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Homomorphic Evaluation(HE) (1/3)
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Homomorphic Evaluation(HE) (2/3)
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Homomorphic Evaluation(HE) (3/3)

Write code in low-level HE instructions
Add maintenance operations
Generate/manage keys, hints
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Homomorphic Evaluation(HE) (2/3)

#include <iostream> 
#include <fstream> 
#include <integer.hxx> 

int main() 
{ 
        Integer8 a, b, c; 

        cin >> a; 
        cin >> b; 
        c = a + b; 

        cout << c; 
        FINALIZE_CIRCUIT(blif_name); 
}

#include "FHE.h" 
#include "EncryptedArray.h" 
#include <NTL/lzz_pXFactoring.h> 
#include <fstream> 
#include <sstream> 
#include <sys/time.h> 

int main(int argc, char **argv) 
{ 
    long m=0, p=2, r=1; // Native plaintext space 
                        // Computations will be 'modulo p' 
    long L=16;          // Levels 
    long c=3;           // Columns in key switching matrix 
    long w=64;          // Hamming weight of secret key 
    long d=0; 
    long security = 128; 
    ZZX G; 
    m = FindM(security,L,c,p, d, 0, 0); 
    FHEcontext context(m, p, r); 
    buildModChain(context, L, c); 
    FHESecKey secretKey(context); 
    const FHEPubKey& publicKey = secretKey; 
    G = context.alMod.getFactorsOverZZ()[0]; 
    secretKey.GenSecKey(w); 
    addSome1DMatrices(secretKey); 
    EncryptedArray ea(context, G); 
    vector<long> v1; 
    v1.push_back(atoi(argv[1])); 
    Ctxt ct1(publicKey); 
    ea.encrypt(ct1, publicKey, v1);     
    v2.push_back(atoi(argv[2])); 
    Ctxt ct2(publicKey); 
    ea.encrypt(ct2, publicKey, v2); 
    Ctxt ctSum = ct1; 
    ctSum += ct2; 
}

Code for homomorphic addition of two integers

Manually written  
using HElib

Input to Cingulata  
(a HE compiler)



Our Contributions (1/2)

HE application
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• Optimization : several hand-written rules• Optimization : machine found rules by program synthesis + applying by term rewriting
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Our Contributions (2/2)

• Learning Optimization Patterns by Program Synthesis 

• Applying Learned Patterns by Term Rewriting 

• Theorem : Semantic Preservation & Termination Guaranteed 

• Performance (vs state-of-the-art HE Optimizer) 

Optimized 22 out of 25 Applications (vs 15) 

x5.43 Speedup in Maximum (vs x3.0) 

x2.26 Speedup on Average (vs x1.53) 

• Open Tool Available : https://github.com/dklee0501/Lobster

Automatic, Aggressive HE optimization Framework

https://github.com/dklee0501/Lobster


Our Lobster…
Learning to Optimize Boolean circuit using Synthesis and TErm Rewriting

HE 
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2. Online Optimization

1. Offline Learning

 Training 
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• Offline Learning via Program Synthesis + Online Optimization via Term Rewriting



• Based on approximate common divisor problem 

•   : integer as a secret key 

•   : random integer 

•   : random noise for security

p

q
r( ≪ |p | )

Simple HE Scheme

Encp(μ ∈ {0,1}) = pq + 2r + μ
Decp(c) = (cmodp)mod2

Decp(Encp(μ)) = Decp(pq + 2r + μ) = μ

• For ciphertexts  , the following  
holds

μi ← Encp(μi)

Decp(μ1 + μ2) = μ1 + μ2
Decp(μ1 × μ2) = μ1 × μ2

• The scheme can evaluate all boolean circuits 
as   and   in   are equal to XOR  
and AND

+ × ℤ2 = {0,1}



• Noise increases during homomorphic operations.  

