Final Exam
 ENE4014 Programming Languages, Spring 2022
 6/13 (Mon), 10:30

Name:
 Student ID:
 \square

Problem 1 [Rules of inferences] (20 pts)
a) (4 pts) Complete the following inference rules for binary trees. Examples of binary trees include 1 , $(1$, nil $),(1,2),(n i l,(1,2)),((1,2),(3,4))$, etc. The inference rules are:

$$
\bar{n} n \in \mathbb{Z} \frac{t}{(t, n i l)} \xlongequal{\square} \begin{aligned}
& t \\
&
\end{aligned}
$$

b) (8 pts) Consider the following grammar for a set S of Boolean formulas.

$$
f \rightarrow T|F| f \wedge f \mid f \vee f
$$

Complete the following derivation tree for proving that $(T \wedge F) \vee(F \vee T)$ is in S :

$$
\overline{(T \wedge F) \vee(F \vee T)}
$$

c) (8 pts) The semantics of formulas is defined as follows:

$$
\begin{aligned}
\llbracket T \rrbracket & =\text { true } \\
\llbracket F \rrbracket & =\text { false } \\
\llbracket f_{1} \wedge f_{2} \rrbracket \rrbracket & \left.=\llbracket f_{1} \rrbracket\right] \text { andalso } \llbracket f_{2} \rrbracket \\
\llbracket f_{1} \vee f_{2} \rrbracket & =\llbracket f_{1} \rrbracket \text { orelse } \llbracket f_{2} \rrbracket
\end{aligned}
$$

where andalso returns true only if both arguments are true (otherwise, false), and orelse returns false only if both arguments are false (otherwise, true).

Let $n(f)$ denote the number of occurrences of F in formula f. For example, $n(T \wedge(F \vee F))=2$. Complete the proof of the following property over every f :

$$
\begin{equation*}
n(f)=0 \Longrightarrow \llbracket f \rrbracket=\text { true } \tag{1}
\end{equation*}
$$

- (Base case 1) The first base case is when $f=T$. Because $n(f)=0$ and $\llbracket f \rrbracket]=$ true, the property holds.
- (Base case 2) The other base case is when $f=F$. Because $n(f)=1$, the premise of (1) is false. Therefore, the entire property (1) is true.
- (Inductive case 1) The first inductive case is when $f=f_{1} \wedge f_{2}$. The inductive hypotheses (I.Hs) are

$$
\begin{align*}
& n\left(f_{1}\right)=0 \Longrightarrow \llbracket f_{1} \rrbracket=\text { true } \tag{2}\\
& n\left(f_{2}\right)=0 \Longrightarrow \llbracket f_{2} \rrbracket=\text { true } \tag{3}
\end{align*}
$$

If $n(f)=0$, then $n\left(f_{1}\right)=\square$ and $n\left(f_{2}\right)=$ \square because there is no occurrence of F in f. By I.Hs (2) and (3), $\llbracket f_{1} \rrbracket=\square$ and $\llbracket f_{2} \rrbracket=$ \square. By the definition of andalso, $[f]]=$ true, which completes the proof for the case.

- (Inductive case 2) The other inductive case is when $f=f_{1} \vee f_{2}$. If $n(f)=0$, then $n\left(f_{1}\right)=$
\qquad and $n\left(f_{2}\right)=$ \qquad because there is no occurrence of F in f. By I.Hs (2) and (3), $\llbracket f_{1} \rrbracket=\square$ and $\left.\llbracket f_{2} \rrbracket\right]=$ \qquad . By the definition of orelse, $\llbracket f \rrbracket=$ true, which completes the proof for the case.

Problem 2 [Functional Programming] (20 pts)
a) (10 pts) Consider the following similar two functions written in OCaml.

```
let rec double_all l =
match l with
| [] -> []
| hd::tl -> (hd+hd) :: (double_all tl)
let rec dec_all l =
match l with
| [] -> []
| hd::tl -> (hd - 1) :: (dec_all tl)
```

Using the following higher-order function map,

```
let rec map f l =
match l with
| [] -> []
| hd::tl -> (f hd)::(map f tl)
```

rewrite the two functions:

```
let double_all \(1=\square\)
let dec_all \(1=\square\)
```

b) (10 pts) Let us define the type of natural numbers as follows:

```
type nat = Zero | Succ of nat
```

Complete the following definition of int2nat : int \rightarrow nat, which converts integers to natural numbers. For example, int2nat 3 evaluates to (Succ (Succ (Succ Zero))).

```
let rec int2nat n = 
```

Problem 3 [Evaluation Rules] (20 pts)

Consider the following language.

$$
E \rightarrow n|x| E+E|E-E| E!\mid \operatorname{fib}(E)
$$

where E ! denotes the factorial of E, and $\operatorname{fib}(E)$ denotes the E-th Fibonacci number.

