
ENE4014: Programming Languages

Lecture 16 — Let-Polymorphic Type System

Woosuk Lee
2024 Spring

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 1 / 25

Motivation

Our type system is useful but it is not as expressive as we would like
it to be. In particular, it does not support polymorphism1. For
example, it rejects the following program:

let f = proc (x) x in

if (f (iszero (0))) then (f 11) else (f 22)

Polymorphic functions are widely used in practice, so OCaml supports
polymorphism:

let f = fun x -> x in

if (f (0=0)) then (f 11) else (f 22);;

- : int = 11

Lets extend our type system to the let-polymorphic type system, the
ML-style polymorphism.

1Polymorphism refers to the language mechanisms that allow a single part of a
program to be used with different types in different contexts

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 2 / 25

What went wrong?

let f = proc (x) x in

if (f (iszero (0))) then (f 11) else (f 22)

We assign type t → t to f, generating the constraint that the
argument and return types are the same.

Intuitively, the program can be well typed because the all usages of f
satisfy the required constraint:

I In (f (iszero 0)), we can assign bool → bool to f.
I In (f 11) and (f 22), we can assign int → int to f.

However, our type checking algorithm uses the same type variable t in
both cases and generates the spurious constraint that bool = int.

Any idea to fix this problem?

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 3 / 25

A Simple Solution

Associate a different variable t with each use of f. This is easily
accomplished by substituting the body of f for each occurrence of f.
For example, convert the program

let f = proc (x) x in

if (f (iszero (0))) then (f 11) else (f 22)

into the following before type-checking:

if ((proc (x) x) (iszero (0)))

then ((proc (x) x) 11)

else ((proc (x) x) 22)

which is accepted by our type system as we can generate different type
variables for different copies of the procedure.

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 4 / 25

Typing Rule

Instead of the ordinary typing rule for let:

Γ ` E1 : t1 [x 7→ t1]Γ ` E2 : t2
Γ ` let x = E1 in E2 : t2

we used the new typing rule:

Γ ` [x 7→ E1]E2 : t2
Γ ` let x = E1 in E2 : t2

Here, [x 7→ E1]E2 denotes an expression obtained by replacing each
occurrence of x by E1 in E2.
The corresponding algorithm for generating type equation:

V(Γ, let x = e1 in e2, t) = V(Γ, [x 7→ e1]e2, t)

The ordinary unification algorithm does the rest.

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 5 / 25

Flaws

This simplistic method has some flaws that need to be addressed before
we can use it in practice.

1 Unused definitions are not type-checked, so a program like

let x = <unsafe code> in 5

will pass the type-checker. (This can be easily fixed. See Exercise 1)

2 The method is not efficient if the body of let contains many
occurrences of the bound variables:

let a = <complex code> in

let b = a + a in

let c = b + b in

let d = c + c in

...

The typing rule can cause the type-checker to perform an amount of
work that is exponential in the size of the original code.

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 6 / 25

Exercise 1

Fix the typing rule and V to repair the first problem.
We can fix the problem by adding a premise to the typing rule:

Γ ` [x 7→ E1]E2 : t2 Γ ` E1 : t1
Γ ` let x = E1 in E2 : t2

and a corresponding premise to the algorithm:

V(Γ, let x = e1 in e2, t) = V(Γ, e1, α)∧V(Γ, [x 7→ e1]e2, t) (newα)

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 7 / 25

Let-Polymorphic Type Checking Algorithm

To avoid the re-computation, practical implementations of languages with
let-polymorphism use a more clever algorithm. In outline, the
type-checking of

let x = e1 in e2

proceeds as follows:

We find the most general type t of e1 by running the ordinary
type-checking algorithm (i.e., compute U(V(Γ, e1, t)) where Γ is
the type environment embracing e1).

We generalize any variables remaining in the type, obtaining the type
scheme ∀α1 . . . αn.t, where α1 . . . αn appear in t.

We extend the type environment to record the type scheme for the
bound variable x, and start type-checking e2

Each time we encounter an occurrence of x, we generate fresh type
variables β1 . . . βn and use them to instantiate the type scheme.

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 8 / 25

Example 1

let (f︸︷︷︸
tf

) = proc (x︸︷︷︸
tx

) 1

︸ ︷︷ ︸
t4

in (f 1)︸ ︷︷ ︸
t2

+(f true)︸ ︷︷ ︸
t3︸ ︷︷ ︸

t1︸ ︷︷ ︸
t0

Equations Substitution
tf = ∀tx. tx → int
t1 = int
t2 = int
t3 = int
tf = int → t2
tf = bool → t3
t0 = t1

U(V(∅, proc (x) 1, t4)) = tx → int.

