Optimizing Homomorphic Evaluation Circuit with Program Synthesis and Term Rewriting

Woosuk Lee

Hanyang University

Joint work with DongKwon Lee (SNU), Hakjoo Oh (Korea Univ.), and Kwangkeun Yi (SNU)

References

- Design and Implementation
- Time-bounded Exhaustive Search,

• Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Term Rewriting, PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language

• Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and

TOPLAS: ACM Transactions on Programming Languages and Systems (under review)

Homomorphic Evaluation(HE) (1/3)

- Allows for computation on encrypted data
- Enables the outsourcing of private data storage/processing

Privacy Preserving Secure Computation

3rd Party

Homomorphic Evaluation(HE) (1/3)

- Allows for computation on encrypted data
- Enables the outsourcing of private data storage/processing

Privacy Preserving Secure Computation

3rd Party

Homomorphic Evaluation(HE) (2/3) **Building HE applications**

Generate/manage keys, hints

Add maintenance operations

Write code in low-level HE instructions

Application

Choose parameters

Track noise level

requires expertise

HE application

suboptim al

Homomorphic Evaluation(HE) (3/3)

Existing Homomorphic Compiler

Generate/manage keys, hints

Add maintenance operations

Write code in low-level HE instructions

Application

Choose parameters

Track noise level

HE application

Homomorphic Evaluation(HE) (3/3)

Existing Homomorphic Compiler

- Generates HE applications automatically ose parameters
- Optimization : several hand-written rutes rutes is level

Application

Homomorphic Evaluation(HE) (2/3)

Code for homomorphic addition of two integers

```
#include "FHE.h"
#include "EncryptedArray.h"
#include <NTL/lzz pXFactoring.h>
#include <fstream>
#include <sstream>
#include <sys/time.h>
int main(int argc, char **argv)
   long m=0, p=2, r=1; // Native plaintext space
                      // Computations will be 'modulo p'
                      // Levels
   long L=16;
                      // Columns in key switching matrix
   long c=3;
                      // Hamming weight of secret key
   long w=64;
   long d=0;
   long security = 128;
   ZZX G;
   m = FindM(security, L, c, p, d, 0, 0);
   FHEcontext context(m, p, r);
   buildModChain(context, L, c);
   FHESecKey secretKey(context);
   const FHEPubKey& publicKey = secretKey;
   G = context.alMod.getFactorsOverZZ()[0];
   secretKey.GenSecKey(w);
   addSome1DMatrices(secretKey);
    EncryptedArray ea(context, G);
   vector<long> v1;
   v1.push back(atoi(argv[1]));
    Ctxt ct1(publicKey);
                                       Manually written
    ea.encrypt(ct1, publicKey, v1);
   v2.push back(atoi(argv[2]));
    Ctxt ct2(publicKey);
                                       using HElib
    ea.encrypt(ct2, publicKey, v2);
   Ctxt ctSum = ct1;
    ctSum += ct2;
```

```
#include <iostream>
#include <fstream>
#include <integer.hxx>
int main()
        Integer8 a, b, c;
        cin >> a;
        cin >> b;
        c = a + b;
        cout << c;
        FINALIZE CIRCUIT(blif name);
             Input to Cingulata
```

(a HE compiler)

Our Contributions (1/2)

Automatic, Aggressive HE optimization Framework

- Generates HE applications automatically
- Optimization : searchander and the sources by the second synthesis + applying by term rewriting

X2.3 speedup Homomorphic Compiler **HE application** Programd-wriffenm Synthesisul Rewriting

Our Contributions (2/2)

Automatic, Aggressive HE optimization Framework

- Learning Optimization Patterns by Program Synthesis
- Applying Learned Patterns by Term Rewriting
- Theorem : Semantic Preservation & Termination Guaranteed
- Performance (vs state-of-the-art HE Optimizer)
 - Optimized 22 out of 25 Applications (vs 15)
 - x5.43 Speedup in Maximum (vs x3.0)
 - x2.26 Speedup on Average (vs x1.53)
- Open Tool Available : <u>https://github.com/dklee0501/Lobster</u>

Learning to Optimize Boolean circuit using Synthesis and TErm Rewriting

• Offline Learning via Program Synthesis + Online Optimization via Term Rewriting

Simple HE Scheme

- Based on approximate common divisor problem
- *p* : integer as a secret key
- q : random integer
- $r \ll |p|$: random noise for security

