Homework 1
 ENE4014 Programming Languages, Spring 2024 due: 4/01 (Mon)

- Submit your answer (as a hard copy) to the instructor after the class on $4 / 1$ (do not forget to write your name and student ID!).

Exercise 1. (3 points) Write inductive definitions of the following set

$$
S=\{3 n+2 \mid n \in \mathbb{N}\}
$$

in all three styles (top-down, bottom-up, and rules of inference).

- Top-down:
$-2 \in S$
$-n \in S$ if $n-3 \in S$
- Bottom-up:
$-2 \in S$
- if $n \in S, n+3 \in S$
- Rules of inference: $\overline{2(\in S)} \quad \frac{n(\in S)}{n+3(\in S)}$

Exercise 2. (3 points) Write inductive definitions of the following set

$$
S=\{2 n+3 m+1 \mid n, m \in \mathbb{N}\}
$$

in all three styles (top-down, bottom-up, and rules of inference).

- Top-down:

$$
\begin{aligned}
& -1 \in S \\
& -n \in S \text { if } n-2 \in S \text { or } n-3 \in S
\end{aligned}
$$

- Bottom-up:
$-1 \in S$
- if $n \in S$, then $n+2 \in S$ and $n+3 \in S$
- Rules of inference: $\overline{1(\in S)} \quad \frac{n(\in S)}{n+2(\in S)} \quad \frac{n(\in S)}{n+3(\in S)}$

Exercise 3. (4 points) What sets of strings are defined by the following rules?

1. $\overline{\mathrm{a}} \quad \frac{x_{1} x_{2}}{x_{1} \mathrm{c} x_{2}}$
2. $\overline{()} \quad \frac{x}{((x))}$

- $S=\{\mathrm{a}, \mathrm{b}, \mathrm{aca}, \mathrm{acb}, \mathrm{bca}, \mathrm{bcb}$, acaca, $\cdots\}$
- $S=\{(),((())),(((())))) \cdots\}$ or $S=\left\{\left(^{i}\right)^{i} \mid i=2 k+1, k \in \mathbb{N}\right\}$

Exercise 4. (2 points) Consider a set of binary trees inductively defined as follows:

$$
\begin{aligned}
t & \rightarrow \\
& \quad n \quad(n \in \mathbb{N}) \\
& (n, t, t)
\end{aligned}
$$

Write a derivation tree for the binary tree $(5,4,(1,2,3))$.

$$
\frac{\overline{4} \frac{\overline{2} \quad \overline{3}}{(1,2,3)}}{(5,4,(1,2,3))}
$$

Exercise 5. (4 points) Consider a set of lists inductively defined as follows:

$$
\begin{aligned}
t & \rightarrow \mathrm{nil} \\
& \mid \quad n \cdot m \cdot t \quad(n, m \in \mathbb{N})
\end{aligned}
$$

Prove every list contains an even number of integers.
More formally, let $i(t)$ denote the number of integers that appear in list t. Our goal is to prove the following property over every $t \in T$:

$$
i(t)=2 k \text { for some } k \in \mathbb{N}
$$

Proof. Proof by structural induction.
Base case: $t=$ nil: $i(t)=0$ which proves the theorem as $k=0$.
Inductive case) $t=n \cdot m \cdot t^{\prime}$:
Inductive hypothesis: $i\left(t^{\prime}\right)=2 k^{\prime}$ for some $k^{\prime} \in \mathbb{N}$.

$$
\begin{aligned}
i(t) & =2+i\left(t^{\prime}\right) \\
& =2+2 k^{\prime} \\
& =2\left(k^{\prime}+1\right)
\end{aligned}
$$

Exercise 6. (4 points) Consider the set of binary trees in Exercise 4. Prove every tree contains an odd number of integers.

More formally, let $i(t)$ denote the number of integers that appear in tree t. Our goal is to prove the following property over every $t \in T$:

$$
i(t)=2 k+1 \text { for some } k \in \mathbb{N}
$$

Proof. Proof by structural induction.
Base case: $t=n: i(t)=1$ which proves the theorem as $k=0$.
Inductive case: $t=\left(n, t_{1}, t_{2}\right)$:
Inductive hypothesis: $i\left(t_{1}\right)=2 k_{1}+1, i\left(t_{2}\right)=2 k_{2}+1$ for some $k_{1}, k_{2} \in \mathbb{N}$.

$$
\begin{aligned}
i(t) & =1+i\left(t_{1}\right)+i\left(t_{2}\right) \\
& =1+2 k_{1}+1+2 k_{2}+1 \\
& =2\left(k_{1}+k_{2}+1\right)+1
\end{aligned}
$$

which proves the theorem for the inductive case.

