
ENE4014: Programming Languages

Lecture 3 — Basics of OCaml

Woosuk Lee
2024 Spring

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 1 / 44

Why learn ML?

Learning ML is a good way of experiencing modern language features:

functional programming: scala, java8, haskell, python, JavaScript,
etc

static type system: scala, java, haskell, etc

automatic type inference: scala, haskell, etc

pattern matching: scala, etc

algebraic data types, module system, etc

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 2 / 44

Why learn ML?

Stackoverflow 2023 Developer Survey

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 3 / 44

Basics of the Language

Expressions

Names

Functions

Pattern matching

Type inference

Tuples and lists

Data types

Exceptions

Write and run all examples in the slides by yourself!

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 4 / 44

An OCaml Program is an Expression

Statement and expressions:

A statement does something.

An expression evaluates to a value.

Programming languages can be classified into

statement-oriented: C, C++, Java, Python, JavaScript, etc
I often called “imperative languages”

expression-oriented: ML, Haskell, Scala, Lisp, etc
I often called “functional languages”

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 5 / 44

Basic Structure of OCaml Programs

An OCaml program is a sequence of definitions:

let x1 = e1

let x2 = e2

...

let xn = en

e1, ..., en are evaluated in order

Name xi refers to the value of ei

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 6 / 44

Running an OCaml Program

Save the following to ”hello.ml”

let s = "hello world"

let _ = print_endline s

Running using an interpreter

$ ocaml hello.ml

hello world

Running using REPL (Read-Eval-Print Loop)

$ ocaml

OCaml version 4.04.0

let s = "hello world";;

val s : string = "hello world"

print_endline s;;

hello world

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 7 / 44

Arithmetic Expressions

Arithmetic expressions evaluate to numbers: e.g., 1+2*3, 1+5, 7

Try to evaluate expressions in the REPL:

1+2*3;;

- : int = 7

Arithmetic operators on integers:

a + b addition
a - b subtraction
a * b multiplication
a / b divide a by b, returning the whole part
a mod b divide a by b, returning the remaining part

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 8 / 44

Boolean Expressions

Boolean expressions evaluate to boolean values (i.e., true, false).

Try to evaluate boolean expressions:

true;;

- : bool = true

false;;

- : bool = false

1 > 2;;

- : bool = false

Comparison operators produces boolean values:

a = b true if a and b are equal
a <> b true if a and b are not equal
a < b true if a is less than b
a <= b true if a is less than or equal to b
a > b true if a is greater than b
a >= b true if a is greater than or equal to b

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 9 / 44

Boolean Operators

Boolean expressions are combined by boolean operators:

true && false;;

- : bool = false

true || false;;

- : bool = true

(2 > 1) && (3 > 2);;

- : bool = true

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 10 / 44

ML is a Statically Typed Language

If you try to evaluate an expression that does not make sense, OCaml
rejects and does not evaluate the program: e.g.,

1 + true;;

Error: This expression has type bool but an expression was

expected of type int

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 11 / 44

Static Types and Dynamic Types

Programming languages are classified into:

Statically typed languages: type checking is done at compile-time.
I type errors are detected before program executions
I C, C++, Java, ML, Scala, etc

Dynamically typed languages: type checking is done at run-time.
I type errors are detected during program executions
I Python, JavaScript, Ruby, Lisp, etc

Statically typed languages are further classified into:

Type-safe languages guarantee that compiled programs do not have
type errors at run-time.

I All type errors are detected at compile time.
I Compiled programs do not stuck.
I ML, Haskell, Scala

Unsafe languages do not provide such a guarantee.
I Some type errors remain at run-time.
I C, C++

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 12 / 44

cf) Which one is better?

Statically typed languages:

(+) Type errors are caught early in the development cycle.

(+) Program execution is efficient by omitting runtime checks.

(−) Less flexible than dynamic languages.

Dynamically typed languages:

(−) Type errors appear at run-time, often unexpectedly.

(+) Provide more flexible language features.

(+) Easy and fast prototyping.

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 13 / 44

Conversion between Different Types

In OCaml, different types of values are distinguished:

3 + 2.0;;

Error: This expression has type float but an expression

was expected of type int

Types must be explicitly converted:

3 + int_of_float 2.0;;

- : int = 5

Operators for floating point numbers:

1.2 +. 2.3;;

- : float = 3.5

1.5 *. 2.0;;

- : float = 3.

float_of_int 1 +. 2.2;;

- : float = 3.2

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 14 / 44

Other Primitive Values

OCaml provides six primitive values: integers, booleans, floating point
numbers, characters, strings, and unit.