 $Enc_p(\mu \in \{0,1\}) = pq + 2r + \mu$ $Dec_p(c) = (c \mod p) \mod 2$ $Dec_p(Enc_p(\mu)) = Dec_p(pq + 2r + \mu) = \mu$ • For ciphertexts $\mu_i \leftarrow Enc_p(\mu_i)$, the following holds

$$Dec_p(\underline{\mu_1} + \underline{\mu_2}) = \mu_1 + \mu_2$$
$$Dec_p(\underline{\mu_1} \times \underline{\mu_2}) = \mu_1 \times \mu_2$$

• The scheme can evaluate all boolean circuits as + and × in $\mathbb{Z}_2 = \{0,1\}$ are equal to XOR and AND

Performance Hurdle : Growing Noise

- Noise increases during homomorphic operations.
- For $\mu_i = pq_i + 2r_i + \mu_i$

$$\underline{\mu_1} + \underline{\mu_2} = p(q_1 + q_2) + 2(r_1) + \frac{\mu_1}{\mu_1} \times \underline{\mu_2} = p(pq_1q_2 + \dots) + \frac{\mu_1}{\mu_1} + \frac{\mu_2}{\mu_2} = p(pq_1q_2 + \dots) + \frac{\mu_1}{\mu_2} + \frac{\mu_2}{\mu_1} + \frac{\mu_2}{\mu_2} = p(pq_1q_2 + \dots) + \frac{\mu_1}{\mu_2} + \frac{\mu_2}{\mu_2} + \frac{\mu_2}{\mu_1} + \frac{\mu_2}{\mu_2} = p(pq_1q_2 + \dots) + \frac{\mu_2}{\mu_2} + \frac{\mu_2$$

• if (noise > p) then incorrect results

 $r_1 + r_2$) + ($\mu_1 + \mu_2$) double increase 2($2r_1r_2 + r_1\mu_2 + r_2\mu_1$) + ($\mu_1 \times \mu_2$) quadratic increase noise

Multiplicative Depth : a Decisive Performance Factor

Multiplicative depth : the maximum number of sequential multiplications from input to output

What is HE optimization?

• Finding a new circuit that has smaller mult. depth

depth 4

same semantics

optimized HE circuit

optimized HE circuit

Hurdle : Synthesis Scalability

Solution 2: Learning Successful Synthesis Patterns

- Offline Learning
 - Collect successful synthesis patterns
- Online Optimization
 - Applying the patterns by term rewriting

Offline Learning to Collect Opt. Patterns

Collected Opt. Patterns

186 Opt. patterns

Learned Optimization Patterns : examples

Online Rule-based Optimization

Input **HE application**

Online Rule-based Optimization

Online Rule-based Optimization

Syntactic Matching is Not Effective

Syntactic Matching is Not Effective

Normalization + Equational Matching

Normalization + Equational Matching

Applying Learned Optimization Patterns (2/2) Normalization + Equational Matching

Normalized Opt. Patterns

Normalization + Equational Matching

?

target'

Normalization + Equational Matching

Normalized Opt. Patterns

?

Normalization + Equational Matching

optimized target

(Termination) finitely many rule applications

Formal properties

Can We Do Better?

- The term rewriting approach may converge to a sub-optimal result.
- Different optimization rules interact by enabling or disabling opportunities for other optimization rules .
- In other words, no backtracking!

- Idea: Apply the rewrite rules in all possible orders and store all the results
- Example
 - Optimizing a given circuit: $((x_1 \land x_2) \land$
 - Usable rewrite rules:
 - rule (1): $((v_1 \land v_2) \land v_3) \land v_4$ rule (2): $((v_1 \land v_2) \land v_3) \land v_4$ rule (3) : $(v_1 \oplus v_1)$ $(v_1 \wedge 0)$ rule (4) :

$$(x_2 \oplus x_3)) \wedge x_3$$

$$\begin{array}{rcl} & \rightarrow & ((\upsilon_1 \wedge \upsilon_2) \wedge \upsilon_4) \wedge ((\upsilon_2 \oplus \upsilon_4) \oplus \upsilon_3) \\ \\ & \rightarrow & (\upsilon_1 \wedge \upsilon_2) \wedge (\upsilon_3 \wedge \upsilon_4) \\) & \rightarrow & 0 \\) & \rightarrow & 0 \end{array}$$

 $root: ((x_1 \land x_2) \land (x_2 \oplus x_3)) \land x_3$

• Applying rule (1) (shaded: newly added)

• Applying rule (2)

• Merging the results of applying rules (1) and (2)

• Applying rule (3) $(v_1 \oplus v_1) \rightarrow 0$ and merging

• Applying rule (4) $(v_1 \land 0) \rightarrow 0$ and merging

• Applying any rule doesn't change the e-graph => saturated!

