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Homomorphic Evaluation(HE) (1/3)

• Allows for computation on encrypted data 

• Enables the outsourcing of private data storage/processing
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Application HE developer HE application

Homomorphic Evaluation(HE) (2/3)

Write code in low-level HE instructions

requires 
expertise

suboptimal

Add maintenance operations
Generate/manage keys, hints

Track noise level
Choose parameters

complicated

Building HE applications



Homomorphic Evaluation(HE) (3/3)
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Homomorphic Evaluation(HE) (3/3)

Write code in low-level HE instructions
Add maintenance operations
Generate/manage keys, hints

Track noise level
Choose parameters

Existing Homomorphic Compiler

HE application

Homomorphic 
Compiler

still, suboptimal

• Generates HE applications automatically 

• Optimization : several hand-written rules

Application

Hand-written 
rules



Homomorphic Evaluation(HE) (2/3)

#include <iostream> 
#include <fstream> 
#include <integer.hxx> 

int main() 
{ 
        Integer8 a, b, c; 

        cin >> a; 
        cin >> b; 
        c = a + b; 

        cout << c; 
        FINALIZE_CIRCUIT(blif_name); 
}

#include "FHE.h" 
#include "EncryptedArray.h" 
#include <NTL/lzz_pXFactoring.h> 
#include <fstream> 
#include <sstream> 
#include <sys/time.h> 

int main(int argc, char **argv) 
{ 
    long m=0, p=2, r=1; // Native plaintext space 
                        // Computations will be 'modulo p' 
    long L=16;          // Levels 
    long c=3;           // Columns in key switching matrix 
    long w=64;          // Hamming weight of secret key 
    long d=0; 
    long security = 128; 
    ZZX G; 
    m = FindM(security,L,c,p, d, 0, 0); 
    FHEcontext context(m, p, r); 
    buildModChain(context, L, c); 
    FHESecKey secretKey(context); 
    const FHEPubKey& publicKey = secretKey; 
    G = context.alMod.getFactorsOverZZ()[0]; 
    secretKey.GenSecKey(w); 
    addSome1DMatrices(secretKey); 
    EncryptedArray ea(context, G); 
    vector<long> v1; 
    v1.push_back(atoi(argv[1])); 
    Ctxt ct1(publicKey); 
    ea.encrypt(ct1, publicKey, v1);     
    v2.push_back(atoi(argv[2])); 
    Ctxt ct2(publicKey); 
    ea.encrypt(ct2, publicKey, v2); 
    Ctxt ctSum = ct1; 
    ctSum += ct2; 
}

Code for homomorphic addition of two integers

Manually written  
using HElib

Input to Cingulata  
(a HE compiler)



Our Contributions (1/2)

HE application

Homomorphic 
Compiler

• Generates HE applications automatically

Application

Hand-written 
rules

Automatic, Aggressive HE optimization Framework

• Optimization : several hand-written rules• Optimization : machine found rules by program synthesis + applying by term rewriting

Program  
Synthesis

Term 
Rewriting

2.03 speedup×



Our Contributions (2/2)

• Learning Optimization Patterns by Program Synthesis 

• Applying Learned Patterns by Term Rewriting 

• Theorem : Semantic Preservation & Termination Guaranteed 

• Performance (vs state-of-the-art HE Optimizer) 

Optimized 19 out of 25 Applications (vs 15) 

x3.71 Speedup in Maximum (vs x3.0) 

x2.03 Speedup on Average (vs x1.53) 

• Open Tool Available : https://github.com/dklee0501/Lobster

Automatic, Aggressive HE optimization Framework

https://github.com/dklee0501/Lobster


Our Lobster…
Learning to Optimize Boolean circuit using Synthesis and TErm Rewriting

HE 
Compiler 
Front-end

Synthesis-based  
Rule Learner

Rule-based Optimization 
via Term-Rewriting

2. Online Optimization

1. Offline Learning

 Training 
Programs

 Training HE Applications

Input 
Program

…

Learned Opt. Patterns

Unoptimized HE Application

Optimized 
HE Application

• Offline Learning via Program Synthesis + Online Optimization via Term Rewriting



