
ENE4014: Programming Languages

Lecture 10 — Type System

(1) Motivation

Woosuk Lee
2024 Spring

Woosuk Lee ENE4014 2024 Spring, Lecture 10 March 2, 2024 1 / 10

Review: Our Programming Language System So Far

Designed and implemented a programming language system:
I Rigorously defined syntax and semantics of the language.
I Faithfully implemented the interpreter based on the formal design.

Program→ Interpreter → Result

A well-designed language indeed, with clean syntax and semantics :-)

However, the current system has a significant shortcoming.

Woosuk Lee ENE4014 2024 Spring, Lecture 10 March 2, 2024 2 / 10

The Language System is Unsafe

It attempts to execute unsafe programs too, only to fail at runtime.

Unsafe Program→ Interpreter → Runtime Failure

For example,
I if 3 then 88 else 99
I (proc (x) (x 3)) 4
I let x = iszero 0 in (3-x)

We want to avoid evaluating unsafe programs but the language
system puts all the burden of writing safe programs on the
programmers.

I Also in C, C++, Python, JavaScript, etc.

This manual approach of avoiding software errors has proven
extremely unsuccessful.

Woosuk Lee ENE4014 2024 Spring, Lecture 10 March 2, 2024 3 / 10

Software Failures in History

(1996) The Arian-5 rocket, whose development required 10 years and
$8 billion, exploded just 37s after launch due to software error.

(1998) NASA’s Mars climate orbiter lost in space. Cost: $125 million

(2000) Accidents in radiation therapy system. Cost: 8 patients died

(2007) Air control system shutdown in LA airport. Cost: 6,000
passengers stranded

(2012) Glitch in trading software of Knight Captal. Cost: $440 million

(2014) Airbag malfunction of Nissan vehicles. Cost: $1 million
vehicles recalled

. . . Countless software projects failed in history.

Woosuk Lee ENE4014 2024 Spring, Lecture 10 March 2, 2024 4 / 10

Dream: Safe Language System

Automated technology for analyzing the safety and detecting all bugs
of programs statically.

Program→ Analyzer → Interpreter → Result

Static analyzer detects software bugs statically and automatically
I static: by analyzing program text, before run/ship/embed
I automatic: sw is analyzed by sw (“static analyzer”)

Next-generation software testing technology
I finding bugs early / full automation / all bugs found

Woosuk Lee ENE4014 2024 Spring, Lecture 10 March 2, 2024 5 / 10

Static Analysis is Undecidable

Unfortunately, “static analysis” is undecidable.

More precisely, sound and complete static analysis is impossible.

Approximate (yet useful) ones are possible.

Woosuk Lee ENE4014 2024 Spring, Lecture 10 March 2, 2024 6 / 10

Soundness and Completeness

Soundness: Analyzer can prove the absence of errors. If analyzer
accepts a program, then the program is safe. If a program has errors,
analyzer rejects the program. All unsafe programs are rejected. No
false negatives.

Completeness: Analyzer can prove the presence of errors. If analyzer
rejects a program, then the program has errors. If the program is safe,
analyzer accepts the program. All safe programs are accepted. No
false positives.

Woosuk Lee ENE4014 2024 Spring, Lecture 10 March 2, 2024 7 / 10

Plan: Building a Static Type System for Our Language

Static analyzer that detects type errors (runtime failures caused by type
mismatches).

if true then 88 else 99

if 3 then 88 else 99

(proc (x) (x 3)) (proc (x) x)

(proc (x) (3 x)) e

let x = iszero 0 in (3-x)

cf) Detecting other types of errors is beyond the scope of our type system,
e.g., ((proc (x) (4 / x)) 0.

Woosuk Lee ENE4014 2024 Spring, Lecture 10 March 2, 2024 8 / 10

Sound but Incomplete Type System

We settle for a sound but incomplete type system.
I Sound: detecting all type errors.
I Incomplete: some safe programs will not pass our type system.

Type systems in modern programming languages such as ML, Haskell,
and Scala are also sound but incomplete.

cf) Type systems in languages like C and C++ are neither sound nor
complete.

Woosuk Lee ENE4014 2024 Spring, Lecture 10 March 2, 2024 9 / 10

Next: Sound Type System for PROC

E → n
| x
| E + E
| E − E
| iszero E
| if E then E else E
| let x = E in E
| proc x E
| E E

Woosuk Lee ENE4014 2024 Spring, Lecture 10 March 2, 2024 10 / 10

