
Optimizing Homomorphic Evaluation Circuit
with Program Synthesis and Term Rewriting

 Woosuk Lee

Hanyang
University

Joint work with DongKwon Lee (SNU), Hakjoo Oh (Korea Univ.), and Kwangkeun Yi (SNU)

References

• Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Term Rewriting,
PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation

• Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-bounded Exhaustive Search,
TOPLAS: ACM Transactions on Programming Languages and Systems (under review)

Homomorphic Evaluation(HE) (1/3)

• Allows for computation on encrypted data

• Enables the outsourcing of private data storage/processing

Private
Data

User

Privacy Preserving Secure Computation

3rd Party

Homomorphic Evaluation(HE) (1/3)

• Allows for computation on encrypted data

• Enables the outsourcing of private data storage/processing

Encrypted
Data

Encrypted
Result

Privacy Preserving Secure Computation

Result

HE application

User

3rd Party

Application HE developer HE application

Homomorphic Evaluation(HE) (2/3)

Write code in low-level HE instructions

requires
expertise

suboptim
al

Add maintenance operations
Generate/manage keys, hints

Track noise level
Choose parameters

complicate
d

Building HE applications

Homomorphic Evaluation(HE) (3/3)

Add maintenance operations
Generate/manage keys, hints

Track noise level
Choose parameters

Existing Homomorphic Compiler

HE applicationHE developer

Write code in low-level HE instructions

Application

Homomorphic Evaluation(HE) (3/3)

Write code in low-level HE instructions
Add maintenance operations
Generate/manage keys, hints

Track noise level
Choose parameters

Existing Homomorphic Compiler

HE application

Homomorphic
Compiler

still,
suboptimal

• Generates HE applications automatically

• Optimization : several hand-written rules

Application

Hand-written
rules

Homomorphic Evaluation(HE) (2/3)

#include <iostream>
#include <fstream>
#include <integer.hxx>

int main()
{
 Integer8 a, b, c;

 cin >> a;
 cin >> b;
 c = a + b;

 cout << c;
 FINALIZE_CIRCUIT(blif_name);
}

#include "FHE.h"
#include "EncryptedArray.h"
#include <NTL/lzz_pXFactoring.h>
#include <fstream>
#include <sstream>
#include <sys/time.h>

int main(int argc, char **argv)
{
 long m=0, p=2, r=1; // Native plaintext space
 // Computations will be 'modulo p'
 long L=16; // Levels
 long c=3; // Columns in key switching matrix
 long w=64; // Hamming weight of secret key
 long d=0;
 long security = 128;
 ZZX G;
 m = FindM(security,L,c,p, d, 0, 0);
 FHEcontext context(m, p, r);
 buildModChain(context, L, c);
 FHESecKey secretKey(context);
 const FHEPubKey& publicKey = secretKey;
 G = context.alMod.getFactorsOverZZ()[0];
 secretKey.GenSecKey(w);
 addSome1DMatrices(secretKey);
 EncryptedArray ea(context, G);
 vector<long> v1;
 v1.push_back(atoi(argv[1]));
 Ctxt ct1(publicKey);
 ea.encrypt(ct1, publicKey, v1);
 v2.push_back(atoi(argv[2]));
 Ctxt ct2(publicKey);
 ea.encrypt(ct2, publicKey, v2);
 Ctxt ctSum = ct1;
 ctSum += ct2;
}

Code for homomorphic addition of two integers

Manually written
using HElib

Input to Cingulata
(a HE compiler)

Our Contributions (1/2)

HE application

Homomorphic
Compiler

• Generates HE applications automatically

Application

Hand-written
rules

Automatic, Aggressive HE optimization Framework

• Optimization : several hand-written rules• Optimization : machine found rules by program synthesis + applying by term rewriting

Program
Synthesis

Term
Rewriting

 2.3 speedup×

Our Contributions (2/2)

• Learning Optimization Patterns by Program Synthesis

• Applying Learned Patterns by Term Rewriting

• Theorem : Semantic Preservation & Termination Guaranteed

• Performance (vs state-of-the-art HE Optimizer)

Optimized 22 out of 25 Applications (vs 15)

x5.43 Speedup in Maximum (vs x3.0)

x2.26 Speedup on Average (vs x1.53)