• For   μi = pqi + 2ri + μi

Performance Hurdle : Growing Noise

μ1 + μ2 = p(q1 + q2) + 2(r1 + r2) + (μ1 + μ2)
μ1 × μ2 = p(pq1q2 + ⋯) + 2(2r1r2 + r1μ2 + r2μ1) + (μ1 × μ2)

noise

• if (noise ) then incorrect results> p

double increase
quadratic increase



Multiplicative Depth : a Decisive Performance Factor

• Multiplicative depth : the maximum number of sequential multiplications from input to output
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What is HE optimization?

• Finding a new circuit that has smaller mult. depth
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HE optimization via Synthesis
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Hurdle : Synthesis Scalability

Optimizing 
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Solution1 : Synthesis via Localization
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Solution 2: Learning Successful Synthesis Patterns

• Offline Learning 
Collect successful synthesis patterns 

• Online Optimization 
Applying the patterns by term rewriting
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Offline Learning to Collect Opt. Patterns
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Learned Optimization Patterns : examples
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Applying Learned Optimization Patterns (1/2)
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Applying Learned Optimization Patterns (1/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns (2/2)
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Applying Learned Optimization Patterns
Formal properties

Applying an  
opt. pattern

…

(Soundness) semantics unchanged

(Termination) finitely many rule applications



Can We Do Better?
• The term rewriting approach may converge to a sub-optimal result. 

• Different optimization rules interact by enabling or disabling opportunities for other 
optimization rules . 

• In other words, no backtracking! Original Circuit



Exhaustive Search with E-graphs
• Idea: Apply the rewrite rules in all possible orders and store all the results 

• Example 

• Optimizing a given circuit:  

• Usable rewrite rules: 
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Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:15

we represent circuits as graphs and perform rewriting on the graphs by translating term rewrite
rules into suitable graph transformation rules. Term graph rewriting is sound with respect to term
rewriting in that every graph transformation step corresponds to a sequence of applications of
term rewrite rules. The interested reader is referred to [45] for more details about the soundness
proof and the translation method.

4.4 Optimization with Backtracking Based on Equality Saturation
4.4.1 E-graph Structure. E-graph structure is de�ned as triple of (set of enode, set of eclass, set

of edge). Each enode contains a boolean operator (^, �) or boolean value (0, 1, boolean variable).
Eclass is a set of enodes. Edge connects an enode to an eclass.
The meaning of E-graph is as follows. Each enode represents a set of all boolean expressions

(i.e. boolean circuits) that can be generated by following manner. If an enode contains a boolean
value, it represents the node value itself. If an enode contains a boolean operator, we generate
child boolean expressions by following manner. we choose an enode from each child eclass, and
choose one of the boolean expressions represented by each chosen enode. All boolean expressions
generated by enodes in the same eclass must be semantically equivalent.

Note that E-graph also can be interpreted as a program grammar. Each of eclasses corresponds
to nonterminal symbol and each of enodes in that eclass corresponds to a production rule for the
nonterminal symbol. Every E-graph corresponds to a particular context free grammar.
In this context, equality saturation is a process of constructing a program grammar that can

generate all circuits equivalent to input circuit.

4.4.2 Equality Saturation Process. Equality saturation consists of two processes: saturation
process and extraction process. First, in the saturation process, we continually expand E-graph
by �nding all circuits which is semantically equivalent to an initial circuit. We call the E-graph
saturated if we can not �nd any other equivalent circuits. In the extraction process, we extract a
circuit that has the lowest multiplicative depth from a saturated E-graph.

