
ENE4014: Programming Languages

Lecture 9 — Design and Implementation of PLs

(5) Records, Pointers, and Garbage Collection

Woosuk Lee
2024 Spring

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 1 / 22



Review: Our Language So Far

Syntax:
P → E

E → n
| x
| E + E
| iszero E
| if E then E else E
| let x = E in E
| proc x E
| E E
| E 〈y〉
| x := E
| E;E

Values:
Val = Z + Bool + Procedure

Procedure = Var × E × Env
ρ ∈ Env = Var → Loc
σ ∈Mem = Loc → Val

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 2 / 22



Review: Semantics Rules
(Some rules omitted)

ρ, σ ` n ⇒ n, σ ρ, σ ` x ⇒ σ(ρ(x)), σ

ρ, σ0 ` E1 ⇒ true, σ1 ρ, σ1 ` E2 ⇒ v, σ2

ρ, σ0 ` if E1 then E2 else E3 ⇒ v, σ2

ρ, σ ` proc x E ⇒ (x,E, ρ), σ

ρ, σ0 ` E ⇒ v, σ1

ρ, σ0 ` x := E ⇒ v, [ρ(x) 7→ v]σ1

ρ, σ0 ` E1 ⇒ v1, σ1 [x 7→ l]ρ, [l 7→ v1]σ1 ` E2 ⇒ v, σ2

ρ, σ0 ` let x = E1 in E2 ⇒ v, σ2
l 6∈ Dom(σ1)

ρ, σ0 ` E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ` E2 ⇒ v, σ2

[x 7→ l]ρ′, [l 7→ v]σ2 ` E ⇒ v′, σ3

ρ, σ0 ` E1 E2 ⇒ v′, σ3
l 6∈ Dom(σ2)

ρ, σ0 ` E1 ⇒ (x,E, ρ′), σ1 [x 7→ ρ(y)]ρ′, σ1 ` E ⇒ v′, σ2

ρ, σ0 ` E1 〈y〉 ⇒ v′, σ2

ρ, σ0 ` E1 ⇒ v1, σ1 ρ, σ1 ` E2 ⇒ v2, σ2

ρ, σ0 ` E1;E2 ⇒ v2, σ2

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 3 / 22



Plan

Extend the language with

records (structured data),

pointers, and

memory management.

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 4 / 22



Records (Structured Data)

A record (i.e., struct in C) is a collection of named memory locations.

let student = { id := 201812, age := 20 }

in student.id + student.age

let tree = { left := {}, v := 0, right := {} }

in tree.right := { left := {}, v := 2, right := 3 }

cf) Arrays are also collections of memory locations, where the names of
the locations are natural numbers.

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 5 / 22



Language Extension

Syntax:

E →
...

| {}

| { x := E, y := E }

| E.x
| E.x := E

Values:

Val = Z + Bool + {·}+ Procedure + Record
Procedure = Var × E × Env
r ∈ Record = Field → Loc
ρ ∈ Env = Var → Loc
σ ∈Mem = Loc → Val

A record value r is a finite function (i.e., table):

{x1 7→ l1, . . . , xn 7→ ln}

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 6 / 22



Language Extension

Semantics:

ρ, σ ` {}⇒ ·, σ

ρ, σ ` E1 ⇒ v1, σ1 ρ, σ1 ` E2 ⇒ v2, σ2 l1, l2 6∈ Dom(σ2)

ρ, σ ` { x := E1, y := E2 }⇒ {x 7→ l1, y 7→ l2}, [l1 7→ v1, l2 7→ v2]σ2

ρ, σ ` E ⇒ r, σ1

ρ, σ ` E.x⇒ σ1(r(x)), σ1

ρ, σ ` E1 ⇒ r, σ1 ρ, σ1 ` E2 ⇒ v, σ2

ρ, σ ` E1.x := E2 ⇒ v, [r(x) 7→ v]σ2

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 7 / 22



Pointers

Let memory locations to be first-class values.

let x = 1 in

let y = &x in

*y := *y + 2

let x = { left := {}, v := 1, right := {} } in

let y = &x.v

*y := *y + 2

let f = proc (x) (*x := *x + 1) in

let a = 1 in

(f &a); a

let f = proc (x) (&x) in

let p = (f 1) in

*p := 2

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 8 / 22



Language Extension

Syntax:

E →
...

| &x
| &E.x
| ∗E
| ∗E := E

Values:

Val = Z + Bool + {·}+ Procedure + Record + Loc
Procedure = Var × E × Env
r ∈ Record = Field → Loc
ρ ∈ Env = Var → Loc
σ ∈Mem = Loc → Val

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 9 / 22



Language Extension

Semantics:
ρ, σ ` &x⇒ ρ(x), σ

ρ, σ ` E ⇒ r, σ1

ρ, σ ` &E.x⇒ r(x), σ1

ρ, σ ` E ⇒ l, σ1

ρ, σ ` ∗E ⇒ σ1(l), σ1

ρ, σ ` E1 ⇒ l, σ1 ρ, σ1 ` E2 ⇒ v, σ2

ρ, σ ` ∗E1 := E2 ⇒ v, [l 7→ v]σ2

Note that the meaning of ∗E varies depending on its location.

When it is used as l-value, ∗E denotes the location that E refers to.

When it is used as r-value, ∗E denotes the value stored in the
location.

