
Final Exam
ENE4014 Programming Languages, Spring 2022

6/13 (Mon), 10:30

Name: asdfasdfasdfasdfasdf
Student ID: asdfasdfasdfasdfasdfasdf

Problem 1 [Rules of inferences] (20 pts)

a) (4 pts) Complete the following inference rules for
binary trees. Examples of binary trees include 1,
(1,nil), (1,2), (nil,(1,2)), ((1,2),(3,4)), etc. The
inference rules are:

n n ∈ Z
t

(t,nil)
t

(nil, t)

t1 t2
(t1, t2)

b) (8 pts) Consider the following grammar for a set S
of Boolean formulas.

f → T | F | f ∧ f | f ∨ f

Complete the following derivation tree for proving
that (T ∧F)∨ (F ∨T) is in S:

(T ∧F)∨ (F ∨T)

c) (8 pts) The semantics of formulas is defined as
follows:

[[T]] = true
[[F]] = f alse

[[f1∧ f2]] = [[f1]] andalso [[f2]]
[[f1∨ f2]] = [[f1]] orelse [[f2]]

where andalso returns true only if both argu-
ments are true (otherwise, f alse), and orelse re-
turns f alse only if both arguments are f alse (oth-
erwise, true).

Let n(f) denote the number of occurrences of F
in formula f . For example, n(T ∧ (F ∨ F)) = 2.
Complete the proof of the following property over
every f :

n(f) = 0 =⇒ [[f]] = true (1)

• (Base case 1) The first base case is when
f = T . Because n(f) = 0 and [[f]] = true, the
property holds.

• (Base case 2) The other base case is when
f = F . Because n(f) = 1, the premise of (1)
is false. Therefore, the entire property (1) is
true.

• (Inductive case 1) The first inductive case is
when f = f1∧ f2. The inductive hypotheses
(I.Hs) are

n(f1) = 0 =⇒ [[f1]] = true (2)

n(f2) = 0 =⇒ [[f2]] = true (3)

If n(f) = 0, then n(f1) = 0 and n(f2) =

0 because there is no occurrence of F in f .
By I.Hs (2) and (3), [[f1]] = true and [[f2]] =
true . By the definition of andalso, [[f]] =

true, which completes the proof for the case.

• (Inductive case 2) The other inductive case is
when f = f1∨ f2. If n(f) = 0, then n(f1) =

0 and n(f2) = 0 because there is no
occurrence of F in f . By I.Hs (2) and (3),
[[f1]] = true and [[f2]] = true . By the defini-
tion of orelse, [[f]] = true, which completes
the proof for the case.

Problem 2 [Functional Programming] (20 pts)

1

a) (10 pts) Consider the following similar two func-
tions written in OCaml.

let rec double_all l =

match l with

| [] -> []

| hd::tl -> (hd+hd) :: (double_all tl)

let rec dec_all l =

match l with

| [] -> []

| hd::tl -> (hd - 1) :: (dec_all tl)

Using the following higher-order function map,

let rec map f l =

match l with

| [] -> []

| hd::tl -> (f hd)::(map f tl)

rewrite the two functions:

let double_all l = map (fun x-> x + x) l

let dec_all l = map (fun x -> x - 1) l

b) (10 pts) Let us define the type of natural numbers
as follows:

type nat = Zero | Succ of nat

Complete the following definition of int2nat :

int -> nat, which converts integers to natural
numbers. For example, int2nat 3 evaluates to (Succ
(Succ (Succ Zero))).

let rec int2nat n =

if n = 0 then Zero
else Succ (int2nat (n-1))

Problem 3 [Evaluation Rules] (20 pts)

Consider the following language.

E→ n | x | E +E | E−E | E! | fib(E)

where E! denotes the factorial of E, and fib(E) denotes
the E-th Fibonacci number.

The factorial of n for n ≥ 0 is 1 and the factorial of
n for n≥ 1 is n× (n−1)!. The Fibonacci numbers are
inductively defined as follows:

fib(n) =
{

1 (n≤ 1)
fib(n−1)+fib(n−2) (n≥ 2)

Complete the following evaluation rules.