• Open Tool Available : https://github.com/dklee0501/Lobster

Automatic, Aggressive HE optimization Framework

https://github.com/dklee0501/Lobster

Our Lobster…
Learning to Optimize Boolean circuit using Synthesis and TErm Rewriting

HE
Compiler
Front-end

Synthesis-based
Rule Learner

Rule-based Optimization
via Term-Rewriting

2. Online Optimization

1. Offline Learning

 Training
Programs

 Training HE Applications

Input
Program

…

Learned Opt. Patterns

Unoptimized HE Application

Optimized
HE Application

• Offline Learning via Program Synthesis + Online Optimization via Term Rewriting

• Based on approximate common divisor problem

• : integer as a secret key

• : random integer

• : random noise for security

p

q
r(≪ |p |)

Simple HE Scheme

Encp(μ ∈ {0,1}) = pq + 2r + μ
Decp(c) = (cmodp)mod2

Decp(Encp(μ)) = Decp(pq + 2r + μ) = μ

• For ciphertexts , the following
holds

μi ← Encp(μi)

Decp(μ1 + μ2) = μ1 + μ2
Decp(μ1 × μ2) = μ1 × μ2

• The scheme can evaluate all boolean circuits
as and in are equal to XOR
and AND

+ × ℤ2 = {0,1}

• Noise increases during homomorphic operations.

• For μi = pqi + 2ri + μi

Performance Hurdle : Growing Noise

μ1 + μ2 = p(q1 + q2) + 2(r1 + r2) + (μ1 + μ2)
μ1 × μ2 = p(pq1q2 + ⋯) + 2(2r1r2 + r1μ2 + r2μ1) + (μ1 × μ2)

noise

• if (noise) then incorrect results> p

double increase
quadratic increase

Multiplicative Depth : a Decisive Performance Factor

• Multiplicative depth : the maximum number of sequential multiplications from input to output

c1

c3

c3

c2

c1

c4

c2

c5

c1

c2

depth 4

 mult. depth

 size of p

 HE speed

 noise

What is HE optimization?

• Finding a new circuit that has smaller mult. depth

c1

c3

c3

c2

c1

c4

c2

c5

c1

c2
1

c5

c1

c3

c2

c1

c2

c4

depth 4 depth 3

HE optimization via Synthesis

Constraints

Program Synthesis
Desired
programSyntax+

HE optimization via Synthesis

Constraints

Program Synthesis
Desired
program

same semantics

depth 4

Syntax+

HE optimization via Synthesis

Constraints

Program Synthesis
Desired
program

depth-restricting syntaxsame semantics

depth 4

Syntax+

HE optimization via Synthesis

Constraints

Program Synthesis
Desired
program

depth-restricting syntaxsame semantics

depth 4

Syntax+

optimized HE circuit
depth 3

HE optimization via Synthesis

same semantics depth-restricting syntax

Constraints Syntax+
Optimizing
Synthesis

Desired
program

optimized HE circuit
depth 4 depth 3

Hurdle : Synthesis Scalability

Optimizing
Synthesis

too slow

Solution1 : Synthesis via Localization

Solution1 : Synthesis via Localization

Solution1 : Synthesis via Localization

Optimizing
Synthesis

Solution1 : Synthesis via Localization

scalable

Optimizing
Synthesis

Solution1 : Synthesis via Localization

Solution1 : Synthesis via Localization

Optimizing
Synthesis

Replace

Solution 2: Learning Successful Synthesis Patterns

• Offline Learning
Collect successful synthesis patterns

• Online Optimization
Applying the patterns by term rewriting

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Collected
Opt. Patterns

…

 Training
HE Applications

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Collected
Opt. Patterns

…

 Training
HE Applications

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Optimizing
Synthesis

Collected
Opt. Patterns

…

 Training
HE Applications

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Optimizing
Synthesis

Collected
Opt. Patterns

…

 Training
HE Applications

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Optimizing
Synthesis

Collected
Opt. Patterns

…Replace

 Training
HE Applications

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Collected
Opt. Patterns

…

 Training
HE Applications

Optimizing
Synthesis

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Collected
Opt. Patterns

…

 Training
HE Applications

Optimizing
Synthesis

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Collected
Opt. Patterns

 Training
HE Applications

Optimizing
Synthesis

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Collected
Opt. Patterns

 Training
HE Applications

Optimizing
Synthesis

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle Training

HE Applications

186 Opt.
patterns

Collected
Opt. Patterns

Learned Optimization Patterns : examples

Online Rule-based Optimization
Offline Learning Cycle

Learned
Opt. Patterns

Input
HE application

Online Rule-based Optimization
Offline Learning Cycle

Apply
Opt. Patterns

Learned
Opt. Patterns

Input
HE application

Online Rule-based Optimization
Offline Learning Cycle

Apply
Opt. Patterns

Replace

Input
HE application

Applying Learned Optimization Patterns (1/2)

d1

d2

d1

d2

d3

d4

d5

?