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 9 / 25

Example 1

let (f︸︷︷︸
tf

) = proc (x︸︷︷︸
tx

) 1

︸ ︷︷ ︸
t4

in (f 1)︸ ︷︷ ︸
t2

+(f true)︸ ︷︷ ︸
t3︸ ︷︷ ︸

t1︸ ︷︷ ︸
t0

Equations Substitution
tf = ∀tx. tx → int
t1 = int
t2 = int
t3 = int

tf = int → t2
tf = bool → t3
t0 = t1

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 10 / 25

Example 1

let (f︸︷︷︸
tf

) = proc (x︸︷︷︸
tx

) 1

︸ ︷︷ ︸
t4

in (f 1)︸ ︷︷ ︸
t2

+(f true)︸ ︷︷ ︸
t3︸ ︷︷ ︸

t1︸ ︷︷ ︸
t0

Equations Substitution
tf = ∀tx. tx → int
t1 = int
t2 = int
t3 = int

β1 → int = int → t2
tf = bool → t3
t0 = t1

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 11 / 25

Example 1

let (f︸︷︷︸
tf

) = proc (x︸︷︷︸
tx

) 1

︸ ︷︷ ︸
t4

in (f 1)︸ ︷︷ ︸
t2

+(f true)︸ ︷︷ ︸
t3︸ ︷︷ ︸

t1︸ ︷︷ ︸
t0

Equations Substitution
tf = ∀tx. tx → int
t1 = int
t2 = int
t3 = int

β1 = int
int = t2
tf = bool → t3
t0 = t1

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 12 / 25

Example 1

let (f︸︷︷︸
tf

) = proc (x︸︷︷︸
tx

) 1

︸ ︷︷ ︸
t4

in (f 1)︸ ︷︷ ︸
t2

+(f true)︸ ︷︷ ︸
t3︸ ︷︷ ︸

t1︸ ︷︷ ︸
t0

Equations Substitution
tf = ∀tx. tx → int
t1 = int
t2 = int
t3 = int
β1 = int
t2 = int

tf = bool → t3
t0 = t1

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 13 / 25

Example 1

let (f︸︷︷︸
tf

) = proc (x︸︷︷︸
tx

) 1

︸ ︷︷ ︸
t4

in (f 1)︸ ︷︷ ︸
t2

+(f true)︸ ︷︷ ︸
t3︸ ︷︷ ︸

t1︸ ︷︷ ︸
t0

Equations Substitution
tf = ∀tx. tx → int
t1 = int
t2 = int
t3 = int
β1 = int
t2 = int

β2 → int = bool → t3
t0 = t1

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 14 / 25

Example 1

let (f︸︷︷︸
tf

) = proc (x︸︷︷︸
tx

) 1

︸ ︷︷ ︸
t4

in (f 1)︸ ︷︷ ︸
t2

+(f true)︸ ︷︷ ︸
t3︸ ︷︷ ︸

t1︸ ︷︷ ︸
t0

Equations Substitution
tf = ∀tx. tx → int
t1 = int
t2 = int
t3 = int
β1 = int
t2 = int
β2 = bool
t3 = int
t0 = int

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 15 / 25

Example 2

let f︸︷︷︸
tf

= proc (x︸︷︷︸
tx

) x

︸ ︷︷ ︸
t1

in if (f true)︸ ︷︷ ︸
t2

then 1 else ((f f)︸ ︷︷ ︸
t4

2)

︸ ︷︷ ︸
t3︸ ︷︷ ︸

t0

Equations Substitution

tf = ∀tx. tx → tx
t2 = bool
t3 = int
t4 = int → t3
tf = bool → t2
tf = tf → t4
t0 = t3

U(V(∅, proc (x) x, t1)) = tx → tx.