• Based on approximate common divisor problem 

•  : integer as a secret key 

•  : random integer 

•  : random noise for security

p
q
r ( ≪ |p | )

Simple HE Scheme

Encp( μ ∈ {0,1} ) = pq + 2r + μ
Decp(c) = (c mod p) mod 2
Decp(Encp(μ)) = Decp(pq + 2r + μ) = μ

• For ciphertexts , the following  
holds

μi ← Encp(μi)

Decp(μ1 + μ2) = μ1 + μ2
Decp(μ1 × μ2) = μ1 × μ2

• The scheme can evaluate all boolean circuits 
as  and  in  are equal to XOR  
and AND

+ × ℤ2 = {0,1}



• Noise increases during homomorphic operations.  

• For  μi = pqi + 2ri + μi

Performance Hurdle : Growing Noise

μ1 + μ2 = p(q1 + q2) + 2(r1 + r2) + (μ1 + μ2)
μ1 × μ2 = p(pq1q2 + ⋯) + 2(2r1r2 + r1μ2 + r2μ1) + (μ1 × μ2)

noise

• if (noise ) then incorrect results> p

double increase
quadratic increase



Multiplicative Depth : a Decisive Performance Factor

• Multiplicative depth : the maximum number of sequential multiplications from input to output
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What is HE optimization?

• Finding a new circuit that has smaller mult. depth
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HE optimization via Synthesis
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Program Synthesis
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HE optimization via Synthesis

same semantics depth-restricting syntax

Constraints Syntax+
Optimizing 
Synthesis

Desired 
program 

optimized HE circuit
depth 4 depth 3



Hurdle : Synthesis Scalability

Optimizing 
Synthesis

too slow



Solution1 : Synthesis via Localization
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Optimizing 
Synthesis

Solution1 : Synthesis via Localization



scalable

Optimizing 
Synthesis

Solution1 : Synthesis via Localization



Solution1 : Synthesis via Localization

Optimizing 
Synthesis

Replace



Solution 2: Learning Successful Synthesis Patterns

• Offline Learning 
Collect successful synthesis patterns 

• Online Optimization 
Applying the patterns by term rewriting



Offline Learning to Collect Opt. Patterns
Offline Learning Cycle
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Offline Learning to Collect Opt. Patterns
Offline Learning Cycle Training 

HE Applications

186 Opt. patterns

Collected 
Opt. Patterns



Learned Optimization Patterns : examples



Online Rule-based Optimization
Offline Learning Cycle

Learned 
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Online Rule-based Optimization
Offline Learning Cycle

Apply 
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HE application



Online Rule-based Optimization
Offline Learning Cycle

Apply 
Opt. Patterns

Replace

Input 
HE application



Applying Learned Optimization Patterns (1/2)
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Applying Learned Optimization Patterns (1/2)
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New Input Circuit  
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Syntactic Matching is Not Effective



Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns
Formal properties

Applying an  
opt. pattern

…

(Soundness) semantics unchanged

(Termination) finitely many rule applications



Lobster Performance (1/5)

• 25 HE algorithms from 4 sources 
Cingulata benchmarks 
Sorting benchmarks 
Hackers Delight benchmarks 
EPFL benchmarks

Benchmarks

2 HE friendly algorithms 
(medical, sorting)

4 privacy-preserving sorting algorithms 
(merge, insert, bubble, odd-even)

12 Homomorphic  
bitwise operations

7 EPFL combinational benchmark suite 
(to test circuit optimizer)



Lobster Performance (2/5)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

Cingulata  
benchmarks

Sorting 
benchmarks

Hackers Delight 
benchmarks

EPFL benchmarks



Lobster Performance (2/5)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

Hand-written-rule based 
HE circuit optimizer



Lobster Performance (2/5)
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Speedup Depth Reduction
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Lobster Performance (2/5)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