Learned
Opt. Patterns

New Input Circuit
Optimization

Syntactic Matching is Not Effective

Applying Learned Optimization Patterns (1/2)

?Mismatch

New Input Circuit
Optimization

Learned
Opt. Patterns

Syntactic Matching is Not Effective

Applying Learned Optimization Patterns (2/2)

?
d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

Learned
Opt. Patterns

Applying Learned Optimization Patterns (2/2)

?
d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

Learned
Opt. Patterns

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

?
d1

d2

d1

d2

d3

d4

d5

Normalized
Opt. Patterns

New Input Circuit
Optimization

Normalization + Equational Matching

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

?
d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

target'

c5

n1

n1

c4

Applying Learned Optimization Patterns (2/2)

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

?

Find substitution σ

(considering commutativity)

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

?

σ = {n1 ↦ d1 and d2, Find substitution σ

(considering commutativity)

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

?

σ = {n1 ↦ d1 and d2,
 c4 ↦ d3 xor d4,

Find substitution σ

(considering commutativity)

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

σ = {n1 ↦ d1 and d2,
 c4 ↦ d3 xor d4,
 c5 ↦ d5}

Find substitution σ

(considering commutativity)

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

?

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

?

Apply substitution σ
σ = {n1 ↦ d1 and d2,
 c4 ↦ d3 xor d4,
 c5 ↦ d5}

Find substitution σ

(considering commutativity)

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

Apply substitution σ

d3

d4

d1

d2

d5

1

optimized target

σ = {n1 ↦ d1 and d2,
 c4 ↦ d3 xor d4,
 c5 ↦ d5}

Find substitution σ

(considering commutativity)

Applying Learned Optimization Patterns (2/2)

New Input Circuit
Optimization

Apply substitution σ

d3

d4

d1

d2

d5

1d1

d2

d1

d2

d3

d4

d5

depth 3 depth 2

Normalization + Equational Matching

c5

n1

n1

c4

n1

c5

1
c4

Normalized
Opt. Patterns

old

target

new

optimized target

σ = {n1 ↦ d1 and d2,
 c4 ↦ d3 xor d4,
 c5 ↦ d5}

Find substitution σ

(considering commutativity)

Applying Learned Optimization Patterns
Formal properties

Applying an
opt. pattern

…

(Soundness) semantics unchanged

(Termination) finitely many rule applications

Can We Do Better?
• The term rewriting approach may converge to a sub-optimal result.

• Different optimization rules interact by enabling or disabling opportunities for other
optimization rules .

• In other words, no backtracking! Original Circuit

Exhaustive Search with E-graphs
• Idea: Apply the rewrite rules in all possible orders and store all the results

• Example

• Optimizing a given circuit:

• Usable rewrite rules:

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:15

we represent circuits as graphs and perform rewriting on the graphs by translating term rewrite
rules into suitable graph transformation rules. Term graph rewriting is sound with respect to term
rewriting in that every graph transformation step corresponds to a sequence of applications of
term rewrite rules. The interested reader is referred to [45] for more details about the soundness
proof and the translation method.

4.4 Optimization with Backtracking Based on Equality Saturation
4.4.1 E-graph Structure. E-graph structure is de�ned as triple of (set of enode, set of eclass, set

of edge). Each enode contains a boolean operator (^, �) or boolean value (0, 1, boolean variable).
Eclass is a set of enodes. Edge connects an enode to an eclass.
The meaning of E-graph is as follows. Each enode represents a set of all boolean expressions

(i.e. boolean circuits) that can be generated by following manner. If an enode contains a boolean
value, it represents the node value itself. If an enode contains a boolean operator, we generate
child boolean expressions by following manner. we choose an enode from each child eclass, and
choose one of the boolean expressions represented by each chosen enode. All boolean expressions
generated by enodes in the same eclass must be semantically equivalent.

