
Homework 2

ENE4014 Programming Languages, Spring 2024

due: 4/17(Wed), 23:59

• Submit one file per problem via the submission system in the course
website. Make sure that your files are compiled and run without
errors.

• Do not use any external libraries.

Exercise 1 Write a function

npower: int -> int -> float

that returns 1
xn for two given integers x and n(≥ 0). x0 is defined to be 1. 2

Exercise 2 Write a function

gcd: int -> int -> int

that returns the greatest common divisor (GCD) of two given non-negative
integers. Use the Euclidean algorithm based on the following definition (for two
integers n and m (n ≥ m)):

gcd n m =

{
n (m = 0)

gcd (n−m) m

2

Exercise 3 Write a function

min: int list -> int

that returns the minimum value of a given list of integers. If the list is empty,
return 0. 2

1

Exercise 4 Write a function

cartesian: ’a list -> ’b list -> (’a * ’b) list

that returns a list of from two lists. That is, for lists A and B, the Cartesian
product A×B is the list of all ordered pairs (a, b) where a ∈ A and b ∈ B. For
example, if A = [“a′′; “b′′; “c′′] and B = [1; 2; 3], A×B is defined to be

[(“a′′, 1); (“a′′, 2); (“a′′, 3); (“b′′, 1); (“b′′, 2); (“b′′, 3); (“c′′, 1); (“c′′, 2); (“c′′, 3)]

2

Binary trees can be defined as follows:

type btree = Leaf | Node of int * btree * btree

The number in the Node constructor is called the key of the node.

Exercise 5 Write a function

count leaves : btree -> int

that takes a binary tree and returns the number of all leaves in the tree. For
example,

let t = Node (2, Node (2, Leaf, Leaf), Node (3, Leaf, Leaf)) ;;

val t : btree = Node (2, Node (2, Leaf, Leaf), Node (3, Leaf, Leaf))

count_leaves t ;;

- : int = 4

2

Exercise 6 Write a function

count oddnode : btree -> int

that takes a binary tree and returns the number of odd keys in the tree. For
example,

let t = Node (1, Node (2, Leaf, Leaf), Node (3, Leaf, Leaf)) ;;

val t : btree = Node (2, Node (2, Leaf, Leaf), Node (3, Leaf, Leaf))

count_oddnode t ;;

- : int = 2

2

Exercise 7 Write a function

insert btree : int -> btree -> btree

that takes an integer and a binary search tree and returns a new binary search
tree with the integer properly inserted in the tree. A binary search tree (BST)
is a tree where the key of each node is greater than all keys in its left subtree
and less than all keys in its right subtree. For example,

2

let t = Node (2, Node (2, Leaf, Leaf), Node (3, Leaf, Leaf)) ;;

val t : btree = Node (2, Node (2, Leaf, Leaf), Node (3, Leaf, Leaf))

insert_btree 1 t ;;

- : btree = Node (2, Node (2, Node (1, Leaf, Leaf), Leaf), Node (3, Leaf, Leaf))

2

Exercise 8 Write a function

duplicate: ’a list -> ’a list

that duplicates the elements of a list. For example,

duplicate [1; 2; 3] = [1; 1; 2; 2; 3; 3].

2

Exercise 9 Write a function

replicate: ’a list -> int -> ’a list

that replicates the elements of a list a given number n(≥ 0) of times. If n is 0,
the function should return an empty list. For example,

replicate [1; 2; 3] 3 = [1; 1; 1; 2; 2; 2; 3; 3; 3].

2

Exercise 10 Write a function

deduplicate: ’a list -> ’a list

that takes a list and returns a list with all duplicates removed. The order of the
elements in the result should be the same as the order in the original list. For
example,

deduplicate [1; 1; 2; 2; 3; 3; 2; 2] = [1; 2; 3].

Exercise 11 Write a function

lall: ’a list -> (’a -> bool) -> bool

such that

lall l p =

{
true (if p holds for all elements of l)

false (otherwise)

For example,

lall [1; 2; 3] (fun x -> x > 0) = true

and
lall [1; 2; 3] (fun x -> x > 1) = false.

2

3

Exercise 12 Write a function

lany: ’a list -> (’a -> bool) -> bool

such that

lany l p =

{
true (if p holds for at least one element of l)

false (otherwise)

For example,

lany [1; 2; 3] (fun x -> x mod 2 = 0) = true

and
lany [1; 2; 3] (fun x -> x < 0) = false.

2

Exercise 13 Write a function

powerset: ’a list -> ’a list list

such that powerset l returns the list of all subsets of l. For example, if l =
[1; 2; 3], then powerset l is defined to be

[[]; [1]; [2]; [3]; [1; 2]; [1; 3]; [2; 3]; [1; 2; 3]].

You don’t have to consider the order of the elements in the result. For example,
both [[2; 1]; [1]; [2]; []] and [[1]; [1; 2]; [2]; []] are correct answers for powerset [1; 2].
2

4