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 16 / 25

Example 2

let f︸︷︷︸
tf

= proc (x︸︷︷︸
tx

) x

︸ ︷︷ ︸
t1

in if (f true)︸ ︷︷ ︸
t2

then 1 else ((f f)︸ ︷︷ ︸
t4

2)

︸ ︷︷ ︸
t3︸ ︷︷ ︸

t0

Equations Substitution

tf = ∀tx. tx → tx
t2 = bool
t3 = int
t4 = int → int

tf = bool → t2
tf = tf → t4
t0 = t3

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 17 / 25

Example 2

let f︸︷︷︸
tf

= proc (x︸︷︷︸
tx

) x

︸ ︷︷ ︸
t1

in if (f true)︸ ︷︷ ︸
t2

then 1 else ((f f)︸ ︷︷ ︸
t4

2)

︸ ︷︷ ︸
t3︸ ︷︷ ︸

t0

Equations Substitution

tf = ∀tx. tx → tx
t2 = bool
t3 = int
t4 = int → int

β1 → β1 = bool → bool
tf = tf → t4
t0 = t3

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 18 / 25

Example 2

let f︸︷︷︸
tf

= proc (x︸︷︷︸
tx

) x

︸ ︷︷ ︸
t1

in if (f true)︸ ︷︷ ︸
t2

then 1 else ((f f)︸ ︷︷ ︸
t4

2)

︸ ︷︷ ︸
t3︸ ︷︷ ︸

t0

Equations Substitution

tf = ∀tx. tx → tx
t2 = bool
t3 = int
t4 = int → int
β1 = bool

tf = tf → t4
t0 = t3

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 19 / 25

Example 2

let f︸︷︷︸
tf

= proc (x︸︷︷︸
tx

) x

︸ ︷︷ ︸
t1

in if (f true)︸ ︷︷ ︸
t2

then 1 else ((f f)︸ ︷︷ ︸
t4

2)

︸ ︷︷ ︸
t3︸ ︷︷ ︸

t0

Equations Substitution

tf = ∀tx. tx → tx
t2 = bool
t3 = int
t4 = int → int
β1 = bool

β2 → β2 = (β3 → β3) → t4
t0 = t3

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 20 / 25

Example 2

let f︸︷︷︸
tf

= proc (x︸︷︷︸
tx

) x

︸ ︷︷ ︸
t1

in if (f true)︸ ︷︷ ︸
t2

then 1 else ((f f)︸ ︷︷ ︸
t4

2)

︸ ︷︷ ︸
t3︸ ︷︷ ︸

t0

Equations Substitution

tf = ∀tx. tx → tx
t2 = bool
t3 = int
t4 = int → int
β1 = bool

β2 = β3 → β3

β2 = int → int
t0 = t3

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 21 / 25

Example 2

let f︸︷︷︸
tf

= proc (x︸︷︷︸
tx

) x

︸ ︷︷ ︸
t1

in if (f true)︸ ︷︷ ︸
t2

then 1 else ((f f)︸ ︷︷ ︸
t4

2)

︸ ︷︷ ︸
t3︸ ︷︷ ︸

t0

Equations Substitution

tf = ∀tx. tx → tx
t2 = bool
t3 = int
t4 = int → int
β1 = bool
β2 = β3 → β3

β3 → β3 = int → int
t0 = t3

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 22 / 25

Example 2

let f︸︷︷︸
tf

= proc (x︸︷︷︸
tx

) x

︸ ︷︷ ︸
t1

in if (f true)︸ ︷︷ ︸
t2

then 1 else ((f f)︸ ︷︷ ︸
t4

2)

︸ ︷︷ ︸
t3︸ ︷︷ ︸

t0

Equations Substitution

tf = ∀tx. tx → tx
t2 = bool
t3 = int
t4 = int → int
β1 = bool
β2 = β3 → β3

β3 = int
t0 = t3

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 23 / 25

Example 2

let f︸︷︷︸
tf

= proc (x︸︷︷︸
tx

) x

︸ ︷︷ ︸
t1

in if (f true)︸ ︷︷ ︸
t2

then 1 else ((f f)︸ ︷︷ ︸
t4

2)

︸ ︷︷ ︸
t3︸ ︷︷ ︸

t0

Equations Substitution

tf = ∀tx. tx → tx
t2 = bool
t3 = int
t4 = int → int
β1 = bool
β2 = int → int
β3 = int
t0 = int

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 24 / 25

Summary

We extended our type system (called simple type system) to
let-polymorphic type system, the core of ML type system.

The extension is conservative:

Γ `simple E : T =⇒ Γ `poly E : T

Let-polymorphic type system accepts all programs acceptable by the
simple type system.

Woosuk Lee ENE4014 2024 Spring, Lecture 16 June 5, 2024 25 / 25