Figure 3 and Figure 4 illustrates the saturation process. We start with a term graph of the input
boolean circuit ((x1 ^ x2) ^ (x2 � x3)) ^ x3 and following rewrite rules.

rule (1) : ((�1 ^�2) ^�3) ^�4 ! ((�1 ^�2) ^�4) ^ ((�2 � �4) � �3)
rule (2) : ((�1 ^�2) ^�3) ^�4 ! (�1 ^�2) ^ (�3 ^�4)
rule (3) : (�1 � �1) ! 0
rule (4) : (�1 ^ 0) ! 0

Then we explore optimized circuits that can be generated based on the rewrite rules by an iteration
of three steps: ematch, add, and merge. Figure 3 illustrates the �rst iteration. In the ematch step, we
�nd all enodes which can be rewritten by a certain rule. An enode is said rewritable by a certain
rule if it can generate a circuit which can be rewritten by the rule. As the root enode can generate
circuit ((x1 ^x2)^ (x2 � x3))^x3 that can be rewritten by rule (1) and rule (2), we get two rewritten
circuits as a result of ematch step for the root enode (Figure 3.(a)). In the add step, we add all
rewritten circuits to the E-graph in a recursive manner from bottom to top (Figure 3.(b)). Newly
added enodes are colored gray in Figure 3 and Figure 4. Note that each added rewritten circuit
corresponds to an enode. In the merge step, for each pair of rewritable enode and rewritten circuit,
we merge the rewritable enode and newly added enode (that corresponds to the rewritten circuit)
as the same eclass (Figure 3.(c)). In the second and third iteration, we expand E-graph by applying
rewrite rule (3) and rule (4) respectively (Figure 4.(c), Figure 4.(d)).3 As the root enode is merged
3More enodes are rewritable by rule (2), but we ruled out them in Figure 4 for clarity.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.
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choose one of the boolean expressions represented by each chosen enode. All boolean expressions
generated by enodes in the same eclass must be semantically equivalent.

Note that E-graph also can be interpreted as a program grammar. Each of eclasses corresponds
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with the enode that contains 0, we can �gure out that the initial circuit is semantically equivalent
to 0. More details of these three steps are described in [57].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hour).

Fig. 3. Change of E-graph during a single iteration. Do�ed box means eclass. (a) ematch result for root enode.
(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

In the extraction process, we extract the least-cost circuit from the saturated E-graph for the
given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.
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given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.
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Exhaustive Search with E-graphs
• Applying rule (1)   (shaded: newly added)
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with the enode that contains 0, we can �gure out that the initial circuit is semantically equivalent
to 0. More details of these three steps are described in [57].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hour).

Fig. 3. Change of E-graph during a single iteration. Do�ed box means eclass. (a) ematch result for root enode.
(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

In the extraction process, we extract the least-cost circuit from the saturated E-graph for the
given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.
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Exhaustive Search with E-graphs
• Applying rule (2)
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with the enode that contains 0, we can �gure out that the initial circuit is semantically equivalent
to 0. More details of these three steps are described in [57].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hour).

Fig. 3. Change of E-graph during a single iteration. Do�ed box means eclass. (a) ematch result for root enode.
(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

In the extraction process, we extract the least-cost circuit from the saturated E-graph for the
given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.
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• Merging the results of applying rules (1) and (2)

Exhaustive Search with E-graphs
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with the enode that contains 0, we can �gure out that the initial circuit is semantically equivalent
to 0. More details of these three steps are described in [57].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hour).

Fig. 3. Change of E-graph during a single iteration. Do�ed box means eclass. (a) ematch result for root enode.
(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

In the extraction process, we extract the least-cost circuit from the saturated E-graph for the
given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.
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Exhaustive Search with E-graphs
• Applying rule (3)   and merging
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we represent circuits as graphs and perform rewriting on the graphs by translating term rewrite
rules into suitable graph transformation rules. Term graph rewriting is sound with respect to term
rewriting in that every graph transformation step corresponds to a sequence of applications of
term rewrite rules. The interested reader is referred to [45] for more details about the soundness
proof and the translation method.

4.4 Optimization with Backtracking Based on Equality Saturation
4.4.1 E-graph Structure. E-graph structure is de�ned as triple of (set of enode, set of eclass, set

of edge). Each enode contains a boolean operator (^, �) or boolean value (0, 1, boolean variable).
Eclass is a set of enodes. Edge connects an enode to an eclass.
The meaning of E-graph is as follows. Each enode represents a set of all boolean expressions

(i.e. boolean circuits) that can be generated by following manner. If an enode contains a boolean
value, it represents the node value itself. If an enode contains a boolean operator, we generate
child boolean expressions by following manner. we choose an enode from each child eclass, and
choose one of the boolean expressions represented by each chosen enode. All boolean expressions
generated by enodes in the same eclass must be semantically equivalent.

