ENE4014: Programming Languages

Lecture 9 — Design and Implementation of PLs
(5) Records, Pointers, and Garbage Collection

Woosuk Lee
2024 Spring

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 1/22

Review: Our Language So Far

Syntax:
P —» FE
E — n
| x
| E+4+E
| iszero E
| if E then FE else E
| letz=FEin E
| procz E
| EE
| E(y)
| x:=F
| E;E
Values:
Val = 7 4+ Bool + Procedure
Procedure = Var X E X Env
pE€ Env = Var — Loc
o € Mem = Loc— Val

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 2/22

Review: Semantics Rules

(Some rules omitted)

p,o-n=n,o p,o bz = o(p(x)),o

p,o0 - E1 = true,o1 p,o1 - Ex = v,02
p,o0 - if E; then E3 else E3 = v, 02

p,oo - E = v,01

p,o - procx E = (x, E, p),o p,oo Fx:=E = v, [p(x) — v]oy

p,o0 - E1 = vi1,01 [€—1lp, [l = vi]o1 F E2 = v, 02
- l & Dom(o1)
p,o0 - let © = E1 in E2 = v,02

pyo0 - E1 = (z,E,p’'),01 p,o1+ E2 = v,02
[z —lp,[l = v]o2 - E = v/,03

p,oo0 - E1 E2 = v',03

!l & Dom(o2)

p,00 - E1 = (z,E,p’'),01 [x = p(y)]p's01 - E = v 02
p,oo - E1 (y) = v',02

p,oo - E1 = vi,01 p,01 + Ex = v2,02
psoo0 = E1; E2 = v2,02

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024

3/22

Plan

Extend the language with
@ records (structured data),
@ pointers, and

@ memory management.

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 4 /22

Records (Structured Data)
A record (i.e., struct in C) is a collection of named memory locations.

let student = { id := 201812, age := 20 }
in student.id + student.age

let tree = { left := {}, v := 0, right := {} }
in tree.right := { left := {}, v := 2, right := 3 }

cf) Arrays are also collections of memory locations, where the names of
the locations are natural numbers.

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 5/22

Language Extension

Syntax:

Values:

Val
Procedure
r € Record
p € Env

o € Mem

E —
|
|
|
|

{
{x:=FE,y:=F }
FE.x

E.x:=FE

Z + Bool + {-} + Procedure + Record
Var x E X Env

Field — Loc

Var — Loc

Loc — Val

A record value r is a finite function (i.e., table):

{331 !—)ll,...,wnl—)ln}

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024

6 /22

Language Extension
Semantics:
psOC = {} = 50

p,o b Ei = vi1,01 p,o1 - Es = va,02 li,l2 & Dom(o2)
pypotE{z:=FE,y:=E; }= {x— li,y— l2},[l1 — v1,l2 — v2]0o2

p,o-E=ro1
p,o b Ex = o1(r(x)),o1

p,o - Ei = ro1 p,o1 - E2 = v,02
p,o b Ei.x:= E; = v, [r(z) — v]oz

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 7/22

Pointers

Let memory locations to be first-class values.

let x = 1 in
let y
*y:

&x in
xy + 2

let x = { left := {}, v := 1, right := {} } in
let y = &x.v
Xy 1= xy + 2

let £ = proc (x) (*x :
let a =1 in
(f &a); a

*x + 1) in

let £ = proc (x) (&x) in
let p = (f 1) in
*p = 2

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 8 /22

Language Extension

Syntax:

Values:

Val
Procedure
1 € Record
p € Env

o € Mem

E —
| &
| &E.x
| *E
| *E:=F
Z + Bool + {-} + Procedure + Record + Loc
Var x E X Env
Field — Loc

Var — Loc
Loc — Val

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 9 /22

Language Extension

Semantics:

p,o bk &x = p(x),o

p,o-E=ro1
p,o b &E.x = r(x),o1

p,o-E =101
p,o - *xE = o1(l),01

p,o-FEL =101 p,01+ E2 = v,02
p,o b *xEy := Ex = v, [l — v]o2

Note that the meaning of *E varies depending on its location.
@ When it is used as |-value, *FE denotes the location that E refers to.

@ When it is used as r-value, *FE denotes the value stored in the
location.

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 10 / 22

Need for Memory Management

o New memory is allocated in let, call, and record expressions:

pso0 - E1 = v1,01 [z — Ulp,[l = vi]o1 F E2 = v,02
- l & Dom(o1)
p,o0 - let € = Eq in E; = v, 02
p,O'OI—E1:>(m,E,p'),0'1 p,o1 - Ex = v,02
z—lp’ [l — v]loa - E = v',03
[e) ’ 1 & Dom(o2)

P, 00 + FE1 Exs = 7}/,0'3

p,o b+ E1 = v1,01 p,o1 b+ E; = va,02 li,l2 & Dom(o2)
pootE{z:=FE,y:=FE2 }=>{z— li,y—l2},[l1 — v1,l2 — v2]0o2

@ Allocated memory is never deallocated during program execution,
eventually leading to memory exhaustion: e.g.,

let forever (x) = (forever x) in (forever 0)
@ We need to recycle memory that will no longer be used in the future.

