
Received April 29, 2022, accepted May 19, 2022, date of publication May 25, 2022, date of current version June 1, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3177841

Datalog Static Analysis in Secrecy
MOJGAN KOUHOUNESTANI AND WOOSUK LEE
Department of Computer Science and Engineering, Major in Bio Artificial Intelligence, Hanyang University, Ansan 15588, South Korea

Corresponding author: Woosuk Lee (woosuk@hanyang.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) funded by the Korea Government [Ministry of
Science and ICT (MSIT)] under Grant 2020R1C1C1014518 and Grant NRF-2021R1A5A1021944, in part by the Institute for Information
& Communications Technology Promotion (IITP) funded by the Korea Government (MSIT) under Grant 2021-0-00758, and in part by the
Research Fund of Hanyang University under Grant HY-2020-2474.

ABSTRACT We present a secure static-analysis-as-a-service (SaaaS) system where a client may outsource
static analysis to the cloud. To address copyright concerns associated with SaaaS, clients are allowed to
encrypt the source code of a target program and upload it to the cloud. Our goal is to secure the privacy
of the design and implementation of static analysis as well as the source code of the target program.
Considering a family of static analyses written in Datalog, we propose a generic protocol that combines
homomorphic encryption (HE)with secure two-party computation tomanage the huge cost of HE operations.
The server occasionally delegates sub-parts of analysis which are costly in the cipher-world to the client
without exposing the design of analysis. During server-client interactions, the information of both sides
(client and server) is not leaked to the opposite. We evaluated our system on two static analyses in Datalog in
secrecy, which have not been feasible using the previous techniques. For example, Andersen pointer analysis
is completed in an average of 45 mins for 14 C programs comprising up to 1.6 KLoC.

INDEX TERMS Datalog, homomorphic encryption, privacy-preserving software-as-a-service, static
analysis, secure two-party computation.

I. INTRODUCTION
There have been two ways for a user to adopt a static
analysis tool in software development to identify potential
bugs for improving software quality. One way is to run
the static analyzer in the user’s self-hosted environment.
In this way, the user downloads an open-source tool,
or purchases/subscribes to a license to have free access to an
on-premise version of a commercial tool. The other way is to
use software-as-a-service (SaaS) applications [1]–[4] where
the user uploads the target program to the cloud and gets the
analysis result back.

From a perspective of two-party computation where two
parties (here, the user and the analysis provider) jointly
compute a result on their inputs, either of the two parties
inevitably reveals its secret to the opposing party. On one
hand, the design and implementation of a static analysis
may be revealed to the user when the user has free access
to the analyzer. On the other hand, the source code of the
target program to be analyzed may be exposed to the analysis
provider when the static analysis is outsourced to the cloud.

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro R. M. InáCio .

If static analysis can be performed without sharing any
information between the two (called static analysis in
secrecy [5]), the usability of static analysis will be improved
in the following two aspects.

• No copy-right concerns: The user can upload the
target program to a static-analysis-as-a-service (SaaaS)
system without any copy-right concerns. This gives
better flexibility to the user who can promote the cost
savings by the cloud (e.g., payment per Line of Code
(LoC) [4]) rather than on-premise systems.

• Security enhancement: Static analysis-based malware
detection mechanisms need to be unknown to malware
developers as much as possible to prevent evasive
malware [6], [7]. Attackers have a vested interest in
crafting their code to evade the detection of analysis
tools through mechanisms such as code obfuscation,
while remaining effective at exploiting benign users.
Maintaining security of detection mechanisms can
hamper such attempts.

One immediate method for achieving this goal is to use
Fully Homomorphic Encryption (FHE) [8]. FHE allows
for computation on encrypted data without requiring the
decryption key. Using FHE, the program owner can encrypt

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 56179

https://orcid.org/0000-0001-7935-6410
https://orcid.org/0000-0002-1884-619X
https://orcid.org/0000-0001-8221-0666

M. Kouhounestani, W. Lee: Datalog Static Analysis in Secrecy

and upload the program to the static analysis service while
the service provider can still analyze the encrypted program
without decryption. Only the owner of the decryption key (the
program owner) can decrypt the encrypted analysis result.
It is theoretically guaranteed that no information is shared
between the two.

However, this method is not immediately applicable in
practice due to the high complexity of HE operations.
Practical deployments of HE applications require application-
specific optimizations. In a wide range of application
domains such as image recognition [9], statistical analy-
sis [10], bioinformatics [11], and database [12], application-
specific techniques have been proposed to make FHE
applications practical.

A. EXISTING APPROACH
The first proof-of-concept study of static analysis in secrecy
has been done by Lee et al. [5]. They proposed a method
for pointer analysis in secrecy. In their approach, a pointer
analysis algorithm is represented as a sequence of additions
and multiplications over integers (i.e., arithmetic circuit), and
a HE scheme is used to evaluate the arithmetic operations in
the cipher-world.

The decisive performance bottleneck in homomorphic
computation over arithmetic circuits is the nested depth of
multiplications [5], which is simply the maximum number of
sequential multiplications required to perform the computa-
tion. For example, the arithmetic circuit c(x1, x2, x3, x4, x5) =
(((x1x2)x3)x4) + x5 has multiplicative depth 3. The lower
the multiplicative depth is, the more efficiently a circuit can
be evaluated. For example, we can optimize c by replacing
it with c′(x1, x2, x3, x4, x5) = (x1x2)(x3x4) + x5 that has
depth 2.

Despite application-specific techniques specialized for
pointer analysis, they proposed to reduce the maxi-
mum multiplicative depth, analyzing even tiny programs
(∼300 LoC) takes a huge amount of time to the high com-
plexity of HE operations. The main reason for the high com-
plexity is as follows. Static analysis performs a fixed point
computation. Since the server cannot knowwhether a fixpoint
is reached during the fixpoint iterations, it should repeat the
iterations as if in the worst case. This worst-case fixpoint iter-
ation significantly degrades the overall performance of homo-
morphic evaluations by necessitating a large multiplicative
depth.

B. OUR APPROACH
Contrast to the prior work, we propose an efficient
method for a broader class of static analyses in secrecy.
We target static analyses written in a subset of Datalog.
Thanks to its concise and declarative nature and power-
ful fixed point frameworks [13], [14], Datalog has been
popularly used to write sophisticated static analyses for
highly precise pointer analysis [15], detecting common
security vulnerabilities [16] and malware [17] among many
others.

FIGURE 1. Overview of our protocol.

In particular, we consider a subset of Datalog where each
recursive rule is of the form (known as tail-recursive or linear
recursive)

R1(u1)← R2(u2),R1(u3).

where the Ri are relation names (i.e., predicates) and the ui
are argument tuples. And there are no constraints over non-
recursive rules. This family includes useful standard static
analyses such as pointer analysis and escape analysis which
will be detailed in Section II-C.

Our key insight for efficiency is to reduce the cost
of homomorphic evaluation of a linear recursive rule by
delegating a sub-part of computation which is costly in
cipher-world to the client. The client can easily compute the
sub-part, and send the result to the server, followed by HE
operations to complete the rule evaluation on the server-side.
During the interaction, the server and client never reveal their
secret to the opposing party.

Figure 1 depicts our secure protocol. First, the client
provides the program information to the server after encryp-
tion. Then, the server performs a static analysis on it
by evaluating Datalog rules in cipher-world. During the
evaluation in secrecy, the server occasionally delegates a sub-
part of computation, namely a function f , which is costly
in cipher-world to the client. This interaction is depicted in
Figure 1 with the dotted blue strokes. Suppose the server
wants to apply the f function to the ciphertext of x, which
is an intermediate analysis result. A simple method for
the delegation is to send the ciphertext of x to the client,
who decrypts it, applies f , and sends back the ciphertext
of the result to the server. However, x may contain partial
information from which the client may infer the design of
the analysis. To prevent such an information leak, the server
homomorphically obfuscates x with a random one-time pad
and obtains ciphertext of x? before the delegation. After
decryption, the client can infer no information about the
analysis design from x?, which looks different from x. The

56180 VOLUME 10, 2022

M. Kouhounestani, W. Lee: Datalog Static Analysis in Secrecy

client applies the expensive function f , obtains f (x?), and
then sends back ciphertext of it to the server. The server
homomorphically deobfuscates it to obtain the ciphertext of
f (x), which is the desired result. This process is repeated
until the server obtains a final analysis result. After the
analysis is complete, the server returns the encrypted analysis
result to the client, who can inspect the final results after
decryption.

