Homework 4
ENE4014 Programming Languages, Spring 2024
due: 5/25(Wed), 23:59

Consider the following programming language, called miniML, that features
recursive procedures and explicit references.

Syntax The syntax is defined as follows:

P - F
E — n
| =z
E+E|EFE-FE|ExE|E/E
E=FE|E<E
iszero K

|

|

|

| if E then F else FE
| letz=FinFE
| letrec f(z)=FE in E
| procz E
| EE

| ref E

| 'E

| E:=F

| E;E

| begin E end

A program is an expression. Expressions include integers, identifiers, arith-
metic expressions, comparisons, conditional expressions, variable or recursive
function definitions, function calls, dereferences, assignments, and sequences.

Exercise 1 Consider the following semantics definition with dynamic scop-
ing, and implement an interpreter of miniML. The semantics is defined with the
following domains and evaluation rules.

The set of values (Val) the language manipulate includes integers (Z), booleans
(Bool), procedures (Procedure), and memory locations (Loc). Environments

(Env) map program variables (Var) to values. Memories (Mem) map mem-
ory locations (Loc) to values. Recall that recursive functions require no special
mechanism in dynamic scoping.

Val = 7+ Bool + Procedure + Loc
Procedure = Var x E
p€ FEnv = Var — Val
o€ Mem = Loc— Val

The evaluation rules are defined inductively as inference rules.

p,obEn=mno p,obFax=plx),o

p,00 = By = ny, 01 p,o1 = By = ng, 09
p,00F E1® Ey = ny ®na, oo

@ € {+, —, *}

p,O'()FE1:>7’Ll,01 p,01FE2:>n2,0'2
p,o0 b E1 @ Ey = ny/ng, 02

ng#O

Note that the semantics is defined only when E; and Es5 evaluate to integers
and that E;/Fs is undefined when the value of Fj is 0 (division-by-zero).
Comparison operators produce boolean values as follows:

p,00 = Ey = ny, 01 p,01F Ey = ng, 09 _
ny = no9
p,00 - E1 = Fy = true, o9
p,aOI—E1:>n1,01 p,al}—E2:>n2,02 n #n
P00 FE =E) = fCLlS@,O’Q ! 2
p,ool—E1:>n1,01 p,a1}—E2:>n2,02 ny < g
p,00 - B1 < Ey = true, o9
p,aOI—E1:>n1,01 p,al}—E2:>n2,02
nig > ng
P,00 FE < Ey=> false,az
p,o0F E =001 p,o0 b E=mn,01
- - n#0
p,00 - iszero E = true, o p,00 F iszero E = false, 0

The semantics of conditional, let, letrec, proc, and call expressions are as follows:

p700|_E1:>tT”LL6,01 p,0'1|_E2:>’U,02
p,00 Fif E; then Fs else E3 = v,09

p,00 F E1 = false, o1 p,01 F FE3 = v,09
p,00 - if F; then Fs else F3 = v,09

p,o0F By = v1,01 [— vi]p,01 F By = v, 09
p,00F let x = Fq in Fy = v, 09

p,obprocx E= (z,E),0
[f = (z, E1)]p,00 - Bs = v, 01
p,00 F letrec f(x) = Ey in Es = v, 07

p,oo b E1 = (z,F), 01 p,o1F Ey = v, 09 [z = v]p,o0 - E = 03
p,00F E1 By =0, 03

The semantics of dereference, assignment, and sequence expressions are as fol-

lows:
p,00 - FEF=wv01

p,00 - ref E =1 [l — v]oy

I ¢ Dom(oy)

p,o0 - E =101
,0,0'0" ! E:>O'1(l),0'1

p,oo b E1 = 1,01 p,01F FEy = v, 09
P,00 FE,:=F, =0, [l’—)’l)]a'g

p,CT()'_E1:>'Ul,01 p70'1|_E2:>’U2,02
p,00 = Ev; Ea = v2,09

p,00 - FE =001

p,00 - begin E end = v,0,

Now let’s implement the miniML interpreter with dynamic scoping in OCaml.
In file lang.ml, the syntax is defined as OCaml datatype as follows:

type program = exp

and exp =
| CONST of int
VAR of var
ADD of exp * exp
SUB of exp * exp
MUL of exp * exp
DIV of exp * exp

|

|

[

|

|

| EQ of exp * exp

| LT of exp * exp

| ISZERD of exp

| READ

| IF of exp * exp * exp
| LET of var * exp * exp

| LETREC of var * var * exp * exp
| PROC of var * exp

| CALL of exp * exp

| NEWREF of exp

| DEREF of exp

| SETREF of exp * exp

| SEQ of exp * exp

| BEGIN of exp

and var = string

The type of values, environments, and memory states are defined in the
interpreter_dynamic.ml file as follows:

type value =
Int of int

| Bool of bool

| Procedure of var * exp

| Loc of loc
and loc = int
and env = (var * value) list
and mem = (loc * value) list

According to the above information, implement the function
eval : exp -> env —> mem -> value * mem

in the interpreter_dynamic.ml file. The function takes a program along with
initial environment and memory state, and produces a value and a (possibly
modified) memory state. Raise an exception UndefinedSemantics (defined in
lang.ml) whenever the semantics is undefined. Skeleton code will be provided
(before you start, see README . md).

Exercise 2 Consider the following semantics definition with static scoping,
and implement an interpreter of miniML.

The semantics is defined with the following domain. Recall that recursive
functions require special mechanism in static scoping.

Val = 7Z + Bool + Procedure + RecProcedure + Loc
Procedure = Var x E x Env
RecProcedure = Var x Var x E x Env
p€ Env = Var— Val
o € Mem = Loc— Val

The followings are evaluation rules (rules same as in the previous exercise are
omitted):

[f = (f7$7E17p)]p70'0 F E2 = V,01
p,00 F letrec f(z) = Ey in By = v, 04

p,obprocx E= (z,E, p),o

p,oo b E1 = (z,E,p'), 01 p,01F Ey = v,09 [z = v]p o0 E = 03
P, 00 l_El E2 :>’U/,0'3

p,oo b Ey = (f,z,E,p'),01 porbEy=v,00 [z—=u,f— (fiz,E p)p,00F E=v 03

P, 00 [E1 Eg = U/,O'g

Now let’s implement the miniML interpreter with static scoping in OCaml.
We will use the syntax defined as OCaml datatype in file lang.ml as we do in
the previous exercise. The type of values, environments, and memory states are
defined in the

interpreter_static.ml file as follows:

type value =
Int of int
| Bool of bool
| Procedure of var * exp * env
| RecProcedure of var * var * exp * env
| Loc of loc
and loc = int
and env = (var * value) list
and mem (loc * value) list

According to the aforementioned evaluation rules, implement the function
eval : exp -> env -> mem -> value * mem

in the interpreter_static.ml file. Raise an exception UndefinedSemantics
whenever the semantics is undefined.