Note that E-graph also can be interpreted as a program grammar. Each of eclasses corresponds
to nonterminal symbol and each of enodes in that eclass corresponds to a production rule for the
nonterminal symbol. Every E-graph corresponds to a particular context free grammar.
In this context, equality saturation is a process of constructing a program grammar that can

generate all circuits equivalent to input circuit.

4.4.2 Equality Saturation Process. Equality saturation consists of two processes: saturation
process and extraction process. First, in the saturation process, we continually expand E-graph
by �nding all circuits which is semantically equivalent to an initial circuit. We call the E-graph
saturated if we can not �nd any other equivalent circuits. In the extraction process, we extract a
circuit that has the lowest multiplicative depth from a saturated E-graph.

Figure 3 and Figure 4 illustrates the saturation process. We start with a term graph of the input
boolean circuit ((x1 ^ x2) ^ (x2 � x3)) ^ x3 and following rewrite rules.

rule (1) : ((�1 ^�2) ^�3) ^�4 ! ((�1 ^�2) ^�4) ^ ((�2 � �4) � �3)
rule (2) : ((�1 ^�2) ^�3) ^�4 ! (�1 ^�2) ^ (�3 ^�4)
rule (3) : (�1 � �1) ! 0
rule (4) : (�1 ^ 0) ! 0

Then we explore optimized circuits that can be generated based on the rewrite rules by an iteration
of three steps: ematch, add, and merge. Figure 3 illustrates the �rst iteration. In the ematch step, we
�nd all enodes which can be rewritten by a certain rule. An enode is said rewritable by a certain
rule if it can generate a circuit which can be rewritten by the rule. As the root enode can generate
circuit ((x1 ^x2)^ (x2 � x3))^x3 that can be rewritten by rule (1) and rule (2), we get two rewritten
circuits as a result of ematch step for the root enode (Figure 3.(a)). In the add step, we add all
rewritten circuits to the E-graph in a recursive manner from bottom to top (Figure 3.(b)). Newly
added enodes are colored gray in Figure 3 and Figure 4. Note that each added rewritten circuit
corresponds to an enode. In the merge step, for each pair of rewritable enode and rewritten circuit,
we merge the rewritable enode and newly added enode (that corresponds to the rewritten circuit)
as the same eclass (Figure 3.(c)). In the second and third iteration, we expand E-graph by applying
rewrite rule (3) and rule (4) respectively (Figure 4.(c), Figure 4.(d)).3 As the root enode is merged
3More enodes are rewritable by rule (2), but we ruled out them in Figure 4 for clarity.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.
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Fig. 4. Change of E-graph during iterations. Do�ed box means eclass. (a) initial E-graph. (b) a�er 1 iteration.
(c) a�er 2 iteration. (d) saturated E-graph.

In a saturation-based rewriting system, the possibility of �nding the globally optimal circuit is
enlarged. As we e�ciently compress all possible result circuits as a form of program grammar, we
can explore an expansive space within a practical time budget.

Although equality saturation is a time-consuming method in general, we can successfully intro-
duce it for our term rewriting system since most of the homomorphic evaluation circuits have a
relatively small scale.