Optimized 15 benchmarks Optimized 19 benchmarks



Lobster Performance (2/5)
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x3.71 speedup
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Lobster Performance (2/5)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

x2.03 speedupx1.53 speedup



Lobster Performance (2/5)
Optimization Results of Lobster and the baseline
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15.7% 21.9%



Lobster Performance (2/5)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

Machine-found optimization rules can 
work better than hand-written rules



Lobster Performance (3/5)
Efficacy of Reusing Learned Optimization Patterns
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Lobster Performance (3/5)
Efficacy of Reusing Learned Optimization Patterns

Depth Reduction

Optimized 13 benchmarks Optimized 19 benchmarks



Lobster Performance (3/5)
Efficacy of Reusing Learned Optimization Patterns

Depth Reduction

10.0% 21.9%



Lobster Performance (3/5)
Efficacy of Reusing Learned Optimization Patterns

Depth Reduction

Reusing the learned patterns 
improves the scalability of Lobster



Lobster Performance (4/5)
Effectiveness of Equational Term Rewriting
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Lobster Performance (4/5)

Depth Reduction

Optimized 9 benchmarks Optimized 19 benchmarks

Effectiveness of Equational Term Rewriting



Lobster Performance (4/5)

Depth Reduction

17.3% 21.9%

Effectiveness of Equational Term Rewriting



Lobster Performance (4/5)

Depth Reduction

Equational term rewriting allows  
to flexibly apply the learned patterns

Effectiveness of Equational Term Rewriting



Depth Reduction

Effectiveness of Equational Term Rewriting
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Figure 5. E�cacy of equational rewriting
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Figure 6. Sensitivity to changes in a training set; comparison
of the result of two-fold cross validation with that of leave-
one-out cross validation

matching instead of equational matching when conducting
term rewriting and applies the learned rules without the
normalization process. Fig. 5 summarizes the results. The
variant can optimize only 9 benchmarks (L������ can opti-
mize 19). We conclude that overall, the rule normalization
and equational term rewriting play crucial roles in giving
�exibility to the rewriting procedure.

5.6 Sensitivity to Changes in a Training Set
We now investigate the e�ects of changing the number of
training programs. We have conducted 2-fold cross valida-
tion; for each of four benchmark categories (Cingulata, Sort-
ing, HD, EPFL), we used rules learned from the smaller half
and applied them to the other larger half, and compare with
the result of leave-one-out cross validation. The 14 bench-
marks on the x-axis in Fig. 6 are testing benchmarks, and
the other 11 benchmarks are training benchmarks. As can
be seen in Fig. 6 that summarizes the results, the smaller
set of tranining programs does not lead to signi�cant per-
formance degradation. The cardio, cavlc, i2c, int2float and
router benchmarks observe optimization e�ects less power-
ful than before, but the other benchmarks remain the same.
We conclude that overall, the performance of L������ is not
sensitive to changes in a given set of training programs.

6 Related Work
FHE Compilers. FHE compilers [4, 15, 22, 23] allow pro-

grammers to easily write FHE applications without detailed
knowledge of the underlying FHE schemes. These compilers
also provide optimizations for reducing the multiplicative
depth of the compiled circuits. However, the optimization
rules used bymodern FHE compilers are hand-written, which
requires manual e�ort and is likely to be sub-optimal. In this
paper, we aimed to automatically generate optimization rules
that can be used by existing compilers.

Cingulata [15] is an open-source compiler that translates
high-level programs written in C++ into boolean circuits.
Cingulata also supports optimization of circuits for reduc-
ing multiplicative depth. It uses ABC [12], an open-source
boolean circuit optimizer. Cingulata also usesmore advanced,
yet hand-written, circuit optimization techniques specially
designed for minimizing multiplicative depth [5, 14]. In par-
ticular, the multi-start heuristic by Carpov et al. [14], which
we used for comparison with L������ in Section 5, shows a
signi�cant reduction in multiplicative depths for their bench-
marks. However, we note that the benchmark circuits used
in [14] are “intendedly suboptimal to test the ability of opti-
mization tools” [1]. By contrast, the benchmarks used in this
paper include circuits that are already carefully optimized in
terms of FHE evaluation as explained in Section 5.1, thereby
leaving relatively small room for depth reduction. We ob-
serve the heuristic in [14] does not perform verywell for such
a harder optimization task. We recently implemented Aubry
et al. [5] and observed that Aubry et al. [5] is slightly better
than Carpov et al. [14] (16.9% vs. 15.7% in terms of geometric
mean of depth reduction ratio) for our benchmarks.