We evaluate our method by performing two standard
Datalog analyses in secrecy: escape analysis for Java
being used in Petablox [18], a program analysis platform,
and Andersen pointer analysis for C. Our method shows
viable performance. For example, for 10 Java programs
(∼ 700 LoC), escape analysis in secrecy is completed in
an average of 75 mins. For 14 C programs (∼ 1.6 KLoC),
our Andersen pointer analysis in secrecy is completed in an
average of 45 mins. On the other hand, even for the smallest
one (290 LoC) among the 14 programs, the previous method
for Andersen pointer analysis in secrecy takes over 6 hours.

C. CONTRIBUTIONS
• A novel secure protocol for efficient evaluation of
Datalog rules in secrecy: we combine a novel secure
two-party computation protocol with homomorphic
encryption. Our secure two-party computation protocol
requires the client and the server to collaboratively
perform computation. At the cost of only slight overhead
on the client-side, our protocol is much more efficient
than the previous approach solely based on FHE.

• Confirming the method’s effectiveness: in the experi-
ments with five Datalog analyses, the method shows
viable performance which could not be achieved by the
previous technique.

D. OUTLINE
Section II defines the problem of datalog static analysis
in secrecy with the background concepts of homomorphic
encryption and Datalog. Section III describes a basic protocol
for datalog static analysis in secrecy, which is simple
but inefficient. Section IV presents an advanced protocol
that is much more efficient than the basic protocol in
Section III. Section V presents the experimental studies.
Section VI discusses related work. Section VII discusses how
to further improve scalability and security of our approach
and Section VIII concludes the paper.

II. PROBLEM DEFINITION
In this section, we define the problem of static analysis
in secrecy. We first provide background on homomorphic
encryption (Section II-A) and Datalog (Section II-B).
In Section II-C, the problem is formally stated.

A. HOMOMORPHIC ENCRYPTION
Homomorphic encryption (HE) enables arbitrary computa-
tion over encrypted data. This enables secure outsourcing of
computation where an untrusted third party, such as a cloud

provider, performs computation over a client’s private data
without obtaining any (even partial) information of it.

In this paper, we consider HE schemes that operate
over integers and are homomorphic concerning addition
and multiplication. A fully homomorphic encryption (FHE)
scheme with integer plaintext space Zw = {0, 1, · · · ,w −
1} (where w is a positive integer) can be described by the
interface:

Encpk : Zw → � Decsk : �→ Zw
Addpk : �×� → � Mulpk : �×�→ �

where pk is a public key, sk is a secret key, � is a ciphertext
space (e.g. large cardinality set such as Zt , i.e., integers
modulo an integer t). For all plaintexts m1,m2 ∈ Zw, the
interface should satisfy the following algebraic properties:

Decsk (Addpk (Encpk (m1), Encpk (m2))) = m1 + m2,

Decsk (Mulpk (Encpk (m1), Encpk (m2))) = m1 × m2.

Example 1: As an example, let us consider a simple
symmetric version (where only a secret key is used for both
encryption and decryption) of the HE scheme [19] based on
approximate common divisor problems [20]:
• The secret key (sk) is a random integer p.
• For a plaintext m, Enc(m) outputs pq+wr +m, where q
and r are randomly chosen integers such that |r| � |p|.
r is a noise for ensuring semantic security [21].

• For a ciphertext c̄, Dec(c̄) outputs ((c̄ mod p) mod w).
• For ciphertexts c̄1 and c̄2, c̄1+̄c̄2 outputs c̄1 + c̄2.
• For ciphertexts c̄1 and c̄2, c̄1×̄c̄2 outputs c̄1 × c̄2.

For ciphertexts c̄1 ← Enc(m1) and c̄2 ← Enc(m2), we know
each c̄i is of the form c̄i = pqi + wri + mi for some integer
qi and noise ri. Hence Dec(c̄i) = (c̄i mod p) mod w) = mi,
if |wri + mi| < p. Then, the following equations hold:

c̄1 + c̄2 = p(q1 + q2)+ w(r1 + r2)+ m1 + m2︸ ︷︷ ︸
noiseAdd

c̄1 × c̄2 = p(pq1q2 + · · ·)

+w(wr1r2 + r1m2 + r2m1)+ m1m2︸ ︷︷ ︸
noiseMult

Based on these properties, we can show that

Dec(c̄1 + c̄2) = m1 + m2 and Dec(c̄1 × c̄2) = m1 · m2

if the absolute values of noiseAdd and noiseMult are less
than p.

The random noise injected with ciphertexts to ensure
security should be properly managed to certify the cor-
rectness of homomorphic evaluation. In the above example
scheme, the noise in the resulting ciphertext increases
during homomorphic addition and multiplication (twice and
quadratically as much noise as before respectively). If the
noise becomes larger than p, the decryption may return a
random garbage value. To prevent such situations, one may
set parameters (e.g., p in the example scheme) of HE schemes
large enough. However, larger parameter values increase the

VOLUME 10, 2022 56181

M. Kouhounestani, W. Lee: Datalog Static Analysis in Secrecy

memory footprint of ciphertexts and require more compute
resources to operate over large-sized ciphertexts.

Because multiplication dominates noise growth, the per-
formance of homomorphic evaluation is often measured by
the maximum multiplicative depth of evaluated arithmetic
circuits. The maximum multiplicative depth influences the
parameters of a HE scheme. Minimizing the multiplicative
depth results in not only smaller ciphertexts but also less
overall execution time. For example, if we support a few
numbers of consecutive multiplications, the secret key p
can be small in the above example HE scheme, leading to
less overall computational costs. Many FHE schemes are
leveled (also called somewhat homomorphic) in that, for fixed
encryption parameters they only support computation of a
particular depth.1

Note that any arithmetic circuit that performs up to n
consecutive multiplications on ciphertexts can be evaluated
by HE schemes supporting O(log n) multiplicative depth. For
example, suppose we aim to acquire the product of an array
of n ciphertexts. We can recursively cut the array in half and
multiply the two halves, resulting in O(log n) depth.

B. DATALOG
Let us assume there are fixed sets of variables, constants, and
relation symbols (i.e., predicates) each of which is associated
with an arity. For brevity, we assume every constant is an
integer.2 An atom is an application of a relation symbol to
a vector of variables and constants, e.g., r(x, y) for a relation
r with arity 2. A ground atom is an application of a relation
symbol to constants. A Datalog rule R is an expression of the
form:

A :- B1,B2, · · · ,Bn.

where A,B1, · · · ,Bn are atoms. The literal to the left of the
‘‘:-’’ operator is called the head. On the other hand, the literals
on the right hand side form the rule body. A Datalog rule
can be interpreted as a logical implication where all variables
are universally quantified: ‘‘For all variable valuations,
if B1, · · · ,Bn are true, so is A’’. A Datalog program is a
finite set of rules P = {R1,R2, · · · ,Rn}, and we will denote
P(r) as a set of rules of which head is of relation symbol r .
There are two kinds of relation symbols: the input relations
I whose contents are given, and the output reationsO whose
contents are derived from the input relations by evaluation of
the program P. Only output relations can appear in the head
of a rule. We use I to denote the set of facts (ground atoms) in
the input relations. The Herbrand Base B denotes all possible
applications of the output relations to vectors of constants in
I . A Datalog program is recursive if a relation symbol appears
in both the head and the body of a rule.

1A leveled scheme may be turned into a fully homomorphic one by
introducing a bootstrapping operation [8], which is computationally heavy.
Thus, we only consider somewhat HE schemes in this paper.

2We assume constants of other types can be transformed into integers
using a numbering scheme (e.g., hashing).

Evaluating P on I yields a minimal Herbrand model,
which is the smallest ground atoms satisfying the rules in
P and input I . Informally, one can obtain such a model by
starting with the input tuples I and repeatedly instantiating
the variables of each rule to derive new output tuples, until
no further conclusions can be added. We will write P(I) for
the set of output tuples (i.e., a minimal Herbrand model)
produced by a Datalog program operating on a set of input
tuples I .