5 EVALUATION
We implemented our method as a tool named L������4. This section evaluates our L������ system
to answer the following questions:
Q1: How e�ective is L������ for optimizing FHE applications from various domains?
Q2: How does L������ compare with existing general-purpose FHE optimization techniques?
Q3: What is the bene�t of reusing pre-learned rewrite rules?
Q4: What is the bene�t of using equality saturation technique?
Q5: What is the bene�t of the rule normalization and equational matching?
Q6: How long does L������ take to obtain optimized circuits?
Q7: How sensitive is L������ to changes in the training set for learning rewrite rules?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

5.1 Experimental Setup
Implementation
L������ comprises three pieces: (i) an o�ine rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. L������ is written in OCaml and RUST, and consists of about 3K
lines of code.
4Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting
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Exhaustive Search with E-graphs
• Applying rule (4)  and merging
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we represent circuits as graphs and perform rewriting on the graphs by translating term rewrite
rules into suitable graph transformation rules. Term graph rewriting is sound with respect to term
rewriting in that every graph transformation step corresponds to a sequence of applications of
term rewrite rules. The interested reader is referred to [45] for more details about the soundness
proof and the translation method.

4.4 Optimization with Backtracking Based on Equality Saturation
4.4.1 E-graph Structure. E-graph structure is de�ned as triple of (set of enode, set of eclass, set

of edge). Each enode contains a boolean operator (^, �) or boolean value (0, 1, boolean variable).
Eclass is a set of enodes. Edge connects an enode to an eclass.
The meaning of E-graph is as follows. Each enode represents a set of all boolean expressions

(i.e. boolean circuits) that can be generated by following manner. If an enode contains a boolean
value, it represents the node value itself. If an enode contains a boolean operator, we generate
child boolean expressions by following manner. we choose an enode from each child eclass, and
choose one of the boolean expressions represented by each chosen enode. All boolean expressions
generated by enodes in the same eclass must be semantically equivalent.

Note that E-graph also can be interpreted as a program grammar. Each of eclasses corresponds
to nonterminal symbol and each of enodes in that eclass corresponds to a production rule for the
nonterminal symbol. Every E-graph corresponds to a particular context free grammar.
In this context, equality saturation is a process of constructing a program grammar that can

generate all circuits equivalent to input circuit.

4.4.2 Equality Saturation Process. Equality saturation consists of two processes: saturation
process and extraction process. First, in the saturation process, we continually expand E-graph
by �nding all circuits which is semantically equivalent to an initial circuit. We call the E-graph
saturated if we can not �nd any other equivalent circuits. In the extraction process, we extract a
circuit that has the lowest multiplicative depth from a saturated E-graph.

Figure 3 and Figure 4 illustrates the saturation process. We start with a term graph of the input
boolean circuit ((x1 ^ x2) ^ (x2 � x3)) ^ x3 and following rewrite rules.

rule (1) : ((�1 ^�2) ^�3) ^�4 ! ((�1 ^�2) ^�4) ^ ((�2 � �4) � �3)
rule (2) : ((�1 ^�2) ^�3) ^�4 ! (�1 ^�2) ^ (�3 ^�4)
rule (3) : (�1 � �1) ! 0
rule (4) : (�1 ^ 0) ! 0

Then we explore optimized circuits that can be generated based on the rewrite rules by an iteration
of three steps: ematch, add, and merge. Figure 3 illustrates the �rst iteration. In the ematch step, we
�nd all enodes which can be rewritten by a certain rule. An enode is said rewritable by a certain
rule if it can generate a circuit which can be rewritten by the rule. As the root enode can generate
circuit ((x1 ^x2)^ (x2 � x3))^x3 that can be rewritten by rule (1) and rule (2), we get two rewritten
circuits as a result of ematch step for the root enode (Figure 3.(a)). In the add step, we add all
rewritten circuits to the E-graph in a recursive manner from bottom to top (Figure 3.(b)). Newly
added enodes are colored gray in Figure 3 and Figure 4. Note that each added rewritten circuit
corresponds to an enode. In the merge step, for each pair of rewritable enode and rewritten circuit,
we merge the rewritable enode and newly added enode (that corresponds to the rewritten circuit)
as the same eclass (Figure 3.(c)). In the second and third iteration, we expand E-graph by applying
rewrite rule (3) and rule (4) respectively (Figure 4.(c), Figure 4.(d)).3 As the root enode is merged
3More enodes are rewritable by rule (2), but we ruled out them in Figure 4 for clarity.
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Fig. 4. Change of E-graph during iterations. Do�ed box means eclass. (a) initial E-graph. (b) a�er 1 iteration.
(c) a�er 2 iteration. (d) saturated E-graph.