Note that E-graph also can be interpreted as a program grammar. Each of eclasses corresponds
to nonterminal symbol and each of enodes in that eclass corresponds to a production rule for the
nonterminal symbol. Every E-graph corresponds to a particular context free grammar.
In this context, equality saturation is a process of constructing a program grammar that can

generate all circuits equivalent to input circuit.

4.4.2 Equality Saturation Process. Equality saturation consists of two processes: saturation
process and extraction process. First, in the saturation process, we continually expand E-graph
by �nding all circuits which is semantically equivalent to an initial circuit. We call the E-graph
saturated if we can not �nd any other equivalent circuits. In the extraction process, we extract a
circuit that has the lowest multiplicative depth from a saturated E-graph.

Figure 3 and Figure 4 illustrates the saturation process. We start with a term graph of the input
boolean circuit ((x1 ^ x2) ^ (x2 � x3)) ^ x3 and following rewrite rules.

rule (1) : ((�1 ^�2) ^�3) ^�4 ! ((�1 ^�2) ^�4) ^ ((�2 � �4) � �3)
rule (2) : ((�1 ^�2) ^�3) ^�4 ! (�1 ^�2) ^ (�3 ^�4)
rule (3) : (�1 � �1) ! 0
rule (4) : (�1 ^ 0) ! 0

Then we explore optimized circuits that can be generated based on the rewrite rules by an iteration
of three steps: ematch, add, and merge. Figure 3 illustrates the �rst iteration. In the ematch step, we
�nd all enodes which can be rewritten by a certain rule. An enode is said rewritable by a certain
rule if it can generate a circuit which can be rewritten by the rule. As the root enode can generate
circuit ((x1 ^x2)^ (x2 � x3))^x3 that can be rewritten by rule (1) and rule (2), we get two rewritten
circuits as a result of ematch step for the root enode (Figure 3.(a)). In the add step, we add all
rewritten circuits to the E-graph in a recursive manner from bottom to top (Figure 3.(b)). Newly
added enodes are colored gray in Figure 3 and Figure 4. Note that each added rewritten circuit
corresponds to an enode. In the merge step, for each pair of rewritable enode and rewritten circuit,
we merge the rewritable enode and newly added enode (that corresponds to the rewritten circuit)
as the same eclass (Figure 3.(c)). In the second and third iteration, we expand E-graph by applying
rewrite rule (3) and rule (4) respectively (Figure 4.(c), Figure 4.(d)).3 As the root enode is merged
3More enodes are rewritable by rule (2), but we ruled out them in Figure 4 for clarity.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:15

we represent circuits as graphs and perform rewriting on the graphs by translating term rewrite
rules into suitable graph transformation rules. Term graph rewriting is sound with respect to term
rewriting in that every graph transformation step corresponds to a sequence of applications of
term rewrite rules. The interested reader is referred to [45] for more details about the soundness
proof and the translation method.

4.4 Optimization with Backtracking Based on Equality Saturation
4.4.1 E-graph Structure. E-graph structure is de�ned as triple of (set of enode, set of eclass, set

of edge). Each enode contains a boolean operator (^, �) or boolean value (0, 1, boolean variable).
Eclass is a set of enodes. Edge connects an enode to an eclass.
The meaning of E-graph is as follows. Each enode represents a set of all boolean expressions

(i.e. boolean circuits) that can be generated by following manner. If an enode contains a boolean
value, it represents the node value itself. If an enode contains a boolean operator, we generate
child boolean expressions by following manner. we choose an enode from each child eclass, and
choose one of the boolean expressions represented by each chosen enode. All boolean expressions
generated by enodes in the same eclass must be semantically equivalent.

Note that E-graph also can be interpreted as a program grammar. Each of eclasses corresponds
to nonterminal symbol and each of enodes in that eclass corresponds to a production rule for the
nonterminal symbol. Every E-graph corresponds to a particular context free grammar.
In this context, equality saturation is a process of constructing a program grammar that can

generate all circuits equivalent to input circuit.

4.4.2 Equality Saturation Process. Equality saturation consists of two processes: saturation
process and extraction process. First, in the saturation process, we continually expand E-graph
by �nding all circuits which is semantically equivalent to an initial circuit. We call the E-graph
saturated if we can not �nd any other equivalent circuits. In the extraction process, we extract a
circuit that has the lowest multiplicative depth from a saturated E-graph.

