Homework 2
 ENE4014 Programming Languages, Spring 2024 due: 4/17(Wed), 23:59

- Submit one file per problem via the submission system in the course website. Make sure that your files are compiled and run without errors.
- Do not use any external libraries.

Exercise 1 Write a function
npower: int -> int -> float
that returns $\frac{1}{x^{n}}$ for two given integers x and $n(\geq 0) . x^{0}$ is defined to be 1.
Exercise 2 Write a function

$$
\text { gcd: int } \rightarrow \text { int }->\text { int }
$$

that returns the greatest common divisor (GCD) of two given non-negative integers. Use the Euclidean algorithm based on the following definition (for two integers n and $m(n \geq m))$:

$$
\operatorname{gcd} n m= \begin{cases}n & (m=0) \\ \operatorname{gcd}(n-m) m & \end{cases}
$$

Exercise 3 Write a function
min: int list -> int
that returns the minimum value of a given list of integers. If the list is empty, return 0 .

Exercise 4 Write a function

```
cartesian: 'a list -> 'b list -> ('a * 'b) list
```

that returns a list of from two lists. That is, for lists A and B, the Cartesian product $A \times B$ is the list of all ordered pairs (a, b) where $a \in A$ and $b \in B$. For example, if $A=\left[" a^{\prime \prime} ; " b\right.$ "; " c " $]$ and $B=[1 ; 2 ; 3], A \times B$ is defined to be

$$
\left[\left(" a^{\prime \prime}, 1\right) ;\left(" a^{\prime \prime}, 2\right) ;\left(" a^{\prime \prime}, 3\right) ;\left(" b^{\prime \prime}, 1\right) ;\left(" b^{\prime \prime}, 2\right) ;\left(" b^{\prime \prime}, 3\right) ;\left(" c^{\prime \prime}, 1\right) ;\left(" c^{\prime \prime}, 2\right) ;\left(" c^{\prime \prime}, 3\right)\right]
$$

Binary trees can be defined as follows:

```
type btree = Leaf | Node of int * btree * btree
```

The number in the Node constructor is called the key of the node.

Exercise 5 Write a function

```
count_leaves : btree -> int
```

that takes a binary tree and returns the number of all leaves in the tree. For example,

```
# let t = Node (2, Node (2, Leaf, Leaf), Node (3, Leaf, Leaf)) ;;
val t : btree = Node (2, Node (2, Leaf, Leaf), Node (3, Leaf, Leaf))
# count_leaves t ;;
- : int = 4
```

Exercise 6 Write a function

```
count_oddnode : btree -> int
```

that takes a binary tree and returns the number of odd keys in the tree. For example,

```
# let t = Node (1, Node (2, Leaf, Leaf), Node (3, Leaf, Leaf)) ;;
val t : btree = Node (2, Node (2, Leaf, Leaf), Node (3, Leaf, Leaf))
# count_oddnode t ;;
- : int = 2
```

Exercise 7 Write a function

```
insert_btree : int -> btree -> btree
```

that takes an integer and a binary search tree and returns a new binary search tree with the integer properly inserted in the tree. A binary search tree (BST) is a tree where the key of each node is greater than all keys in its left subtree and less than all keys in its right subtree. For example,

```
# let t = Node (2, Node (2, Leaf, Leaf), Node (3, Leaf, Leaf)) ;;
val t : btree = Node (2, Node (2, Leaf, Leaf), Node (3, Leaf, Leaf))
# insert_btree 1 t ;;
- : btree = Node (2, Node (2, Node (1, Leaf, Leaf), Leaf), Node (3, Leaf, Leaf))
```

Exercise 8 Write a function

```
duplicate: 'a list -> 'a list
```

that duplicates the elements of a list. For example,

```
duplicate [1; 2; 3] = [1; 1; 2; 2; 3; 3].
```

Exercise 9 Write a function
replicate: 'a list -> int -> 'a list
that replicates the elements of a list a given number $n(\geq 0)$ of times. If n is 0 , the function should return an empty list. For example,

```
replicate [1; 2; 3] 3 = [1; 1; 1; 2; 2; 2; 3; 3; 3].
```

Exercise 10 Write a function

```
deduplicate: 'a list -> 'a list
```

that takes a list and returns a list with all duplicates removed. The order of the elements in the result should be the same as the order in the original list. For example,

```
deduplicate [1; 1; 2; 2; 3; 3; 2; 2] = [1; 2; 3].
```

Exercise 11 Write a function
lall: 'a list -> ('a -> bool) -> bool
such that

$$
\text { lall } l p= \begin{cases}\text { true } & \text { (if } p \text { holds for all elements of } l \text {) } \\ \text { false } & \text { (otherwise) }\end{cases}
$$

For example,

$$
\text { lall }[1 ; 2 ; 3](\text { fun } x \rightarrow x>0)=\text { true }
$$

and
lall [1; 2; 3] (fun $x \rightarrow x>1$) = false.

Exercise 12 Write a function
lany: 'a list -> ('a -> bool) -> bool
such that

$$
\text { lany } l p= \begin{cases}\text { true } & \text { (if } p \text { holds for at least one element of } l) \\ \text { false } & \text { (otherwise) }\end{cases}
$$

For example,

$$
\text { lany }[1 ; 2 ; 3](\text { fun } x \rightarrow x \bmod 2=0)=\text { true }
$$

and

$$
\text { lany }[1 ; 2 ; 3] \text { (fun } x \rightarrow x<0)=\text { false. }
$$

Exercise 13 Write a function
powerset: 'a list -> 'a list list
such that powerset l returns the list of all subsets of l. For example, if $l=$ $[1 ; 2 ; 3]$, then powerset l is defined to be

$$
[[] ;[1] ;[2] ;[3] ;[1 ; 2] ;[1 ; 3] ;[2 ; 3] ;[1 ; 2 ; 3]] .
$$

You don't have to consider the order of the elements in the result. For example, both $[[2 ; 1] ;[1] ;[2] ;[]]$ and $[[1] ;[1 ; 2] ;[2] ;[]]$ are correct answers for powerset $[1 ; 2]$.