C. PROBLEM FORMULATION
1) A SUBSET OF DATALOG OF INTEREST
In this work, we are interested in a subset of Datalog where
each rule is either of the following forms:

r(Ex0) :- r1(Ex1), . . . , rn(Exn). (1)

where the Exi are vectors of variables of arity 2, or

r(x, y) :- p(x, z), r(z, y). (2)

In other words, every relation is binary without negation,3

and every recursive rule is linear in that the head relation of a
rule appears only once in the body of the rule. This subset of
Datalog is called linear Datalog [22].

2) PROBLEM
We assume that a program owner (i.e., client) and an analysis
provider (i.e., server) are semi-honest. In this security model,
the client and the server run the protocol exactly as specified,
but may try to learn as much as possible about the analysis
design and the program information, respectively.

We aim to create a generic protocol that allows both parties
to jointly perform the analysis on the target program with the
following security requirements.
• The analysis provider can learn no information about
the target program other than the program size (more
precisely, the size of the Herbrand Base B).

• The client can learn no information of the analysis other
than input/output relation symbols (i.e., I and O) and
their associated arities (i.e., relational schema).

III. BASIC METHOD
In this section, we present a basic method for Datalog
evaluation in secrecy which the prior work [5] is based
on. In this method, an integer arithmetic circuit of a
Datalog program is designed only using integer additions and
multiplications. The program owner encrypts some numbers
representing her program under a HE scheme. On the
encrypted data, the server performs a series of corresponding
homomorphic operations referring to the arithmetic circuit
and outputs encrypted pointer analysis results. This basic
approach is simple but very costly.

3Handling n-ary relations where n > 2 is left for future work. About
negation, our approach is applicable to Datalog programs with stratified
negation, as negated atoms ¬r(x, y) can be encoded as r ′(x, y) such that
∀x, y. ¬r(x, y) ⇐⇒ r ′(x, y) for a new relation symbol r ′.

56182 VOLUME 10, 2022

M. Kouhounestani, W. Lee: Datalog Static Analysis in Secrecy

In the next section, a more efficient method improved upon
the basic one will be described.

A. A LINEAR ALGEBRAIC APPROACH TO DATALOG
The basic method is based on a linear algebraic approach that
encodes relations as matrices and obtains the least solution of
a Datalog program P given input I by performing operations
over the matrices. We begin with some notations.

1) NOTATIONS
We first introduce a matrix encoding of relations. From
now on, matrices are denoted by boldface uppercase letters
like ‘‘A’’. In particular, I is an identity matrix, and 0
is the zero matrix. For a matrix A = [aij], we write
(A)ij = aij to denote the element of A at i-th row and
j-th column. We introduce an operator norm for matrices,
|A|∞ = maxi

∑
j |aij|, which means the maximum sum of

entries in a row. In addition, we use a non-linear function

notZero(x) defined by notZero(x) =
{
1 x 6= 0
x (o.w.)

For a

matrix A = [aij], we denote notZero(A) as the result of
component-wise application of the notZero function into
the entries, i.e., [notZero(aij)]. Let N be the number of all
constants considered in the Datalog program P. We introduce
N × N matrices Rr ∈ {0, 1}N×N for each relation symbol r
to encode binary relations of form r(·, ·) where

(Rr)ij =

{
1 r(i, j) ∈ P(I)
0 (otherwise.)

In other words, if the entry of matrix Rr at i-th row and j-th
column is not zero, we conclude r(i, j) can be derived from
the initial input I by evaluating the Datalog program P.
With these concepts, we are ready to formulate evaluation

of Datalog programs as consecutive matrix operations. For
rules of type (1), we introduce matrices Rr ,Rr1 , · · ·Rrn
that encode relations of forms r(·, ·), r1(·, ·), · · · , rn(·, ·)
respectively. Then, the following equation should hold.

Rr = notZero(R◦r1R
◦
r2 · · ·R

◦
rn) (3)

where R◦ri is either R
T
ri or Rri .

Example 2: Consider the task of identifying sibling nodes
in a directed graph. Two nodes x, y are sibling if there exist
edges from x to z and y to z for some node z. The problem
involves one input relation edge and one output relation
sibling with the following meaning:
• edge(x,y) : there is an edge from node x to y.
• sib(x,y) : node x are y are sibling.

Suppose the user populates the input relation as follows:

edge(1, 2), edge(2, 3), edge(3, 1), edge(4, 1).

Then, Redge =


0 1 0 0
0 0 1 0
1 0 0 0
1 0 0 0

. The Datalog rule for identifying
siblings is

sib(x, y) :- edge(x, z), edge(y, z).

We can obtain the least solution as follows:

Rsib = notZero(Redge · RT
edge) =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 1

 ,
which means that we have the following output relations as a
result.

sib(1, 1), sib(2, 2), sib(3, 3), sib(4, 4), sib(4, 3), sib(3, 4).
For a recursive rule of type (2), similarly we introduce

matrices Rr and Rp encoding relations r(·, ·) and p(·, ·).
We may well assume there is at least one non-recursive rule
whose head involves r (otherwise, no ground atoms for r
could be derived). Let R′r denote the resulting matrix after
evaluating the non-recursive rules. Then, for the recursive rule
of type (2), the following equation should hold.

Rr = notZero(R′r + RpRr) (4)

The least solution of (4) gives r(·, ·) in the least model
P(I). Here, ‘‘least’’ means the ordering among matrices
defined by for A = [aij] and B = [bij], A v B iff
∀i, j. aij ≤ bij. To obtain the least solution, we define a series
of monotonically increasing matrices {R(k)

r }k=0,1,···

R(0)
r = 0 (matrix with every element 0)

R(k+1)
r = notZero(R′r + RpR(k)

r) (5)

{R(k)
r } converges within N iterations. It is customary to prove

that the limit limk→∞{R
(k)
r } gives the least solution of (4).

Example 3: Suppose we want to compute transitive clo-
sure of the graph in Example 2. The problem involves one
input relation edge described in Example 2 and one output
relation path where path(x, y) means there exists a path from
node x to y. The Datalog rules for computing transitive
closure is

path(x, y) :- edge(x, y).

path(x, z) :- path(x, y), edge(y, z).

Given the input relations in Example 2, we can obtain the
least solution after 4 iterations (starting from R(0)

path = 0).
We conclude {path(i, j) | 1 ≤ i ≤ 4, 1 ≤ j ≤ 3} is the set of
final output relations.

In summary, we can compute the least solution of P by
repeatedly updating Rr for each output relation symbol r
according to equations (3) and (5) until saturation.

B. BASIC PROTOCOL
Now we present the basic protocol for Datalog analysis in
secrecy based on the linear algebra approach in the previous
section.

To handle matrices, we make an additional assumption
over an underlying HE scheme; it is capable of encrypting
matrices and performing homomorphic operations over the
matrices.

VOLUME 10, 2022 56183

M. Kouhounestani, W. Lee: Datalog Static Analysis in Secrecy

1) HOMOMORPHIC MATRIX OPERATIONS
Many modern HE schemes [23], [24] allow to efficiently
encrypt matrices and perform various operations such as
addition, multiplication, and transposition over the encrypted
matrices. Those schemes allow a vector of plaintext integers
to be encrypted into a single ciphertext with operations
behaving in a SIMD manner (known as ciphertext packing).
Therefore, one can represent a matrix as multiple vectors
in either row-major order or column-major order, encrypt
each vector, and efficiently perform homomorphic SIMD
operations over the ciphertexts (see [25], [26] for more
details).

Assuming such a HE scheme is available, from now on,
we will denote an encrypted version of a matrix A as A. With a
slight abuse of notation, we will denote+ and · as homomor-
phic matrix-matrix addition and multiplication respectively
to simplify the presentation. The homomorphic matrix
transposition operator will be denoted as HE.MatTrans.
In terms of noise growth, matrix multiplication is significant
whereas the other operations are negligible.

Fig. 2 depicts the basic protocol. The server has a Datalog
program P (i.e., analysis), and the client has a target program.
The server and client share the information of the input and
output relation symbols I and O, and the number N of all
constants in a target program.

The client first populates input relations from the target
program, represents them as matrices, and encrypts the
matrices and sends them to the server (Program Encryption
in Fig. 2).