R������� [4] is a compiler for translating programs writ-
ten in Julia into circuits for homomorphic evaluation. It opti-
mizes the size and multiplicative depth of the circuits using
symbolic execution. It also automatically selects the parame-
ters of FHE schemes and the plain text encoding for input

Lobster Performance (5/5)
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matching instead of equational matching when conducting
term rewriting and applies the learned rules without the
normalization process. Fig. 5 summarizes the results. The
variant can optimize only 9 benchmarks (L������ can opti-
mize 19). We conclude that overall, the rule normalization
and equational term rewriting play crucial roles in giving
�exibility to the rewriting procedure.

5.6 Sensitivity to Changes in a Training Set
We now investigate the e�ects of changing the number of
training programs. We have conducted 2-fold cross valida-
tion; for each of four benchmark categories (Cingulata, Sort-
ing, HD, EPFL), we used rules learned from the smaller half
and applied them to the other larger half, and compare with
the result of leave-one-out cross validation. The 14 bench-
marks on the x-axis in Fig. 6 are testing benchmarks, and
the other 11 benchmarks are training benchmarks. As can
be seen in Fig. 6 that summarizes the results, the smaller
set of tranining programs does not lead to signi�cant per-
formance degradation. The cardio, cavlc, i2c, int2float and
router benchmarks observe optimization e�ects less power-
ful than before, but the other benchmarks remain the same.
We conclude that overall, the performance of L������ is not
sensitive to changes in a given set of training programs.

6 Related Work
FHE Compilers. FHE compilers [4, 15, 22, 23] allow pro-

grammers to easily write FHE applications without detailed
knowledge of the underlying FHE schemes. These compilers
also provide optimizations for reducing the multiplicative
depth of the compiled circuits. However, the optimization
rules used bymodern FHE compilers are hand-written, which
requires manual e�ort and is likely to be sub-optimal. In this
paper, we aimed to automatically generate optimization rules
that can be used by existing compilers.

Cingulata [15] is an open-source compiler that translates
high-level programs written in C++ into boolean circuits.
Cingulata also supports optimization of circuits for reduc-
ing multiplicative depth. It uses ABC [12], an open-source
boolean circuit optimizer. Cingulata also usesmore advanced,
yet hand-written, circuit optimization techniques specially
designed for minimizing multiplicative depth [5, 14]. In par-
ticular, the multi-start heuristic by Carpov et al. [14], which
we used for comparison with L������ in Section 5, shows a
signi�cant reduction in multiplicative depths for their bench-
marks. However, we note that the benchmark circuits used
in [14] are “intendedly suboptimal to test the ability of opti-
mization tools” [1]. By contrast, the benchmarks used in this
paper include circuits that are already carefully optimized in
terms of FHE evaluation as explained in Section 5.1, thereby
leaving relatively small room for depth reduction. We ob-
serve the heuristic in [14] does not perform verywell for such
a harder optimization task. We recently implemented Aubry
et al. [5] and observed that Aubry et al. [5] is slightly better
than Carpov et al. [14] (16.9% vs. 15.7% in terms of geometric
mean of depth reduction ratio) for our benchmarks.

R������� [4] is a compiler for translating programs writ-
ten in Julia into circuits for homomorphic evaluation. It opti-
mizes the size and multiplicative depth of the circuits using
symbolic execution. It also automatically selects the parame-
ters of FHE schemes and the plain text encoding for input

Lobster is not very sensitive to changes  
in a training set.



In the Paper…

• Detailed description of synthesis via localization 

• Formalized Equational Term Rewriting 

• Detailed description of experiment results

Thank you!