ρ ` n⇒ n ρ ` x⇒ ρ(x)

ρ ` E1⇒ n1 ρ ` E2⇒ n2

ρ ` E1 +E2⇒ n1 +n2

ρ ` E1⇒ n1 ρ ` E2⇒ n2

ρ ` E1−E2⇒ n1−n2

ρ ` E⇒ n
ρ ` E!⇒ 1

n≤ 0

ρ ` E⇒ n ρ ` (E−1)!⇒ m

ρ ` E!⇒ n ×m
n≥ 1

ρ ` E⇒ n
ρ ` fib(E)⇒ 1

n≤ 1

ρ ` E⇒ n ρ ` fib(n−1)⇒ n1 ρ ` fib(n−2)⇒ n2

ρ ` fib(E)⇒ n1 +n2
n≥ 2

Problem 4 [Nameless Representation] (10 pts)

Write the nameless representation of the following pro-
gram P:

let x = 2 in

proc(y)(let z = x + y in proc(w)(w + z))

let2inproc(let#1+#0inproc#0+#1)
which is trans(P)([]). The trans function is defined as
follows:

trans(n)(ρ) = n
trans(x)(ρ) = #n (n is the first

position of x in ρ)
trans(E1 +E2)(ρ) = trans(E1)(ρ)+ trans(E2)(ρ)

trans(let x = E1 in E2)(ρ) = let trans(E1)(ρ) in
trans(E2)(x :: ρ)

trans(proc(x) E)(ρ) = proc trans(E)(x :: ρ)

Problem 5 [Scoping] (10 pts)

Recall the language with explicit references and static scoping
for procedures, and consider the following two programs.

2

let f = let cnt = ref 0

in proc (x) (cnt := !cnt + 1; !cnt)

in let a = (f 0)

in let b = (f 0)

in (a - b)

let f = proc(x) (let cnt = ref 0

in (cnt := !cnt + 1; !cnt))

in let a = (f 0)

in let b = (f 0)

in (a - b)

a) Write the evaluation result of the first program. −1

b) Write the evaluation result of the second program. 0

Problem 6 [Evaluation strategy] (10 pts).

Consider lambda calculus with the normal order strategy and
the following expression.

(λx. (x x)) (λx. (x x))

a) Write the result after one step of β-reduction.

F ((λx. (x x)) (λx. (x x)))

b) Will the program eventually terminate? (write yes/no)

no

Problem 7 [Type inference] (20 pts).

Consider the following program.

proc (x︸︷︷︸
tx

) (proc (y︸︷︷︸
ty

) (if x then y else 1)︸ ︷︷ ︸
t2

)

︸ ︷︷ ︸
t1︸ ︷︷ ︸

t0

a) Generate type equations.

b) Solve the equations using the unification algorithm, and
write the final substitution.

Problem 8 [Garbage Collection] (10 pts).

Recall the language with records, pointers, and automatic
garbage collection we learned in class. Consider the following
environment ρ and memory σ before GC:

ρ=

 x 7→ l1
y 7→ l2
z 7→ l3

 σ =

l1 7→ 0
l2 7→ {a 7→ l3,b 7→ l1,c 7→ l5}
l3 7→ l5
l4 7→ (x,E, [z 7→ l5])
l5 7→ 0
l6 7→ l7
l7 7→ l8
l8 7→ l6

Describe the memory GC(ρ,σ) that can be obtained after GC:

GC(ρ,σ) =

Problem 9 [O/X questions] (20 pts).

Mark O for each correct statement (X for wrong statement).

a) The type checker for C programs is sound and complete.
(O,X)

b) Manual memory management in C is difficult in general,
leading to memory-leak, double-free, and use-after-free
errors. (O,X)

c) Any lambda calculus expression can be translated into
a Turing machine. (O,X)

d) A type system that always accepts input programs is
sound. (O,X)

3

e) The type of f in the following OCaml code is (int ->

bool) -> int -> int -> int. (O,X)

let rec sum_if_true test first second =

(if test first then first else 0)

+ (if test second then second else 0)

f) The following function is tail-recursive. (O,X)

let rec f () = f ()

g) We cannot further remove syntactic sugars from Lambda
calculus. (O,X)

h) Using eager evaluation, the following program termi-
nates. (O,X)

letrec infinite(x) = (infinite x)

in let f = proc (x) (1)

in (f (infinite 0))

i) Determining the values of program variables is a dy-
namic property. (O,X)

j) Imperative languages encourage to use statements and
loops, whereas functional languages encourage to use
expressions and recursion. (O,X)

4