Next, the server performs Datalog analysis in secrecy
(Analysis in Secrecy in Fig. 2). It initializes the matrices
of output relations to be encrypted zero matrices (line 1),
and repeats the main loop (lines 2 – 8) N 2 times. The main
loop incrementally updates matrices of output relations by
homomorphically evaluating each rule in P. If a currently
considered rule whose head involves r is non-recursive
(line 4), it updates Rr according to the equation (3)
(lines 5–6). If the rule is recursive (line 7), it updates Rr
according to the equation (5) (line 8). Note that the server
updates Rr N times because the server should evaluate the
rule as if in the worst case. Themain loop is repeatedN 2 times
because the server cannot know if a fixpoint is reached.
Specifically, a single iteration of the main loop can add at
least a single analysis fact (i.e., groud atom) to the analysis
result computed so far, and we may have at most N 2 ground
atoms for each output relation.

Lastly, the server sends the encrypted matrices for all
the output relations to the client, who decrypts each
matrix Rr and interprets each non-zero element Rij in the
matrix as an analysis fact r(i, j) (Output Determination in
Fig. 2).

C. LIMITATION OF THE BASIC PROTOCOL
The basic protocol suffers from a scalability issue in
practice due to the huge number of consecutive homomorphic

FIGURE 2. Basic protocol for datalog analysis in secrecy.

multiplications. For example, if we perform Andersen’s
pointer analysis in secrecy using the basic protocol, we would
need O(N 2 logN) multiplicative depth where N is the
number of pointer variables in a target program [5]. A toy
program having 10 variables requires an arithmetic circuit
of depth 300, which is infeasible to be homomorphi-
cally evaluated even by the state-of-the-art HE schemes.
Lee et al. [5] reduces the number of the main loop iterations
(lines 2 – 8) from N 2 to n where n is the maximum level
of pointer, which is very small (≤ 5) in usual C programs.
Despite this domain-specific optimization reducing the depth
from O(N 2 logN) to O(n logN), however, it takes over one
day to analyze even a tiny program of 40 variables.

IV. ADVANCED PROTOCOL
In this section, we present an advanced protocol that is
much more efficient than the basic protocol in Section III
The performance degradation of the basic protocol is caused
by the following two factors that increase the overall
multiplicative depth.
• Inefficient evaluation of linear recursive rules: For
each linear recursive rule, the server should perform
matrix-matrix multiplication N times consecutively.

• Worst-case fixpoint iterations: Since the server cannot
know if a fixpoint is reached, the analysis in secrecy
always assumes the worst-case regardless of actual
inputs.

We will show how to improve the above two compo-
nents with aid of the client. Section IV-A will describe
how to more efficiently evaluate linear recursive rules.

56184 VOLUME 10, 2022

M. Kouhounestani, W. Lee: Datalog Static Analysis in Secrecy

Section IV-B will explain how to avoid the always-worst-
case fixpoint iterations. Section IV-C will show a working
example to facilitate understanding of our protocol. Lastly,
Section IV-D will explain some optimizations additionally
applied to the protocol to improve efficiency in practice.

A. EFFICIENT HANDLING OF LINEAR RECURSION
Recently, a more efficient linear algebraic approach to
evaluation of linear recursive rules has been proposed [27].
Consider the following alternative to the equation (4)

Rr = ε(R′r + RpRr) (6)

where ε is a small number such that (I − εRp)−1 exists, for
example 0 < ε < 1

|Rp|∞
. The least solution of (6) is the limit

of series {Rk
r }k=0,1,··· which is defined to be

R(0)
r = 0

R(k+1)
r = ε(R′r + RpR(k)

r).

In other words, R(∞)
r = ε(R′r + RpR

(∞)
r). Because

(I − εRp)−1 exists,

R(∞)
r = (I − εRp)−1εR′r . (7)

Theorem 1 (From [27]): Suppose 0 < ε ≤ 1
|Rp|∞+1

.

The least solution of (4) is equal to the conversion of
(I−εRp)−1εR′r to a 0-1 matrix by thresholding matrix entries
at 0.
Example 4: Recall the transitive closure computation in

Example 3. As |Redge|∞ = max{1, 1, 1, 1} = 1, we can set ε
to be (1+ |Redge|∞)−1 = 1

2 . We can obtain the least solution
Rpath as follows:

(I − εRedge)−1εRedge

=



1 −
1
2

0 0

0 1 −
1
2

0

−
1
2

0 1 0

−
1
2

0 0 1



−1

0
1
2

0 0

0 0
1
2

0

1
2

0 0 0

1
2

0 0 0



=


0.1428 0.5714 0.2857 0
0.2857 0.1428 0.5714 0
0.5714 0.2857 0.1428 0
0.5714 0.2857 0.1428 0

 .

By conversion to a 0-1 matrix, Rpath =


1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0

.
This new method (7) for linear recursion is more effi-

cient than the basic method (5) since the worst-case time
complexity of computing (7) is O(N 3), whereas that of the
basic method is O(N 4). Because the cost of homomorphic
evaluation follows the worst-case complexity, we could take
advantage of this new method to expedite our analysis in
secrecy.

However, the problem here is that computing (7) involves
matrix inversion (due to (I − εRp)−1), and to the best
of our knowledge, there is no known efficient method for
homomorphic matrix inversion.4

We can solve this problem by delegating the matrix
inversion to the client. To simplify notations from now on,
let us introduce a function Prep which is defined as follows:

Prep()R def
= (I − εR)−1.

Using this notation, our goal is written as to delegate
computation of Prep(Rp) to the client. If the server gives
the ciphertext of Rp to the client asking it for computing
Prep(Rp) and sending back ciphertext of it, the server will
be able to just multiply the result by ciphertext of R′r to
obtain the final evaluation result of the linear recursive rule.
This trick would drastically reduce the depth by replacing
the previous N matrix multiplications in (5) by single matrix
multiplication.

Unfortunately, this method potentially introduces a secu-
rity threat. The problem here is that Rp may contain partial
information of the analysis design if it has been derived as an
evaluation result of other Datalog rules. Thus, the client can
potentially infer the analysis design by inspecting Rp.
Our key idea to solve this security issue is to let the server

obfuscate ciphertext of Rp before giving it to the client. The
server and the client perform the following steps.

1) The server determines ε = 1
t and shares it with the

client. Here, t is a random large positive integer such
that for every relation r , the norm |Rr |∞ is smaller than
t during the analysis.

2) The server generates a random non-zero matrix A such
that (I + A)−1 exists.

3) The server computes

Rp(I + A)−
1
ε
A (8)

Let us denote the result by T .
4) The server sends T to the client, who gets T and

decrypts it.
5) The client computes Prep(T), sends the result to the

server after encryption. Let us call this encrypted
matrix K .

6) The server computes (I + A) · K .
Following the above steps, the server can get ciphertext of
Prep(Rp) without any security issues for the following reason.
When the client gets T , due to the random matrix (i.e., one-
time pad) A, it cannot infer any information ofRp. And, what
the server computes at the last step (6) gives ciphertext of
Prep(Rp) because

K = (I − εT)−1

= (I − ε(Rp + RpA−
1
ε
A))−1

4We are aware of a method for homomorphic computation of matrix
determinant [28], but do not know of any prior work of efficient
homomorphic matrix inversion.

VOLUME 10, 2022 56185

M. Kouhounestani, W. Lee: Datalog Static Analysis in Secrecy

= (I + A− εRp − εRpA)−1

= ((I − εRp) · (I + A))−1

= (I + A)−1 · (I − εRp)−1

and

(I + A) · K = (I + A) · ((I + A)−1 · (I − εRp)−1)

= (I − εRp)−1

By multiplying it with a current Rr , the server can obtain a
newly updated Rr as a result of the homomorphic evaluation
of the linear recursive rule. This method is reflected in the
advanced protocol depicted in Fig. 3.
Remark: In many integer HE schemes, the plaintext

space is often defined as non-negative integers modulo
some integer w, i.e., Zw. When the server computes T , the
matrix may contain negative integers as 1

ε
= t in the

expression (8) is a large integer. This issue can be easily
solved by interpreting integers in the range of [w/2,w) as
negative ones. In other words, the plaintext can be adjusted
to integers in [−w/2,w/2). In addition, in the above step,
K may contain real numbers since ε is a real number,
thereby requiring homomorphic operations over real number
entries on the server side. Modern integer FHE schemes
can support fixed-point arithmetic with an explicit scaling
factor. For instance, we can represent 3.14 as 314 with
scale 100 (n denotes a ciphertext of n).5 Lastly, care is
needed when determining t . It should not be too large to
prevent underflow when computing (8). If any matrix entry
becomes smaller than −w

2 , underflow occurs and the entry
may suddenly become positive. Possible mitigation to this
potential issue is to set w to be an even larger integer when
determining the plaintext space so that it can be much greater
than t .