’c’;;

- : char = ’c’

"cose212";;

- : string = "cose212"

();;

- : unit = ()

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 15 / 44

Conditional Expressions

if be then e1 else e2

If be is true, the value of the conditional expression is the value of e1.

If be is false, the value of the expression is the value of e2.

if 2 > 1 then 0 else 1;;

- : int = 0

if 2 < 1 then 0 else 1;;

- : int = 1

be must be a boolean expression.

types of e1 and e2 must be equivalent.

if 1 then 1 else 2;;

Error: ...

if true then 1 else true;;

Error: ...

if true then true else false;;

- : bool = true

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 16 / 44

Names and Functions

Create a global variable with the let keyword:

let x = 3 + 4;;

val x : int = 7

We say a variable x is bound to value 7.

let y = x + x;;

val y : int = 14

Create a local variable with let ... in ... construct:

let x = e1 in e2

I x is bound to the value of e1
I the scope of x is e2
I the value of e2 becomes the value of the entire expression

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 17 / 44

Examples

let a = 1 in a;;

- : int = 1

let a = 1 in a * 2;;

- : int = 2

let a = 1 in

let b = a + a in

let c = b + b in

c + c;;

- : int = 8

let d =

let a = 1 in

let b = a + a in

let c = b + b in

c + c;;

val d : int = 8

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 18 / 44

Functions

Define a function with let:

let square x = x * x;;

val square : int -> int = <fun>

Apply the function:

square 2;;

- : int = 4

square (2 + 5);;

- : int = 49

square (square 2);;

- : int = 16

The body can be any expression:

let neg x = if x < 0 then true else false;;

val neg : int -> bool = <fun>

neg 1;;

- : bool = false

neg (-1);;

- : bool = true

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 19 / 44

Functions

Functions with multiple arguments:

let sum_of_squares x y = (square x) + (square y);;

val sum_of_squares : int -> int -> int = <fun>

sum_of_squares 3 4;;

- : int = 25

Recursive functions are defined with let rec construct:

let rec factorial a =

if a = 1 then 1 else a * factorial (a - 1);;

val factorial : int -> int = <fun>

factorial 5;;

- : int = 120

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 20 / 44

Nameless Functions

Many modern programming languages provide nameless functions,
e.g., ML, Scala, Java8, JavaScript, Python, etc.

In OCaml, a function can be defined without names:

fun x -> x * x;;

- : int -> int = <fun>

Called nameless or anonymous functions.

Apply nameless function as usual:

(fun x -> x * x) 2;;

- : int = 4

A variable can be bound to functions:

let square = fun x -> x * x;;

val square : int -> int = <fun>

The followings are equivalent:

let square = fun x -> x * x

let square x = x * x

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 21 / 44

Functions are First-Class in OCaml

In programming languages, a value is first-class, if the value can be

stored in a variable,

passed as an argument of a function, and

returned from other functions.

A language is often called functional, if functions are first class values,
e.g., ML, Scala, Java8, JavaScript, Python, Lisp, etc.

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 22 / 44

Functions are First-Class in OCaml

Functions can be stored in variables:

let square = fun x -> x * x;;

square 2;;

- : int = 4

Functions can be passed to other functions:

let sum_if_true test first second =

(if test first then first else 0)

+ (if test second then second else 0);;

val sum_if_true : (int -> bool) -> int -> int -> int = <fun>

let even x = x mod 2 = 0;;

val even : int -> bool = <fun>

sum_if_true even 3 4;;

- : int = 4

sum_if_true even 2 4;;

- : int = 6

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 23 / 44

Functions are First-Class in OCaml

Functions can be also returned from a procedure:

let plus_a a = fun b -> a + b;;

val plus_a : int -> int -> int = <fun>

let f = plus_a 3;;

val f : int -> int = <fun>

f 1;;

- : int = 4

f 2;;

- : int = 5

Functions that manipulate functions are called higher-order functions.

i.e., functions that take as argument functions or return functions

greatly increase the expressiveness of the language

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 24 / 44

Pattern Matching

An elegant way of doing case analysis.