In a saturation-based rewriting system, the possibility of �nding the globally optimal circuit is
enlarged. As we e�ciently compress all possible result circuits as a form of program grammar, we
can explore an expansive space within a practical time budget.

Although equality saturation is a time-consuming method in general, we can successfully intro-
duce it for our term rewriting system since most of the homomorphic evaluation circuits have a
relatively small scale.

5 EVALUATION
We implemented our method as a tool named L������4. This section evaluates our L������ system
to answer the following questions:
Q1: How e�ective is L������ for optimizing FHE applications from various domains?
Q2: How does L������ compare with existing general-purpose FHE optimization techniques?
Q3: What is the bene�t of reusing pre-learned rewrite rules?
Q4: What is the bene�t of using equality saturation technique?
Q5: What is the bene�t of the rule normalization and equational matching?
Q6: How long does L������ take to obtain optimized circuits?
Q7: How sensitive is L������ to changes in the training set for learning rewrite rules?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

5.1 Experimental Setup
Implementation
L������ comprises three pieces: (i) an o�ine rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. L������ is written in OCaml and RUST, and consists of about 3K
lines of code.
4Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting
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Exhaustive Search with E-graphs
• Applying any rule doesn’t change the e-graph => saturated! 
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Fig. 4. Change of E-graph during iterations. Do�ed box means eclass. (a) initial E-graph. (b) a�er 1 iteration.
(c) a�er 2 iteration. (d) saturated E-graph.

In a saturation-based rewriting system, the possibility of �nding the globally optimal circuit is
enlarged. As we e�ciently compress all possible result circuits as a form of program grammar, we
can explore an expansive space within a practical time budget.

Although equality saturation is a time-consuming method in general, we can successfully intro-
duce it for our term rewriting system since most of the homomorphic evaluation circuits have a
relatively small scale.

5 EVALUATION
We implemented our method as a tool named L������4. This section evaluates our L������ system
to answer the following questions:
Q1: How e�ective is L������ for optimizing FHE applications from various domains?
Q2: How does L������ compare with existing general-purpose FHE optimization techniques?
Q3: What is the bene�t of reusing pre-learned rewrite rules?
Q4: What is the bene�t of using equality saturation technique?
Q5: What is the bene�t of the rule normalization and equational matching?
Q6: How long does L������ take to obtain optimized circuits?
Q7: How sensitive is L������ to changes in the training set for learning rewrite rules?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

5.1 Experimental Setup
Implementation
L������ comprises three pieces: (i) an o�ine rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. L������ is written in OCaml and RUST, and consists of about 3K
lines of code.
4Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting
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Exhaustive Search with E-graphs
• Pick the best result: 0
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Fig. 4. Change of E-graph during iterations. Do�ed box means eclass. (a) initial E-graph. (b) a�er 1 iteration.
(c) a�er 2 iteration. (d) saturated E-graph.

In a saturation-based rewriting system, the possibility of �nding the globally optimal circuit is
enlarged. As we e�ciently compress all possible result circuits as a form of program grammar, we
can explore an expansive space within a practical time budget.

Although equality saturation is a time-consuming method in general, we can successfully intro-
duce it for our term rewriting system since most of the homomorphic evaluation circuits have a
relatively small scale.

