solved = 50) 4
—&— Burst (solved = 50)
—S— Trio (solved = 59)

Solved (total = 60)

Synthesis Time (s)

350 -

300 -

N
ol
o

N
o
o

(-
U
-

(-
o
-

50 -

0 10 20 30 40 50 60

REF Spec

—A— SMyth (solved = 39)

—<— Burst (solved = 54)
—S— Trio (solved = 57)

Solved (total = 60)

35

Ablation Study

Trio performs better using block-based pruning + library sampling

5%

50%

25%

0%
IO spec Ref spec

56

In the Paper...

e How to synthesize higher-order functions
¢ Optimizations

e Why our tool outperforms the existing tools (case study)

Thank you!

>7