The factorial of n for $n \geq 0$ is 1 and the factorial of n for $n \geq 1$ is $n \times(n-1)$!. The Fibonacci numbers are inductively defined as follows:

$$
\operatorname{fib}(n)= \begin{cases}1 & (n \leq 1) \\ \operatorname{fib}(n-1)+\operatorname{fib}(n-2) & (n \geq 2)\end{cases}
$$

Complete the following evaluation rules.

$$
\begin{gathered}
\overline{\rho \vdash n \Rightarrow n} \quad \overline{\rho \vdash x \Rightarrow \rho(x)} \\
\frac{\rho \vdash E_{1} \Rightarrow n_{1} \quad \rho \vdash E_{2} \Rightarrow n_{2}}{\rho \vdash E_{1}+E_{2} \Rightarrow n_{1}+n_{2}} \\
\frac{\rho \vdash E_{1} \Rightarrow n_{1} \quad \rho \vdash E_{2} \Rightarrow n_{2}}{\rho \vdash E_{1}-E_{2} \Rightarrow n_{1}-n_{2}} \\
\frac{\rho \vdash E \Rightarrow n}{\rho \vdash E!\Rightarrow 1} n \leq 0 \\
\frac{\rho \vdash E \Rightarrow n \geq 1}{\rho \vdash E!\Rightarrow \square} n \\
\frac{\rho \vdash E \Rightarrow n}{\rho \vdash \operatorname{fib}(E) \Rightarrow 1} n \leq 2 \\
\frac{\rho \vdash \operatorname{lib}(E) \Rightarrow \square}{\square n}
\end{gathered}
$$

Problem 4 [Nameless Representation] (10 pts)

Write the nameless representation of the following program P :

```
let x = 2 in
    proc(y)(let z = x + y in proc(w)(w + z))
```

which is $\operatorname{trans}(P)([])$. The trans function is defined as follows:

$$
\begin{aligned}
\operatorname{trans}(n)(\rho) & =n \\
\operatorname{trans}(x)(\rho) & = \\
& \# n \quad \begin{array}{c}
(n \text { is the first } \\
\text { position of } x \text { in } \rho)
\end{array} \\
\operatorname{trans}\left(E_{1}+E_{2}\right)(\rho) & =\operatorname{trans}\left(E_{1}\right)(\rho)+\operatorname{trans}\left(E_{2}\right)(\rho) \\
\operatorname{trans}\left(\text { let } x=E_{1} \text { in } E_{2}\right)(\rho) & =\operatorname{let} \operatorname{trans}\left(E_{1}\right)(\rho) \text { in } \\
& \operatorname{trans}\left(E_{2}\right)(x:: \rho) \\
\operatorname{trans}(\operatorname{proc}(x) E)(\rho) & =\operatorname{proc} \operatorname{trans}(E)(x:: \rho)
\end{aligned}
$$

Problem 5 [Scoping] (10 pts)
Recall the language with explicit references and static scoping for procedures, and consider the following two programs.

```
let f = let cnt = ref 0
        in proc (x) (cnt := !cnt + 1; !cnt)
in let a = (f 0)
    in let b = (f 0)
        in (a - b)
```

let $\mathrm{f}=\operatorname{proc}(\mathrm{x})$ (let cnt $=$ ref 0
in (cnt := !cnt + 1; !cnt))
in let $a=(f 0)$
in let $b=(f 0)$
in ($\mathrm{a}-\mathrm{b}$)
a) Write the evaluation result of the first program. \square
b) Write the evaluation result of the second program. \square

Problem 6 [Evaluation strategy] (10 pts).

Consider lambda calculus with the normal order strategy and the following expression.

$$
(\lambda x .(x x))(\lambda x .(x x))
$$

a) Write the result after one step of β-reduction.

$$
\square
$$

b) Will the program eventually terminate? (write yes/no)
\square

Problem 7 [Type inference] (20 pts).

Consider the following program.

a) Generate type equations.
b) Solve the equations using the unification algorithm, and write the final substitution.

Problem 8 [Garbage Collection] (10 pts).
Recall the language with records, pointers, and automatic garbage collection we learned in class. Consider the following environment ρ and memory σ before GC:

$$
\rho=\left[\begin{array}{l}
x \mapsto l_{1} \\
y \mapsto l_{2} \\
z \mapsto l_{3}
\end{array}\right] \quad \sigma=\left[\begin{array}{l}
l_{1} \mapsto 0 \\
l_{2} \mapsto\left\{a \mapsto l_{3}, b \mapsto l_{1}, c \mapsto l_{5}\right\} \\
l_{3} \mapsto l_{5} \\
l_{4} \mapsto\left(x, E,\left[z \mapsto l_{5}\right]\right) \\
l_{5} \mapsto 0 \\
l_{6} \mapsto l_{7} \\
l_{7} \mapsto l_{8} \\
l_{8} \mapsto l_{6}
\end{array}\right]
$$

Describe the memory $\mathrm{GC}(\rho, \sigma)$ that can be obtained after GC:

$$
\mathrm{GC}(\rho, \sigma)=[
$$

$$
]
$$

Problem 9 [O/X questions] (20 pts).
Mark O for each correct statement (X for wrong statement).
a) The type checker for C programs is sound and complete. (O, X)
b) Manual memory management in C is difficult in general, leading to memory-leak, double-free, and use-after-free errors. (O,X)
c) Any lambda calculus expression can be translated into a Turing machine. (O, X)
d) A type system that always accepts input programs is sound. (O, X)
e) The type of f in the following OCaml code is (int -> bool) -> int -> int \rightarrow int. (O,X)

```
let rec sum_if_true test first second =
    (if test first then first else 0)
    + (if test second then second else 0)
```

f) The following function is tail-recursive. (O, X)

```
let rec f () = f ()
```

g) We cannot further remove syntactic sugars from Lambda calculus. (O, X)
h) Using eager evaluation, the following program terminates. (O,X)
letrec infinite(x) = (infinite x)
in let $f=\operatorname{proc}(x)$ (1)
in (f (infinite 0))
i) Determining the values of program variables is a dynamic property. (O, X)
j) Imperative languages encourage to use statements and loops, whereas functional languages encourage to use expressions and recursion. (O,X)