• Pick the best result: 0

Rewriting vs. Exhaustive search (aka equality saturation)

- Rewriting: scalable but may find a sub-optimal result
- Equality saturation: unscalable but guaranteed to find an optimal result[†]
- We use the rewriting method for large circuits and equality saturation for small circuits.

[†] egg: Fast and Extensible Equality Saturation, ACM POPL 2021

Lobster Performance (1/4)

• 25 HE algorithms from 4 sources

- Cingulata benchmarks
- Sorting benchmarks
- Hackers Delight benchmarks
- EPFL benchmarks

12 Homomorphic bitwise operations

7 EPFL combinational benchmark suite (to test circuit optimizer)

Benchmarks

2 HE friendly algorithms (medical, sorting)

4 privacy-preserving sorting algorithms (merge, insert, bubble, odd-even)

Lobster Performance (1/4)

Name	Description	$\times \mathbf{Depth}$	#AND	Size
cardio	medical diagnostic algorithm [16]	10	109	318
dsort	FHE-friendly direct sort [17]	9	708	1 464
msort	merge sort [17]	45	810	1525
isort	insertion sort [17]	45	810	1525
bsort	bubble sort [17]	45	810	1525
osort	oddeven sort [17]	25	702	1343
hd-01	isolate the rightmost 1-bit [35]	6	87	118
hd-02	absolute value [35]	6	76	229
hd-03	floor of average of two integers (a clever impl.) [35]	5	27	64
hd-04	floor of average of two integers (a naive impl.) [52]	10	75	159
hd-05	max of two integers [35]	7	121	295
hd-06	min of two integers [35]	7	121	295
hd-07	turn off the rightmost contiguous string of 1-bits [35]	5	17	32
hd-08	determine if an integer is a power of 2 [35]	6	18	37
hd-09	round up to the next highest power of 2 [35]	14	134	236
hd-10	find first 0-byte [52]	6	35	73
hd-11	the longest length of contiguous string of 1-bits [52]	18	391	652
hd-12	number of leading 0-bits [52]	16	116	232
bar	barrel shifter [1]	12	3141	5710
cavlc	coding-cavlc [1]	16	655	1219
ctrl	ALU control unit [1]	8	107	180
dec	decoder [1]	3	304	312
i2c	i2c controller [1]	15	1157	1987
int2float	int to float converter [1]	15	213	386
router	lookahead XY router [1]	19	170	277

Benchmarks

Optimization Results of Lobster and the baseline

Speedup

Lobster Performance (2/4)

Speedup

Lobster Performance (2/4)

Optimization Results of Lobster and the baseline

Speedup

Lobster Performance (2/4)

Speedup

Lobster Performance (2/4)

Speedup

Speedup

Lobster Performance (2/4)

Speedup

Lobster Performance (2/4)

Speedup

Lobster Performance (2/4)

	Synthesis-bas
60%	
50%	
40%	
30%	
20%	
10%	
0%	$d^{(0)}$ $d^{($

sed

Rewriting-based

Rewriting-based

Reusing the learned patterns improves the scalability of Lobster

Rewriting-based

Lobster Performance (4/4)

Effectiveness of Equational Term Rewriting

Leave-one-out cross validation

Benchmarks **Depth Reduction**

Effectiveness of Equational Term Rewriting

Lobster Performance (4/4)

Benchmarks **Depth Reduction**

Related Work

- Hardware synthesis (e.g., ABC)
 - For decreasing circuit area and circuit depth (latency), not for multiplicative depth reduction
- General-purpose FHE compilers (e.g., Cingulata, Ramparts, Alchemy)
- Optimization rules are hand-written, which requires manual efforts and often sub-optimal. • Domain-specific FHE compilers (e.g., CHET)
 - Optimizations specialized for specific tasks (e.g., secure neural-network inference)
- Synthesis-based program optimization (e.g., STOKE, Optgen, Souper)
 - Optimization rules are also automatically learned, and applied via *syntactic* matching
 - We use *equational* matching to maximize generalization.

- Detailed description of synthesis via localization
- Formalized Equational Term Rewriting
- Detailed description of experiment results

(:) Thank you!