
Homework 3

ENE4014 Programming Languages, Spring 2024

due: 5/6(Mon), 23:59

• You must write your code by yourself and must not look at someone
elses code.

• Do not use any external libraries. You can use only the OCaml
standard library (https://ocaml.org/api/index.html).

• Exercises 12 – 15 are optional. If you want to get extra points, you
can solve them.

Exercise 1 (5 points) Write a function

revrev: ’a list list -> ’a list list

such that revrevt returns the result of reversing the order of the elements of t
and then reversing the order of the elements of each element of t. For example,

revrev [[1;2;3]; [4;5;6]; [7;8;9]] = [[9;8;7]; [6;5;4]; [3;2;1]]

2

Exercise 2 (5 points) Write a function

union: ’a list -> ’a list -> ’a list

such that union t1 t2 returns the union of the elements of t1 and t2 without
duplicates. You can use ’=’ to compare elements of the list. The order of
elements in the return value does not matter. For example,

union [1; 2; 3; 4] [3; 4; 5; 6] = [1; 2; 3; 4; 5; 6].

2

1



Exercise 3 (5 points) Write a function

alterSum: int list -> int

such that alterSum t returns returns an integer that is the result of applying
addition and subtraction to the elements of the list t alternately. The first
operation, if applicable, is addition. For an empty list, alterSum returns 0. For
example,

alterSum [] = 0

alterSum [1; 2; 3; 4; 5] = 1 + 2− 3 + 4− 5 = −1

alterSum [1; 2; 3; 4; 5; 6] = 1 + 2− 3 + 4− 5 + 6 = 5

2

Exercise 4 (5 points) Write a function

dsort: int list -> int list

such that dsort t returns a list that is the result of sorting the elements of t in
descending order. For example,

dsort [3; 2; 1; 4; 5] = [5; 4; 3; 2; 1]

dsort [2; 1; 4; 3; 6; 5] = [6; 5; 4; 3; 2; 1].

Do not use any built-in sorting functions (e.g., List.sort, List.stable sort, List.fast sort,
etc.). 2

Exercise 5 Consider the following OCaml data type for Boolean circuits

type circuit = IN

| AND of circuit * circuit

| OR of circuit * circuit

where IN denotes input. For example, the following circuit

can be described as

OR (AND (IN, IN), IN)

The AND depth of a circuit is the maximum number of sequential AND gates
from input to output. For example, the following circuit has the AND depth of
4.

2



Write a function
and_depth : circuit -> int

that takes a circuit and returns its AND depth.

Exercise 6 (5 points) Write a higher-order function

iter n f = fn

where fn is the function that is the result of applying f to itself n times (in
other words, fn(x) = f(· · · (f︸ ︷︷ ︸

n

(x)). When n = 0, the function returns the

identity function (fun x -> x).

For example,
(iter n f) 0

when f = (fun x -> x + 2) and n = 3 returns 6 because

(iter n f) 0 = f3(0) = f(f(f(0))) = f(f(2)) = f(4) = 6.

2

Exercise 7 (5 points) Write a function

mapn: (’a -> ’a) -> int -> ’a list -> ’a list

such that mapn f n l returns a list that is the result of applying f to each element
of l n times. More precisely,

mapn f n [x1;x2; · · · , xm] = [fn(x1); fn(x2); · · · , fn(xm)]

where fn is defined as in the previous exercise and xi is the i-th element of l.
For example,

mapn (fun x -> x + 1) 3 [1; 2; 3; 4; 5] = [4; 5; 6; 7; 8]

mapn (fun x -> x + 1) 0 [1; 2; 3; 4; 5] = [1; 2; 3; 4; 5]

2

3



Exercise 8 (5 points) N -ary tree is a tree in which each node has at most N
children. The following is the definition of N-ary tree whose elements are of
type ’a.

type ’a ntree = Leaf of ’a | Node of (’a ntree list)

For example,

Node [Leaf 1; Node [Leaf 2; Leaf 3; Leaf 4]]

is a tree represented as follows:

1

2 3 4

Write a function
findn: ’a ntree -> int

such that findn t returns the maximum number of children of any node in the
tree t. For example,

findn (Node [Leaf 1; Node [Leaf 2; Leaf 3; Leaf 4]]) = 3

2

Exercise 9 Write a function

flatten: ’a ntree -> ’a list

such that flatten t returns a list containing all the ’a type-elements in the
tree t. The order of elements in the return value does not matter. For example,

flatten (Node [Leaf 1; Node [Leaf 2; Leaf 2; Leaf 4]]) = [1; 2; 2; 4]

2

Exercise 10 (5 points) Consider the following OCaml data type for proposi-
tional formulas

type formula = TRUE | FALSE

| NOT of formula

| ANDALSO of formula * formula

| ORELSE of formula * formula

| IMPLY of formula * formula

| LESS of expr * expr

and expr = NUM of int

| PLUS of expr * expr

| MINUS of expr * expr

4



Considering the above definition, write a function

eval : formula→ bool

that computes the truth value of a given formula. For example,

eval (IMPLY (IMPLY (TRUE, FALSE), TRUE))

evaluates to true, and

eval (LESS (NUM 5, PLUS (NUM 1, NUM 2)))

evaluates to false.

Exercise 11 (5 points) Write a function

sigma : int * int * (int -> int) -> int.

such that sigma(a,b,f) returns Σb
n=af(n).

Exercise 12 (Optional, 10 points) Write a function

diff : ae ∗ string→ ae

that differentiates the given algebraic expression with respect to the variable
given as the second argument. The ae type is defined as follows:

type ae = CONST of int

| VAR of string

| POWER of string * int

| TIMES of ae list

| SUM of ae list

For example, x2 + 2x + 1 is represented by

SUM [POWER ("x", 2); TIMES [CONST 2; VAR "x"]; CONST 1]

and differentiating it (w.r.t. “x”) gives 2x + 2, which can be represented by

SUM [TIMES [CONST 2; VAR "x"]; CONST 2]

Exercise 13 (Optional, 10 points) Write a function

calculate : exp→ float

that returns a result of a given arithmetic formula. The exp type is defined as
follows:

5



type exp = X | INT of int

| REAL of float

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

| DIV of exp * exp

| SIGMA of exp * exp * exp

| INTEGRAL of exp * exp * exp

For example, the following arithmetic formulas can be written in the exp type:∑10
x=1(x× x− 1) SIGMA(INT1, INT10, SUB(MUL(X, X), INT1))∫ 10.0

x=1.0
(x× x− 1)dx INTEGRAL(REAL1.0, REAL10.0, SUB(MUL(X, X), INT1))

When you compute integrals, dx should be 0.1.

Exercise 14 (Optional, 10 points) Suppose we are interested in if someone
gets COVID-19. The following image describes people who are talking to some-
one else in a party at a moment.

A

B

C

D
E

The type talkingto is for representing whom is each person talking to:

type talkingto = (string * string) list

For example, the above situation can be represented as

let party = [("A", "B"); ("B", "A"); ("A", "D"); ("B", "C"); ("C", "E")]

Suppose no one is wearing a mask, and if person A talks to B and A gets COVID-
19, B also gets infected immediately. For example, in the above situation, E
gets infected if A got COVID because A talks to B, who talks to C, who talks
to E.

Write a function

infected : talkingto -> string -> string -> bool

that determines if a person (3rd argument) gets infected when another person
(2nd argument) got COVID. For example, the function should behave as follows:

6



infected party "A" "E" = true

infected party "B" "D" = true

infected party "C" "D" = false

infected party "C" "B" = false

Exercise 15 (Optional, 10 points) As an extension of the previous exercise,
suppose people who get vaccinated never get COVID. Write a function

infected_vaccine : talkingto -> string list -> string -> string -> bool

that additionally gets a list of people who get vaccinated as the second argument.

For example,

infected_vaccine party ["A"; "C"] "B" "D" = false

as if A and C get vaccinated, E is free from COVID even if B got infected
because C is blocking the way from B to E.

A

B

C

D
E

The followings are other example behaviors.

infected_vaccine party ["A"; "C"] "B" "E" = false

infected_vaccine party ["A"] "B" "E" = true

infected_vaccine party ["C"] "A" "E" = false

7