E.g., using pattern-matching, the factorial function

let rec factorial a =

if a = 1 then 1 else a * factorial (a - 1)

can be written as follows:

let factorial a =

match a with

1 -> 1

|_ -> a * factorial (a - 1)

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 25 / 44

Pattern Matching

The nested if-then-else expression

let isabc c = if c = ’a’ then true

else if c = ’b’ then true

else if c = ’c’ then true

else false

can be written using pattern matching:

let isabc c =

match c with

’a’ -> true

|’b’ -> true

|’c’ -> true

| _ -> false

or simply,

let isabc c =

match c with

’a’ | ’b’ | ’c’ -> true

| _ -> false

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 26 / 44

Type Inference

In C or Java, types must be annotated:

public static int f(int n)

{

int a = 2;

return a * n;

}

In OCaml, type annotations are not mandatory:

let f n =

let a = 2 in

a * n;;

val f : int -> int = <fun>

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 27 / 44

Type Inference

OCaml can infer types, no matter how complex the program is:

let sum_if_true test first second =

(if test first then first else 0)

+ (if test second then second else 0);;

val sum_if_true : (int -> bool) -> int -> int -> int = <fun>

OCaml compiler infers the type through the following reasoning steps:

1 the types of first and second must be int, because both branches
of a conditional expression must have the same type,

2 the type of test is a function type α→ β, because test is used as
a function,

3 α must be of int, because test is applied to first, a value of int,

4 β must be of bool, because conditions must be boolean expressions,

5 the return value of the function has type int, because the two
conditional expressions are of int and their addition gives int.

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 28 / 44

Type Annotation

Explicit type annotations are possible:

let sum_if_true (test : int -> bool) (x : int) (y : int) : int =

(if test x then x else 0) + (if test y then y else 0);;

val sum_if_true : (int -> bool) -> int -> int -> int = <fun>

If the annotation is wrong, OCaml finds the error and report it:

let sum_if_true (test : int -> int) (x : int) (y : int) : int =

(if test x then x else 0) + (if test y then y else 0);;

Error: The expression (test x) has type int but an expression

was expected of type bool

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 29 / 44

Polymorphic Types

What is the type of the program?

let id x = x

See how OCaml infers its type:

let id x = x;;

val id : ’a -> ’a = <fun>

The function works for values of any type:

id 1;;

- : int = 1

id "abc";;

- : string = "abc"

id true;;

- : bool = true

Such a function is called polymorphic and ’a is a type variable.

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 30 / 44

Polymorphic Types

Quiz) What is the type of the function?

let first_if_true test x y =

if test x then x else y

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 31 / 44

Tuples

An ordered collection of values, each of which can be a different
types, e.g.,

let x = (1, "one");;

val x : int * string = (1, "one")

let y = (2, "two", true);;

val y : int * string * bool = (2, "two", true)

Extract each component using pattern-matching:

let fst p = match p with (x,_) -> x;;

val fst : ’a * ’b -> ’a = <fun>

let snd p = match p with (_,x) -> x;;

val snd : ’a * ’b -> ’b = <fun>

or equivalently,

let fst (x,_) = x;;

val fst : ’a * ’b -> ’a = <fun>

let snd (_,x) = x;;

val snd : ’a * ’b -> ’b = <fun>

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 32 / 44

Tuples

Patterns can be used in let:

let p = (1, true);;

val p : int * bool = (1, true)

let (x,y) = p;;

val x : int = 1

val y : bool = true

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 33 / 44

Lists

A finite sequence of elements, each of which has the same type, e.g.,

[1; 2; 3]

is a list of integers:

[1; 2; 3];;

- : int list = [1; 2; 3]

Note that
I all elements must have the same type, e.g., [1; true; 2] is not a list,
I the elements are ordered, e.g., [1; 2; 3] 6= [2; 3; 1], and
I the first element is called head, the rest tail.

[]: the empty list, i.e., nil. What are head and tail of []?

[5]: a list with a single element. What are head and tail of [5]?