B. AVOIDING THE ALWAYS-WORST-CASE ITERATIONS
We avoid the always-worst-case iterations by resorting
to server-client interactions. We apply the semi-naive
method [22] into our setting, but at a coarse granularity;
we are at the level of relation symbols instead of ground
tuples. Instead of using the full content of all the relations
in each iteration as in the naive method, we only use the
content of relations which may be updated in each iteration.
Relation symbols of possible updates in each iteration can
be easily identified from dependencies between relations.
Specifically, the server first construct a precedence graph GP
of the Datalog program P prior to the analysis. The graph
GP visualizes dependencies between relations in P. Nodes in
GP are relation symbols, and edges are derived as follows:
if A :- . . .B . . . ∈ P, B → A is added as an edge in GP.
By referring to the graph, the server can homomorphically
evaluate each Datalog rule in order that guarantees the server

5The scaling factor may quickly grow with multiplication. The state-of-
the-art integer FHE schemes such as CKKS [23] enables ‘‘rescaling’’ to
address this issue. For example, it can convert 2000 at fixed-point scale 100 to
20 at scale 1.

FIGURE 3. Advanced protocol for datalog analysis in secrecy.
Lines 11 and 13 in Analysis in Secrecy are parts involving the client
intervention.

does not evaluate rules that certainly will never generate
new tuples (similarly to the worklist algorithm). In other
words, the server visits each output relation in the graph
in topological order and homomorphically evaluates rules
involving the relation in turn.
Example 5: Consider the following rules for computing all

strongly connected components in a directed graph.

path(x, y) :- edge(x, y).

path(x, z) :- path(x, y), edge(y, z).

scc(x, y) :- path(x, y), path(y, x).

where scc(x,y) denotes nodes x and y are strongly connected
to each other – i.e., there is a path from x to y and vice versa.
The precedence graph for the rules is as follows:

Sorting the relations topologically tells us to evaluate the
two rules for path first, and then the rule for scc next.
After evaluating all the rules once, the server asks the client
if a fixpoint is reached. Please note that the precedence graph

56186 VOLUME 10, 2022

M. Kouhounestani, W. Lee: Datalog Static Analysis in Secrecy

can be constructed only by the server who knows about the
rules and the graph is not revealed to the client.

Fig. 3 depicts the final protocol with this idea. The
server derives graph GP from P, and stores content derived
so far for every relation (line 2), which will be used for
checking the termination condition later. The server visits
each output relation r in topological order of GP (line 3), and
homomorphically evaluates each rule whose head involves r .
After evaluating all the rules, the server determines whether
or not the evaluation in secrecy should continue. The server
computes the set of encrypted matrices S as specified on
line 13, and sends it to the client. If there has been no update
in the content of r , Rr − R

old
r will be an encrypted zero

matrix. Otherwise, it will be an encrypted non-zero matrix,
which may contain partial information of the analysis. Again,
we use randomone-time padmatrices (i.e.,Ai in the protocol).
If all the matrices from the server are zero matrices, the
client responds ‘‘Yes’’ to the server meaning a fixpoint has
been reached, which makes the protocol end. Otherwise, the
server repeats the process again by going back to line (2)
(line 16). The protocol continues until a fixpoint is reached.
As wewill show in the evaluation, the number of server-client
interactions is small in practice.

The overall multiplicative depth required for the advanced
protocol is O(k` log n), where ` is the length of the longest
path in the precedence graph, n is the maximum length of
bodies in the rules, and k is the number of iterations of the
main loop (lines 2 – 16) until a fixpoint is reached.

C. WORKING EXAMPLE
We present a working example using the Andersen pointer
analysis for a better understanding of our protocol.

1) DATALOG RULES
The pointer analysis involves four input relations pt0,
copy0, load, store, and two output relations pt and
copy with the following meanings.

• pt0(x,y) : there is an assignmentx := &y in a given
input program.

• copy0(x,y) : there is an assignment x := y.
• load(x,y) : there is a load statement y := *x.
• store(x,y) : there is a store statement *x := y.
• pt(x,y) : x may point to y.
• copy(x,y) : if y may point to some variable v, then
x also may point to v.

For brevity, we abbreviate copy, store, and load to cp,
st, and ld, respectively. The following Datalog rules specify
the pointer analysis.

pt(a,b) :- pt0(a,b). (9)

pt(a,b) :- cp(a,c),pt(c,b). (10)

cp(a,b) :- cp0(a,b). (11)

cp(a,b) :- st(c,b),pt(c,a). (12)

cp(a,b) :- ld(c,a),pt(c,b). (13)

2) PROGRAM ENCRYPTION
Suppose we aim to analyze the following simple C program.

int** a; int *b, *c, *d;
a = &b; *b = d; c = b; c = *d

and we assign an integer ID to each variable as follows:
a 7→ 1,b 7→ 2,c 7→ 3,d 7→ 4. The client populating input
relations obtains the following matrices encoding them.

Rpt0 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 Rcp0 =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0



Rld =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 Rst =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


The client encrypts the matrices and sends them to the server.

3) ANALYSIS IN SECRECY
The server determines ε to be 10−3 and lets the client know
about it. The server initializes each of Rpt, R

old
pt , Rcp, and

R
old
cp to be an encrypted zero matrix. The server performs

assignments Rcp ← Rcp0 and Rpt ← Rpt0, which
are for homomorphic evaluation of the rules (9) and (11),
respectively. The server generates a ciphertext of random
matrix A such that I +A is invertible and a ciphertext of T of
which entries are as follows:

A =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 1

 T =


0 0 0 0
0 0 0 0
0 1 0 0
−103 0 0 −103


The client gets the ciphertext T , decrypts it, and computes

K (= Prep(T)) which is


1 0 0 0
0 1 0 0
0 10−3 1 0
−2−1 0 0 2−1

. The server

gets a ciphertext of K and homomorphically evaluates the
rule (10) by performing the following assignment.

Rpt← (I + A) · K · Rpt =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Next, to evaluate the rules (12) and (13), the server performs
assignment

Rcp← Rcp + R
T
pt · Rst + R

T
ld · Rpt

and obtains Rcp =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

. Because every Datalog

rule has been visited once, now is the time for checking if

VOLUME 10, 2022 56187

M. Kouhounestani, W. Lee: Datalog Static Analysis in Secrecy

a fixpoint is reached. The server generates random matrices
A1 and A2 with every entry positive integer and sends the
following set of encrypted matrices to the client.

S = {A1 · (Rpt − R
old
pt),A2 · (Rcp − R

old
cp)}

The client decrypts the matrices and confirms there exist non-
zero entries. Since the termination condition has not been
met, the process should return to line (2) of the protocol to
begin the next round.

Next, R
old
cp and R

old
pt are assigned Rcp and Rpt, respec-

tively. The server generates a one-time padmatrixA similarly
to the previous round and ciphertext of T of which entries are
as follows:

A =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 1



T =


0 0 0 0
0 0 0 −1000
0 1 0 1
0 −1000 0 −1000



The client gets T , and computesK =


1 0 0 0
0 2 0 −1
0 10−3 1 0
0 −1 0 1

 .The
server gets K , and homomorphically evaluates the rule (10)
similarly to the previous round. As a result, there is no update
in Rpt and Rcp. Because Rpt and Rcp are equal to their
old versions, the set S will only contain ciphertexts of zero
matrices. The client checks that all the matrices in S are zero
matrices, and transmits ‘‘Yes’’ to the server as the termination
condition has been met. The server sends Rpt and Rcp to the
client as the encrypted final analysis result.