5 EVALUATION
We implemented our method as a tool named L������4. This section evaluates our L������ system
to answer the following questions:
Q1: How e�ective is L������ for optimizing FHE applications from various domains?
Q2: How does L������ compare with existing general-purpose FHE optimization techniques?
Q3: What is the bene�t of reusing pre-learned rewrite rules?
Q4: What is the bene�t of using equality saturation technique?
Q5: What is the bene�t of the rule normalization and equational matching?
Q6: How long does L������ take to obtain optimized circuits?
Q7: How sensitive is L������ to changes in the training set for learning rewrite rules?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

5.1 Experimental Setup
Implementation
L������ comprises three pieces: (i) an o�ine rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. L������ is written in OCaml and RUST, and consists of about 3K
lines of code.
4Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting
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Rewriting vs. Exhaustive search (aka equality saturation)

• Rewriting: scalable but may find a sub-optimal result 

• Equality saturation: unscalable but guaranteed to find an optimal result† 

• We use the rewriting method for large circuits and equality saturation for small circuits. 

† egg: Fast and Extensible Equality Saturation, ACM POPL 2021



Lobster Performance (1/4)

• 25 HE algorithms from 4 sources 
Cingulata benchmarks 
Sorting benchmarks 
Hackers Delight benchmarks 
EPFL benchmarks

Benchmarks

2 HE friendly algorithms 
(medical, sorting)

4 privacy-preserving sorting 
algorithms 

(merge, insert, bubble, odd-even)

12 Homomorphic  
bitwise operations

7 EPFL combinational benchmark suite 
(to test circuit optimizer)



Lobster Performance (1/4)
Benchmarks
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Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.
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Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.
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Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.
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Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.
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Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.
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Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.
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Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.
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Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.
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Fig. 6. Comparison between on-the-fly synthesis and equality saturation with learned rules

Fig. 7. Impact of changing rewrite rules

Fig. 6 summarizes the results. The synthesis-based optimizer can optimize only 14 benchmarks
within the timeout limit. Furthermore, in all the 14 benchmarks, the depth reduction ratio is less
than that of L������ that reuses pre-learned rewrite rules (geometric mean of 10.9% vs 24.1%).
That is mainly due to its limited scalability; if the synthesis-based optimizer is given 7 days, it can
achieve optimization e�ects similar to L������’s. Such enormous optimization costs are mainly
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Fig. 7. Impact of changing rewrite rules

Fig. 6 summarizes the results. The synthesis-based optimizer can optimize only 14 benchmarks
within the timeout limit. Furthermore, in all the 14 benchmarks, the depth reduction ratio is less
than that of L������ that reuses pre-learned rewrite rules (geometric mean of 10.9% vs 24.1%).
That is mainly due to its limited scalability; if the synthesis-based optimizer is given 7 days, it can
achieve optimization e�ects similar to L������’s. Such enormous optimization costs are mainly
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Fig. 7. Impact of changing rewrite rules

Fig. 6 summarizes the results. The synthesis-based optimizer can optimize only 14 benchmarks
within the timeout limit. Furthermore, in all the 14 benchmarks, the depth reduction ratio is less
than that of L������ that reuses pre-learned rewrite rules (geometric mean of 10.9% vs 24.1%).
That is mainly due to its limited scalability; if the synthesis-based optimizer is given 7 days, it can
achieve optimization e�ects similar to L������’s. Such enormous optimization costs are mainly
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Fig. 6. Comparison between on-the-fly synthesis and equality saturation with learned rules

Fig. 7. Impact of changing rewrite rules

Fig. 6 summarizes the results. The synthesis-based optimizer can optimize only 14 benchmarks
within the timeout limit. Furthermore, in all the 14 benchmarks, the depth reduction ratio is less
than that of L������ that reuses pre-learned rewrite rules (geometric mean of 10.9% vs 24.1%).
That is mainly due to its limited scalability; if the synthesis-based optimizer is given 7 days, it can
achieve optimization e�ects similar to L������’s. Such enormous optimization costs are mainly
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Fig. 11. Comparison between the optimization results with two-fold cross validation and leave-one-out cross
validation.

observe optimization e�ects less powerful than before, but the other benchmarks remain the same.
We conclude that overall, the performance of L������ is not much sensitive to changes in a given
set of training programs.