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 10 / 22



Need for Memory Management

New memory is allocated in let, call, and record expressions:

ρ, σ0 ` E1 ⇒ v1, σ1 [x 7→ l]ρ, [l 7→ v1]σ1 ` E2 ⇒ v, σ2

ρ, σ0 ` let x = E1 in E2 ⇒ v, σ2
l 6∈ Dom(σ1)

ρ, σ0 ` E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ` E2 ⇒ v, σ2

[x 7→ l]ρ′, [l 7→ v]σ2 ` E ⇒ v′, σ3

ρ, σ0 ` E1 E2 ⇒ v′, σ3

l 6∈ Dom(σ2)

ρ, σ ` E1 ⇒ v1, σ1 ρ, σ1 ` E2 ⇒ v2, σ2 l1, l2 6∈ Dom(σ2)

ρ, σ ` { x := E1, y := E2 }⇒ {x 7→ l1, y 7→ l2}, [l1 7→ v1, l2 7→ v2]σ2

Allocated memory is never deallocated during program execution,
eventually leading to memory exhaustion: e.g.,

let forever (x) = (forever x) in (forever 0)

We need to recycle memory that will no longer be used in the future.

How can we know that memory will not be used in the future? Can
we automate memory recycling?

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 11 / 22



Automatic Memory Management is Undecidable

A bad news: exactly identifying memory locations that will be used in
the future is impossible.

Otherwise, we can solve the Halting problem, which is unsolvable.
I We cannot write a program H(p) that returns true iff program p

terminates.
I function f () = if H(f) then (while true skip) else skip
I Does f() terminate?

F If f() terminates, it should not terminate.
F If f() is non-terminating, it should terminate (Contradiction!).

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 12 / 22



Automatic Memory Management is Undecidable

Suppose we have an algorithm G that can exactly find the memory
locations that will be used in the rest program execution.

Then, we can construct H(p) as follows:
1 H takes p and execute the following program:

let x = malloc() in p; x

where x is a variable not used in p.
2 Invoke the procedure G right before evaluating p, and find the location

set S that will be used in the future.
F When S contains the location stored in x, p terminates.
F Otherwise, p does not terminate.

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 13 / 22



Approaches to Memory Management

Two approaches that trade-off control and safety:
1 Manual memory mangement: manually deallocate every unused

memory locations.
I E.g., C, C++
I Pros: Fine control over the use of memory
I Cons: Burden of writing correct code is imposed on programmers

2 Runtime garbage collection: approximately find memory locations
that will not be used in the future and recycle them.

I E.g., Java, OCaml
I Pros: Memory safety
I Cons: Fine control is impossible / Runtime overhead

cf) Some recent programming languages like Rust1 achieve both safety
and control by using static type system.

1https://www.rust-lang.org
Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 14 / 22

https://www.rust-lang.org


Manual Memory Management

Extend the language with the deallocation expression:

E →
...

| free(E)

Semantics rule:

ρ, σ ` E ⇒ l, σ1

ρ, σ ` free(E)⇒ ·, σ1|Dom(σ1)\{l}
l ∈ Dom(σ1)

where

σ|X(l) =

{
σ(l) if l ∈ X
undef if l 6∈ X

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 15 / 22



Manual Memory Management

Unfortunately, memory management is too difficult to do correctly,
leading to the three types of errors in C:

I Memory-leak: deallocate memory too late
I Double-free: deallocate memory twice
I Use-after-free: deallocate memory too early (dangling pointer)

These errors are common in practice, becoming significant sources of
security vulnerabilities.

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 16 / 22



Garbage Collection (GC)

Automatic garbage collection works in three steps:

1 Pause the program execution.

2 Collect memory locations reachable from the current environment.

3 Recycle unreachable memory locations.

let f = proc (x) (x+1) in

let a = f 0 in

a + 1

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 17 / 22



Example

Environment and memory before GC:

ρ =

[
x 7→ l1
y 7→ l2

]
σ =



l1 7→ 0
l2 7→ {a 7→ l3, b 7→ l1}
l3 7→ l4
l4 7→ (x,E, [z 7→ l5])
l5 7→ 0
l6 7→ l7
l7 7→ l6


Memory after GC:

GC(ρ, σ) =


l1 7→ 0
l2 7→ {a 7→ l3, b 7→ l4}
l3 7→ l4
l4 7→ (x,E, [z 7→ l5])
l5 7→ 0


Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 18 / 22



Garbage Collection (GC): Formal Definition

Let reach(ρ, σ) be the set of locations in σ that are reachable from
the entries in ρ. It is the smallest set that satisfies the rules:

ρ(x) ∈ reach(ρ, σ)
x ∈ Dom(ρ)

l ∈ reach(ρ, σ) σ(l) = l′

l′ ∈ reach(ρ, σ)

l ∈ reach(ρ, σ) σ(l) = {x1 7→ l1, . . . , xn 7→ ln}
{l1, . . . , ln} ⊆ reach(ρ, σ)

l ∈ reach(ρ, σ) σ(l) = (x,E, ρ′)

reach(ρ′, σ) ⊆ reach(ρ, σ)

Let GC be the garbage-collecting procedure:

GC(ρ, σ) = σ|reach(ρ,σ)
Before evaluating an expression, perform GC:

ρ,GC(ρ, σ) ` E ⇒ v, σ′

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 19 / 22



Safe but Incomplete

GC performs memory management in an approximate but safe way.

Theorem (Safety of GC)

In the inference of (ρ, σ ` E ⇒ v, σ′), the set of used (read or written)
locations in σ is included in reach(ρ, σ).

Proof.

By induction on E.

However, some locations that will not be used may be reachable.

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 20 / 22



Summary

The final programming language:

expressions, procedures, recursion,

states with explicit/implicit references

parameter-passing variations

records, pointers, and automatic garbage collection

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 21 / 22