D. OPTIMIZATIONS
1) DELEGATION OF COMPUTATIONS OVER INPUT
RELATIONS TO THE CLIENT
To reduce the number of communication rounds required
for analysis in secrecy, the client may compute Prep(Rr)
for each input relation r in advance and send them to the
server. Similarly, to reduce the cost for homomorphic matrix
transposition on the server-side, the client may compute RT

r
for every input relation r in advance and send them to the
server.

2) FAKE INTERACTIONS
The number of communication rounds until a fixpoint is
reachedmay expose partial information of the analysis design
to the client. To prevent a leak of partial information, the
server may perform fake interactions. Even if analysis in
secrecy does not require client-server interactions, we compel
it to perform meaningless ones. The time spent by both for
such a fictitious interaction is negligible and has almost no
effect on total processing time.

V. EVALUATION
We implemented our method as a tool named SecureDL.6

This section evaluates our SecureDL system to answer the
questions:
Q1: Given the level of overhead in HE computation,

can SecureDL show viable performance for standard
Datalog static analyses in secrecy?

Q2: How does SecureDL compare with the existing tech-
nique for static analysis in secrecy which does not
involve any client intervention during analysis?

All of our experiments were conducted on Linux machines
with 40 cores of Intel Xeon 2.6GHz CPU and 256G of
memory.

A. EXPERIMENTAL SETUP
1) TARGET ANALYSES
For our evaluation, we use the following two static analyses
excerpted from the benchmarks used in [29]. All of the
analyses are written in the subset of Datalog described in
Section II-C.
• escape is an escape analysis for Java. This analysis
consists of 11 Datalog rules (6 input relations and
3 output relations), including recursive rules with a
multiplicative depth of 5.

• andersen is a classic pointer analysis for C. It has
overall 5 Datalog rules which contain recursive rules
with a multiplicative depth of 10 (4 input relations and
2 output relations).

We chose these analyses for the following reasons. First, the
analyses are standard and fundamental in that other more
complex static analyses are built upon them [18]. Given the
significant cost of HE, showing the viability of our method
in these analyses is the first necessary step for more complex
analyses in secrecy. Second, the analyses are non-trivial in
terms of homomorphic evaluation in that they comprise up
to 11 Datalog rules and 6 input relations with recursion
(escape), thus good targets for testing the efficiency of our
method.

2) IMPLEMENTATION
We have implemented two modules for server and client. The
client module populates input relations from syntax of a given
target program to be analyzed and communicates with the
server module as specified in our protocol. The server module
takes Datalog rules of a static analysis and performs analysis
in secrecy interacting with the client module as specified in
the protocol. We use the latest version of HElib [30], an open-
source library that implements HE. Among the HE schemes
the library provides, we use the BGV scheme [24]. To derive
input relations from a target program, we use the front-end
of Petablox [18] for Java and Sparrow [31] for C. Petablox
and Sparrow are open-source static analysis frameworks. Our
implementation runs in parallel using the multi-threading
supported by HElib.

6A System for Secure Evaluation of DataLog.

56188 VOLUME 10, 2022

M. Kouhounestani, W. Lee: Datalog Static Analysis in Secrecy

TABLE 1. Result for escape analysis for Java. The timeout is set to be
24 hours. N gives the number of all Datalog constants (i.e., all Java
program variables in case of escape). Client and Server give the time
taken by the client and server modules respectively.

3) TARGET PROGRAMS
Our benchmark of target programs comprises 10 Java
programs and 14 C programs. The details can be found
in Table 2 and 1. The Java programs are from the
evaluation benchmarks [32] used along with Petablox. They
originated from programming assignments in a software
course. The C programs are from the benchmark by
Zitser et al. [33] that include 14 source code examples
containing serious buffer overflow vulnerabilities found in
three security-sensitive applications. Though the programs
are small, they exhibit diverse language features common in
practice.

4) BASELINE
We compare SecureDL to the work by Lee et al. [5], which is
the only prior work of static analysis in secrecy to the best of
our knowledge. The approach is similar to the basic protocol
described in Figure 2 alongwith optimizations specialized for
the pointer analysis. We conduct an experimental comparison
only for the pointer analysis for C since the prior work only
targets the pointer analysis. To compare SecureDL against the
previous approach, we run the authors’ implementation on
our benchmark programs. The implementation of the prior
work obtained from the authors also uses the same version of
HElib with the BGV scheme, thus the comparison is on equal
footing.

B. PERFORMANCE OF SecureDL
We evaluate SecureDL on the five static analyses. For each
analysis of each target program, we measure the time taken
by the client and server modules. The timeout limit is set to
24 hours. In all the analyses, we set the security parameter
72, which means a ciphertext can be broken in a worst-case
time proportional to 272. For each analysis, we checked the
correctness by comparison to the result of plaintext analysis
using a Datalog solver [13].

Table. 1 shows the results for the four Java analyses,
and Table 2 summarizes the result for Andersen pointer
analysis for C. The column Client gives the time for all the
parts entitled ‘‘Client’s work’’ in the protocol depicted in

TABLE 2. Result for Andersen pointer analysis for C. N gives the number
of all Datalog constants (i.e., pointer variables). The timeout is set to be
24 hours.

Fig. 3 along with the computation of K on line (11). The
column (Server) gives the time taken for all the parts entitled
‘‘Server’s work’’. All of the analyses could be completed
within a small number of communication rounds (≤ 3).
SecureDL is able to analyze all the programs in all the

analyses within the timeout limit. As far as the time taken
by the client is concerned, it is always negligible compared
to the time taken by the server. The time taken by the
server is also roughly proportional to N , but not always. This
variance is due to ‘‘ciphertext packing’’ supported by the
underlying HE scheme described in Section III-B. Howmany
plaintext messages can be ‘‘packed’’ into a single ciphertext
is called the number of slots (namely l), and it affects the
overall performance of homomorphic matrix operations. The
performance variance is due to that it is non-trivial to set l to
a number we want.

In summary, SecureDL could perform all the analyses on
every target program within the timeout limit, which shows
the viability of our method.

C. COMPARISON TO THE BASELINE
As can be seen in Table 2, our method significantly
outperforms the previous approach [5] by reducing the
required multiplicative depth thanks to the client intervention
during analysis. Only one out of 14 programs could be
analyzed by Lee et al., whereas our method could analyze
all the programs within the timeout limit. The important
advantage of SecureDL against the prior work is that the
depth in our protocol is determinedly independently of the
number of constants N , i.e., the number of pointer variables
in each target program. In all the programs, our Andersen
analysis in secrecy could be performed with a depth 10.
On the other hand, the depth required for Lee et al. [5]
is proportional to N . For example, the smallest program
sm-6 requires a depth of 43. The programs bind-1,
bind-2, sm-3, and sm-7 require depth of 61, and the other
remaining programs require depth of 55. Because ciphertext
sizes are non-linearly proportional to depth in general [34],

VOLUME 10, 2022 56189

M. Kouhounestani, W. Lee: Datalog Static Analysis in Secrecy

the significant differences in the depths lead to the remarkable
performance gap between the two methods.

VI. RELATED WORK
A. STATIC ANALYSIS IN SECRECY
To the best of our knowledge, the work by Lee et al. [5]
is the only prior work of static analysis in secrecy. As a
first step, they present a HE algorithm for the simple
Andersen pointer analysis. To expedite the analysis, they
propose a way to perform pointer analysis level-by-level,
reducing the overall multiplicative depth of the analysis as
already described in Section III-C. Our method is more
generally applicable to static analyses written in the subset
of Datalog described in Section II-C, and even without any
domain-specific optimization techniques, it outperforms the
previous method as shown in the evaluation. However, our
protocol may require more communication cost than the prior
work by delegating sub-parts of analysis to the client.

B. COMBINING HOMOMORPHIC ENCRYPTION AND
SECURE MULTI-PARTY Computation (MPC)
In various application domains, there have been attempts
to combine homomorphic encryption and secure MPC in
order to reduce the number of homomorphic operations
solely performed by the server. Gazelle [35], SecureML [36],
and MiniONN [37] are secure neural network inference
system that combines homomorphic encryption with secure
two-party computation techniques. Another line of work
employed HE for arithmetic operations and resort to Yao’s
Garbled Circuit (GC) for the other operations that can
be represented as Boolean circuits. Nikolaenko et al. [38]
propose a secure matrix factorization method based on this
approach. Blanton et al. [39] also follow this approach and
propose a secure protocol for biometric identification of
which goal is to enable secure biometric data matching
performed by two distrusted parties, one of which holds
one biometric image while the other owns a possibly large
biometric collection.