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 34 / 44

List Examples

[1;2;3;4;5];;

- : int list = [1; 2; 3; 4; 5]

["OCaml"; "Java"; "C"];;

- : string list = ["OCaml"; "Java"; "C"]

[(1,"one"); (2,"two"); (3,"three")];;

- : (int * string) list = [(1, "one"); (2, "two"); (3, "three")]

[[1;2;3];[2;3;4];[4;5;6]];;

- : int list list = [[1; 2; 3]; [2; 3; 4]; [4; 5; 6]]

[1;"OCaml";3] ;;

Error: This expression has type string but an expression was

expected of type int

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 35 / 44

List Operators

:: (cons): add a single element to the front of a list, e.g.,

1::[2;3];;

- : int list = [1; 2; 3]

1::2::3::[];;

- : int list = [1; 2; 3]

([1; 2; 3] is a shorthand for 1::2::3::[])

@ (append): combine two lists, e.g.,

[1; 2] @ [3; 4; 5];;

- : int list = [1; 2; 3; 4; 5]

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 36 / 44

Patterns for Lists

Pattern matching is useful for manipulating lists.

A function to check if a list is empty:

let isnil l =

match l with

[] -> true

|_ -> false;;

val isnil : ’a list -> bool = <fun>

isnil [1];;

- : bool = false

isnil [];;

- : bool = true

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 37 / 44

Patterns for Lists

A function that computes the length of lists:

let rec length l =

match l with

[] -> 0

|h::t -> 1 + length t;;

val length : ’a list -> int = <fun>

length [1;2;3];;

- : int = 3

We can replace pattern h by _:

let rec length l =

match l with

[] -> 0

|_::t -> 1 + length t;;

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 38 / 44

Data Types

If data elements are finite, just enumerate them, e.g., “days”:

type days = Mon | Tue | Wed | Thu | Fri | Sat | Sun;;

type days = Mon | Tue | Wed | Thu | Fri | Sat | Sun

Construct values of the type:

Mon;;

- : days = Mon

Tue;;

- : days = Tue

A function that manipulates the defined data:

let nextday d =

match d with

| Mon -> Tue | Tue -> Wed | Wed -> Thu | Thu -> Fri

| Fri -> Sa | Sat -> Sun | Sun -> Mon ;;

val nextday : days -> days = <fun>

nextday Mon;;

- : days = Tue

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 39 / 44

Data Types

Constructors can be associated with values, e.g.,
type shape = Rect of int * int | Circle of int;;

type shape = Rect of int * int | Circle of int

Construct values of the type:
Rect (2,3);;

- : shape = Rect (2, 3)

Circle 5;;

- : shape = Circle 5

A function that manipulates the data:
let area s =

match s with

Rect (w,h) -> w * h

| Circle r -> r * r * 3;;

val area : shape -> int = <fun>

area (Rect (2,3));;

- : int = 6

area (Circle 5);;

- : int = 75

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 40 / 44

Data Types

Inductive data types, e.g.,
type mylist = Nil | List of int * mylist;;

type mylist = Nil | List of int * mylist

Construct values of the type:
Nil;;

- : mylist = Nil

List (1, Nil);;

- : mylist = List (1, Nil)

List (1, List (2, Nil));;

- : mylist = List (1, List (2, Nil))

A function that manipulates the data:
let rec mylength l =

match l with

Nil -> 0

|List (_,l’) -> 1 + mylength l’;;

val mylength : mylist -> int = <fun>

mylength (List (1, List (2, Nil)));;

- : int = 2

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 41 / 44

Exceptions

An exception means a run-time error: e.g.,

let div a b = a / b;;

val div : int -> int -> int = <fun>

div 10 5;;

- : int = 2

div 10 0;;

Exception: Division_by_zero.

The exception can be handled with try ... with constructs.

let div a b =

try

a / b

with Division_by_zero -> 0;;

val div : int -> int -> int = <fun>

div 10 5;;

- : int = 2

div 10 0;;

- : int = 0

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 42 / 44

Exceptions

User-defined exceptions: e.g.,

exception Problem;;

exception Problem

let div a b =

if b = 0 then raise Problem

else a / b;;

val div : int -> int -> int = <fun>

div 10 5;;

- : int = 2

div 10 0;;

Exception: Problem.

try

div 10 0

with Problem -> 0;;

- : int = 0

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 43 / 44

Summary

We’ve gone through the basics of OCaml programming:

Expressions

Names

Functions

Pattern matching

Type inference

Tuples and lists

Data types

Exceptions

Woosuk Lee ENE4014 2024 Spring, Lecture 3 March 18, 2024 44 / 44