Answer to Q7: L������ is not critically sensitive to changes in a given set of training circuits.
(11 vs 14 optimized benchmarks, 24.0% vs 24.6% depth reduction)

6 RELATEDWORK
FHE Compilers
FHE compilers [4, 15, 22–24] allow programmers to easily write FHE applications without detailed
knowledge of the underlying FHE schemes. These compilers also provide optimizations for reducing
the multiplicative depth of the compiled circuits. However, the optimization rules used by modern
FHE compilers are hand-written, which requires manual e�ort and is likely to be sub-optimal. In
this paper, we aimed to automatically generate optimization rules that can be used by existing
compilers.

Cingulata [15] is an open-source compiler that translates high-level programs written in C++ into
boolean circuits. Cingulata also supports optimization of circuits for reducing multiplicative depth.
It uses ABC [12], an open-source boolean circuit optimizer. Cingulata also uses more advanced,
yet hand-written, circuit optimization techniques specially designed for minimizing multiplicative
depth [5, 14]. In particular, the multi-start heuristic by [14], which we used for comparison with
L������ in Section 5, shows a signi�cant reduction in multiplicative depths for their benchmarks.
However, we note that the benchmark circuits used in [14] are “intendedly suboptimal to test the
ability of optimization tools” [1]. By contrast, the benchmarks used in this paper include circuits
that are already carefully optimized in terms of FHE evaluation as explained in Section 5.1, thereby
leaving relatively small room for depth reduction. We observe the heuristic in [14] does not perform
very well for such a harder optimization task. We recently implemented [5] and observed that [5]
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observe optimization e�ects less powerful than before, but the other benchmarks remain the same.
We conclude that overall, the performance of L������ is not much sensitive to changes in a given
set of training programs.

Answer to Q7: L������ is not critically sensitive to changes in a given set of training circuits.
(11 vs 14 optimized benchmarks, 24.0% vs 24.6% depth reduction)

6 RELATEDWORK
FHE Compilers
FHE compilers [4, 15, 22–24] allow programmers to easily write FHE applications without detailed
knowledge of the underlying FHE schemes. These compilers also provide optimizations for reducing
the multiplicative depth of the compiled circuits. However, the optimization rules used by modern
FHE compilers are hand-written, which requires manual e�ort and is likely to be sub-optimal. In
this paper, we aimed to automatically generate optimization rules that can be used by existing
compilers.

Cingulata [15] is an open-source compiler that translates high-level programs written in C++ into
boolean circuits. Cingulata also supports optimization of circuits for reducing multiplicative depth.
It uses ABC [12], an open-source boolean circuit optimizer. Cingulata also uses more advanced,
yet hand-written, circuit optimization techniques specially designed for minimizing multiplicative
depth [5, 14]. In particular, the multi-start heuristic by [14], which we used for comparison with
L������ in Section 5, shows a signi�cant reduction in multiplicative depths for their benchmarks.
However, we note that the benchmark circuits used in [14] are “intendedly suboptimal to test the
ability of optimization tools” [1]. By contrast, the benchmarks used in this paper include circuits
that are already carefully optimized in terms of FHE evaluation as explained in Section 5.1, thereby
leaving relatively small room for depth reduction. We observe the heuristic in [14] does not perform
very well for such a harder optimization task. We recently implemented [5] and observed that [5]
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Related Work
• Hardware synthesis (e.g., ABC) 

For decreasing circuit area and circuit depth (latency), not for multiplicative depth reduction 

• General-purpose FHE compilers (e.g., Cingulata, Ramparts, Alchemy) 

Optimization rules are hand-written, which requires manual efforts and often sub-optimal. 

• Domain-specific FHE compilers (e.g., CHET)  

Optimizations specialized for specific tasks (e.g., secure neural-network inference) 

• Synthesis-based program optimization (e.g., STOKE, Optgen, Souper)   

Optimization rules are also automatically learned, and applied via syntactic matching  

We use equational matching to maximize generalization.



In the Paper…

• Detailed description of synthesis via localization 

• Formalized Equational Term Rewriting 

• Detailed description of experiment results

Thank you!