Although combining homomorphic encryption with secure
MPC has been explored in various domains, to the best of our
knowledge, we are the first to adopt this approach to static
analysis in secrecy.

C. COMPUTATION ON ENCRYPTED DATA
DFAuth [40] minimizes potential attack surfaces when
employing a secure enclave by operating over data encrypted
with partially homomorphic encryption (PHE) schemes on an
untrusted server. In the trusted module, switching to different
PHE schemes is done to perform diverse operations on the
server. While promising in terms of performance, partial
information of target programs may be leaked because an
attacker would be able to observe the control flow of the
analysis algorithm that runs on the server.

Our new approach ensures that no information is leaked to
opposing parties.

VII. DISCUSSION
A. FOR BETTER SCALABILITY
While we believe the experimental result is indicative of
the viability of our idea, there is still a long way to
go toward practical use. We discuss possible ways to
scale to analyses at a larger scale. First, clients can help
to improve the scalability by encrypting only sensitive
sub-parts of their target programs. The other parts are
provided without encryption. In this case, analysis operations
with the mixture of ciphertexts and plaintexts can be
used (e.g., homomorphically multiply a ciphertext by a
plaintext integer). These kinds of operations are much
more efficient than operations between ciphertexts incurring
smaller noise increases. Second, we may improve the overall
performance by taking advantage of the latest results for
more efficient homomorphic matrix multiplication [41], [42].
Currently, we are using a standard method [25] also used by
Lee et al. [5]. Integrating the state-of-the-art HE algorithms
for matrix multiplication is left for future work. Lastly,
constant developments and advances in FHE and much
room for parallelization are other opportunities. Because
each homomorphic matrix operation used in our algorithm
is an embarrassingly parallel workload (as shown in the
experiment, we have used 40 cores to run the protocol in
parallel), we can easily boost efficiency further by usingmore
threads.

B. PREVENTING EVASIVE MALWARE
Static analysis in secrecy can be potentially used for detecting
malware without revealing the detection mechanism to mal-
ware developers. Only input and output of a Datalog-based
static analysis are revealed to the user so that the user
cannot infer any partial information of the entire Datalog
rules. Learning Datalog programs from input-output samples
(a process known as inductive logic programming) is a
difficult endeavor; even approximate learning is difficult [43].
Therefore, the encryption procedure protects the analysis
algorithm against attackers to maintain the algorithm’s
privacy.

C. ABOUT THE CLIENT INTERVENTION
The client’s operations for the server do not impose
significant overhead on the client since the operations are
rather simple (matrix inversion and checking if a zero matrix
is sent from the server). In addition, we have shown the
number of communication rounds is small in practice, so that
the number of client operations can be also small. If the client
is not available during analysis, the server can fall back to the
basic protocol described in Figure 2. However, in that case,
the analysis would be much more costly than that with the
advanced protocol currently adopted by SecureDL.

D. ABOUT SECURITY
In our protocol, the client can learn an upper bound of the size
of the server’s Datalog rules. The overall multiplicative depth

56190 VOLUME 10, 2022

M. Kouhounestani, W. Lee: Datalog Static Analysis in Secrecy

should be determined by the server before analysis and known
by the client for encryption of the target program. Since the
depth is O(k` log n) with the number k of communication
rounds, the length ` of the longest path in the precedence
graph, and the maximum length n of bodies of the rules,
the client can learn about an upper bound of the size of
the server’s Datalog rules. However, this security threat can
be easily mitigated by setting the depth larger than actually
necessary along with fake interactions already described in
Section IV-D.

On the other hand, the server can learn an upper bound of
the size of the target program (more precisely, the number
N of Datalog constants, e.g., Java program variables in
case of escape analysis). This security threat can be also
easily mitigated by the client’s setting N larger than actually
necessary.

Other than that, there is no other information revealed since
all messages are encrypted under the BGV-type cryptosystem
which is secure under the hardness of the ring learning with
errors (RLWE) problem (see [24] for the details).

VIII. CONCLUSION
We have shown a secure static-analysis-as-a-service (SaaaS)
system where a client may outsource static analysis to the
cloud without privacy concerns. Our method ensures privacy
of the design and implementation of static analysis as well as
the source code of the target program. Considering a family
of static analyses written in Datalog, we propose a generic
protocol that combines homomorphic encryption (HE) with
secure two-party computation to manage the huge cost of
HE operations. We have demonstrated the viability of our
method by evaluating our system using Andersen pointer
analysis for 14 C programs and escape analysis for 10 Java
programs.

REFERENCES
[1] Sparrow Cloud. Accessed: Apr. 22, 2022. [Online]. Available:

https://cloud.sparrowfasoo.com/
[2] DeepScan. Accessed: Apr. 22, 2022. [Online]. Available:

https://deepscan.io
[3] Coverity Scan. Accessed: Apr. 22, 2022. [Online]. Available:

https://scan.coverity.com
[4] Sonar Cloud. Accessed: Apr. 22, 2022. [Online]. Available:

https://sonarcloud.io
[5] W. Lee, H. Hong, K. Yi, and J. H. Cheon, ‘‘Static analysis with set-closure

in secrecy,’’ in Proc. Int. Static Anal. Symp. Berlin, Germany: Springer,
2015, pp. 18–35.

[6] D. Kirat and G. Vigna, ‘‘MalGene: Automatic extraction of malware
analysis evasion signature,’’ in Proc. 22nd ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS). New York, NY, USA: Association for Computing
Machinery, Oct. 2015, pp. 769–780, doi: 10.1145/2810103.2813642.

[7] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and
G. Vigna, ‘‘Revolver: An automated approach to the detection of
evasive web-based malware,’’ in Proc. 22nd USENIX Secur. Symp.
(USENIX Security). Washington, DC, USA: USENIX Association,
Aug. 2013, pp. 637–652. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity13/technical-sessions/presentation/kapravelos

[8] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’
in Proc. 41st Annu. ACM Symp. Symp. Theory Comput. (STOC),
New York, NY, USA, 2009, pp. 169–178, doi: 10.1145/1536414.
1536440.

[9] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, ‘‘CHET: An optimizing compiler for
fully-homomorphic neural-network inferencing,’’ in Proc. 40th ACM
SIGPLAN Conf. Program. Lang. Design Implement. (PLDI), New York,
NY, USA, Jun. 2019, pp. 142–156, doi: 10.1145/3314221.3314628.

[10] W. Lu, S. Kawasaki, and J. Sakuma, ‘‘Using fully homomorphic encryption
for statistical analysis of categorical, ordinal and numerical data,’’ in Proc.
Netw. Distrib. Syst. Secur. (NDSS) Symp., San Diego, CA, USA, Feb. 2017,
doi: 10.14722/.ndss.2017.23119.

[11] J. H. Cheon, M. Kim, and K. Lauter, ‘‘Homomorphic computation of
edit distance,’’ in Financial Cryptography and Data Security, M. Brenner,
N. Christin, B. Johnson, and K. Rohloff, Eds. Berlin, Germany: Springer,
2015, pp. 194–212.

[12] D. Boneh, C. Gentry, S. Halevi, F. Wang, and D. J. Wu, ‘‘Private
database queries using somewhat homomorphic encryption,’’ in Applied
Cryptography and Network Security, M. Jacobson, M. Locasto, P. Mohas-
sel, and R. Safavi-Naini, Eds. Berlin, Germany: Springer, 2013,
pp. 102–118.

[13] H. Jordan, B. Scholz, and P. Subotić, ‘‘Soufflé: On synthesis of program
analyzers,’’ in Computer Aided Verification, S. Chaudhuri and A. Farzan,
Eds. Cham, Switzerland: Springer, 2016, pp. 422–430.

[14] M.Madsen,M.-H.Yee, andO. Lhoták, ‘‘From datalog to flix: A declarative
language for fixed points on lattices,’’ in Proc. PLDI, 2016, pp. 194–208.