@ How can we know that memory will not be used in the future? Can
we automate memory recycling?

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 11 /22

Automatic Memory Management is Undecidable

@ A bad news: exactly identifying memory locations that will be used in
the future is impossible.
@ Otherwise, we can solve the Halting problem, which is unsolvable.
» We cannot write a program H (p) that returns true iff program p
terminates.

» function f () = if H(f) then (while true skip) else skip
» Does f() terminate?

* If f() terminates, it should not terminate.
* If f() is non-terminating, it should terminate (Contradiction!).

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 12 / 22

Automatic Memory Management is Undecidable

@ Suppose we have an algorithm G that can exactly find the memory
locations that will be used in the rest program execution.
@ Then, we can construct H (p) as follows:
@ H takes p and execute the following program:

let x = malloc() in p; x

where x is a variable not used in p.
@ Invoke the procedure G right before evaluating p, and find the location
set S that will be used in the future.
* When S contains the location stored in x, p terminates.
* Otherwise, p does not terminate.

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 13 /22

Approaches to Memory Management

Two approaches that trade-off control and safety:
@ Manual memory mangement: manually deallocate every unused
memory locations.
» Eg, C C++
» Pros: Fine control over the use of memory
» Cons: Burden of writing correct code is imposed on programmers
@ Runtime garbage collection: approximately find memory locations
that will not be used in the future and recycle them.
» E.g., Java, OCaml
» Pros: Memory safety
» Cons: Fine control is impossible / Runtime overhead

cf) Some recent programming languages like Rust! achieve both safety
and control by using static type system.

"https://www.rust-lang.org

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 14 / 22

https://www.rust-lang.org

Manual Memory Management

Extend the language with the deallocation expression:
E —

| free(E)

Semantics rule:

p,o-E =109
p,o + free(E) = -, UllDom(O’l)\{l}

l € Dom(o)

where 0
(o) ifleX
olx) _{ undef ifl g X

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 15 / 22

Manual Memory Management

@ Unfortunately, memory management is too difficult to do correctly,
leading to the three types of errors in C:

» Memory-leak: deallocate memory too late
» Double-free: deallocate memory twice
» Use-after-free: deallocate memory too early (dangling pointer)

@ These errors are common in practice, becoming significant sources of
security vulnerabilities.

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 16 / 22

Garbage Collection (GC)

Automatic garbage collection works in three steps:
© Pause the program execution.
@ Collect memory locations reachable from the current environment.

© Recycle unreachable memory locations.

let £ = proc (x) (x+1) in
let a =f 0 in
a+1

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 17 / 22

Example

Environment and memory before GC:

lli—)O

l2»—>{a|—>l3,b|—>l1}
l3'—)l4

:|:CCI—)§1:| o = l4»—>(a:,E,[z0—>l5])

Yy ie Il —0

l6'—)l7

| Iz — g

Memory after GC:

l1 — 0

l2 —> {a —> l3,b|—) l4}
GC(p, 0’) = l3 — l4

ly — (m,E, [Z —> l5])

l5 — 0

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 18 / 22

Garbage Collection (GC): Formal Definition

o Let reach(p, o) be the set of locations in o that are reachable from
the entries in p. It is the smallest set that satisfies the rules:
l € reach(p, o) ol)y=0
I’ € reach(p, o)

p(x) € reach(p, o) x € Dom(p)

l € reach(p, o) o(l)={x1 = l1,...,¢n — 1}
{lla et ln} g reaCh(p? U)

l € reach(p, o) o) =(z,E,p)
reach(p’, o) C reach(p, o)

o Let GC be the garbage-collecting procedure:
GC(p,0) = U|reach(p,o-)
o Before evaluating an expression, perform GC:
p,GC(p,0) - E = v,0’
May 15, 2024 19 / 22

Safe but Incomplete
GC performs memory management in an approximate but safe way.

Theorem (Safety of GC)

In the inference of (p,o = E = v, 0’), the set of used (read or written)
locations in o is included in reach(p, o).

Proof.
By induction on E. [

However, some locations that will not be used may be reachable.

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 20 / 22

Summary

The final programming language:
@ expressions, procedures, recursion,
@ states with explicit/implicit references
@ parameter-passing variations

@ records, pointers, and automatic garbage collection

Woosuk Lee ENE4014 2024 Spring, Lecture 9 May 15, 2024 21 /22