[15] Y. Smaragdakis and M. Bravenboer, ‘‘Using datalog for fast and easy
program analysis,’’ in Datalog Reloaded, O. de Moor, G. Gottlob,
T. Furche, and A. Sellers, Eds. Berlin, Germany: Springer, 2011,
pp. 245–251.

[16] D. Avots, M. Dalton, V. Benjamin, and M. S. Lam, ‘‘Improving software
security with a c pointer analysis,’’ in Proc. 27th Int. Conf. Softw. Eng.
(ICSE), 2005, pp. 332–341.

[17] Y. Feng, S. Anand, I. Dillig, and A. Aiken, ‘‘Apposcopy: Semantics-
based detection of Android malware through static analysis,’’ in Proc.
22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng. (FSE). New York, NY,
USA:Association for ComputingMachinery, Nov. 2014, pp. 576–587, doi:
10.1145/2635868.2635869.

[18] Petablox. Accessed: Apr. 22, 2022. [Online]. Available:
https://github.com/petablox/petablox

[19] M. V. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, ‘‘Fully
homomorphic encryption over the integers,’’ in Proc. EUROCRYPT, 2010,
pp. 24–43.

[20] N. Howgrave-Graham, ‘‘Approximate integer common divisors,’’ in Proc.
CaLC, 2001, pp. 51–66.

[21] G. Oded, Foundations of Cryptography: Basic Applications, vol. 2, 1st ed.
New York, NY, USA: Cambridge Univ. Press, 2009.

[22] T. J. Green, S. S. Huang, B. T. Loo, and W. Zhou, Datalog and Recursive
Query Processing. Boston, MA, USA: Now, 2013.

[23] J. H. Cheon, A. Kim, M. Kim, and Y. Song, ‘‘Homomorphic encryption for
arithmetic of approximate numbers,’’ in Advances in Cryptology, T. Takagi
and T. Peyrin, Eds. Cham, Switzerland: Springer, 2017, pp. 409–437.

[24] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘(Leveled) fully homo-
morphic encryption without bootstrapping,’’ in Proc. 3rd Innov. Theor.
Comput. Sci. Conf. (ITCS), New York, NY, USA, 2012, pp. 309–325, doi:
10.1145/2090236.2090262.

[25] S. Halevi and V. Shoup, ‘‘Algorithms in HElib,’’ in Advances in
Cryptology—CRYPTO, J. A. Garay and R. Gennaro, Eds. Berlin,
Germany: Springer, 2014, pp. 554–571.

[26] N. P. Smart and F. Vercauteren, ‘‘Fully homomorphic SIMD operations,’’
Des., Codes Cryptogr., vol. 71, no. 1, pp. 57–81, 2014.

[27] T. Sato, ‘‘A linear algebraic approach to datalog evaluation,’’ Theory Pract.
Log. Program., vol. 17, no. 3, pp. 244–265, May 2017.

[28] H. Zong, H. Huang, and S. Wang, ‘‘Secure outsourced computation
of matrix determinant based on fully homomorphic encryption,’’ IEEE
Access, vol. 9, pp. 22651–22661, 2021.

[29] X. Si, W. Lee, R. Zhang, A. Albarghouthi, P. Koutris, and M. Naik,
‘‘Syntax-guided synthesis of datalog programs,’’ in Proc. 26th ACM Joint
Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng. (ESEC/FSE).
New York, NY, USA: Association for Computing Machinery, Oct. 2018,
p. 515, doi: 10.1145/3236024.3236034.

[30] HElib. Accessed: Apr. 22, 2022. [Online]. Available:
https://github.com/homenc/HElib

[31] Sparrow. Accessed: Apr. 22, 2022. [Online]. Available:
https://github.com/ropas/sparrow

[32] The Petablox Benchmark. Accessed: Apr. 22, 2022. [Online]. Available:
https://github.com/petablox/petablox-bench

VOLUME 10, 2022 56191

http://dx.doi.org/10.1145/2810103.2813642
http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1145/3314221.3314628
http://dx.doi.org/10.14722/.ndss.2017.23119
http://dx.doi.org/10.1145/2635868.2635869
http://dx.doi.org/10.1145/2090236.2090262
http://dx.doi.org/10.1145/3236024.3236034

M. Kouhounestani, W. Lee: Datalog Static Analysis in Secrecy

[33] M. Zitser, R. Lippmann, and T. Leek, ‘‘Testing static analysis tools
using exploitable buffer overflows from open source code,’’ in Proc.
12th ACM SIGSOFT 12th Int. Symp. Found. Softw. Eng. (SIGSOFT/FSE).
New York, NY, USA: Association for Computing Machinery, 2004, p. 97,
doi: 10.1145/1029894.1029911.

[34] D. Lee, W. Lee, H. Oh, and K. Yi, ‘‘Optimizing homomorphic evaluation
circuits by program synthesis and term rewriting,’’ in Proc. 41st ACM
SIGPLAN Conf. Program. Lang. Design Implement. (PLDI). New York,
NY, USA: Association for ComputingMachinery, Jun. 2020, pp. 503–518,
doi: 10.1145/3385412.3385996.

[35] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, ‘‘GAZELLE: A low
latency framework for secure neural network inference,’’ in Proc. 27th
USENIX Secur. Symp. (USENIX Security), 2018, pp. 1651–1669.

[36] P. Mohassel and Y. Zhang, ‘‘SecureML: A system for scalable privacy-
preserving machine learning,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2017, pp. 19–38.

[37] J. Liu, M. Juuti, Y. Lu, and N. Asokan, ‘‘Oblivious neural network
predictions via MiniONN transformations,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2017, pp. 619–631.

[38] V. Nikolaenko, S. Ioannidis, U.Weinsberg,M. Joye, N. Taft, and D. Boneh,
‘‘Privacy-preserving matrix factorization,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur. (CCS), 2013, pp. 801–812.

[39] M. Blanton and P. Gasti, ‘‘Secure and efficient protocols for iris and
fingerprint identification,’’ in Proc. Eur. Symp. Res. Comput. Secur. Berlin,
Germany: Springer, 2011, pp. 190–209.

[40] A. Fischer, B. Fuhry, F. Kerschbaum, and E. Bodden, ‘‘Computation on
encrypted data using dataflow authentication,’’ Proc. Privacy Enhancing
Technol., vol. 2020, no. 1, pp. 5–25, Jan. 2020.

[41] X. Jiang, M. Kim, K. Lauter, and Y. Song, ‘‘Secure outsourced
matrix computation and application to neural networks,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS). New York, NY, USA:
Association for Computing Machinery, Oct. 2018, pp. 1209–1222, doi:
10.1145/3243734.3243837.

[42] P. Mishra, D. Rathee, D. Duong, and M. Yasuda, ‘‘Fast secure
matrix multiplications over ring-based homomorphic encryption,’’ Inf.
Secur. J., Global Perspective, vol. 30, no. 4, pp. 219–234, 2021, doi:
10.1080/19393555.2020.1836288.

[43] W. W. Cohen, ‘‘Pac-learning non-recursive prolog clauses,’’ Artif. Intell.,
vol. 79, no. 1, pp. 1–38, Nov. 1995.

MOJGAN KOUHOUNESTANI received the B.S.
degree in computer science from the University
of Isfahan, Isfahan, Iran, in 2015, and the M.S.
degree in computer science from Yazd University,
Yazd, Iran, in 2018. Since 2020, she has been doing
research with the Programming Systems Labo-
ratory, Hanyang University, Ansan, South Korea,
under the supervision of Prof. Woosuk Lee.

WOOSUK LEE received the B.S. and Ph.D.
degrees in computer science from Seoul National
University. Heworked as a Postdoctoral Researcher
with the University of Pennsylvania, USA, before
joining Hanyang University, Ansan, South Korea,
where he is currently an Assistant Professor with
the College of Computing. His research interests
include, but not limited to, static program analysis,
and program synthesis.

56192 VOLUME 10, 2022

http://dx.doi.org/10.1145/1029894.1029911
http://dx.doi.org/10.1145/3385412.3385996
http://dx.doi.org/10.1145/3243734.3243837
http://dx.doi.org/10.1080/19393555.2020.1836288