Figure 3 and Figure 4 illustrates the saturation process. We start with a term graph of the input
boolean circuit ((x1 ^ x2) ^ (x2 � x3)) ^ x3 and following rewrite rules.

rule (1) : ((�1 ^�2) ^�3) ^�4 ! ((�1 ^�2) ^�4) ^ ((�2 � �4) � �3)
rule (2) : ((�1 ^�2) ^�3) ^�4 ! (�1 ^�2) ^ (�3 ^�4)
rule (3) : (�1 � �1) ! 0
rule (4) : (�1 ^ 0) ! 0

Then we explore optimized circuits that can be generated based on the rewrite rules by an iteration
of three steps: ematch, add, and merge. Figure 3 illustrates the �rst iteration. In the ematch step, we
�nd all enodes which can be rewritten by a certain rule. An enode is said rewritable by a certain
rule if it can generate a circuit which can be rewritten by the rule. As the root enode can generate
circuit ((x1 ^x2)^ (x2 � x3))^x3 that can be rewritten by rule (1) and rule (2), we get two rewritten
circuits as a result of ematch step for the root enode (Figure 3.(a)). In the add step, we add all
rewritten circuits to the E-graph in a recursive manner from bottom to top (Figure 3.(b)). Newly
added enodes are colored gray in Figure 3 and Figure 4. Note that each added rewritten circuit
corresponds to an enode. In the merge step, for each pair of rewritable enode and rewritten circuit,
we merge the rewritable enode and newly added enode (that corresponds to the rewritten circuit)
as the same eclass (Figure 3.(c)). In the second and third iteration, we expand E-graph by applying
rewrite rule (3) and rule (4) respectively (Figure 4.(c), Figure 4.(d)).3 As the root enode is merged
3More enodes are rewritable by rule (2), but we ruled out them in Figure 4 for clarity.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Exhaustive Search with E-graphs

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

111:16 Dongkwon Lee et al

with the enode that contains 0, we can �gure out that the initial circuit is semantically equivalent
to 0. More details of these three steps are described in [57].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hour).

Fig. 3. Change of E-graph during a single iteration. Do�ed box means eclass. (a) ematch result for root enode.
(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

In the extraction process, we extract the least-cost circuit from the saturated E-graph for the
given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Exhaustive Search with E-graphs

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

111:16 Dongkwon Lee et al

with the enode that contains 0, we can �gure out that the initial circuit is semantically equivalent
to 0. More details of these three steps are described in [57].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hour).

Fig. 3. Change of E-graph during a single iteration. Do�ed box means eclass. (a) ematch result for root enode.
(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

In the extraction process, we extract the least-cost circuit from the saturated E-graph for the
given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Exhaustive Search with E-graphs
• Applying rule (1) (shaded: newly added)

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

111:16 Dongkwon Lee et al

with the enode that contains 0, we can �gure out that the initial circuit is semantically equivalent
to 0. More details of these three steps are described in [57].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hour).

Fig. 3. Change of E-graph during a single iteration. Do�ed box means eclass. (a) ematch result for root enode.
(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

In the extraction process, we extract the least-cost circuit from the saturated E-graph for the
given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Exhaustive Search with E-graphs
• Applying rule (2)

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

111:16 Dongkwon Lee et al

with the enode that contains 0, we can �gure out that the initial circuit is semantically equivalent
to 0. More details of these three steps are described in [57].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hour).

Fig. 3. Change of E-graph during a single iteration. Do�ed box means eclass. (a) ematch result for root enode.
(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

In the extraction process, we extract the least-cost circuit from the saturated E-graph for the
given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

• Merging the results of applying rules (1) and (2)

Exhaustive Search with E-graphs

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

111:16 Dongkwon Lee et al

with the enode that contains 0, we can �gure out that the initial circuit is semantically equivalent
to 0. More details of these three steps are described in [57].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hour).

Fig. 3. Change of E-graph during a single iteration. Do�ed box means eclass. (a) ematch result for root enode.
(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

In the extraction process, we extract the least-cost circuit from the saturated E-graph for the
given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Meaning: c1, c2, and original
circuit are all equivalent!

Exhaustive Search with E-graphs
• Applying rule (3) and merging

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:15

we represent circuits as graphs and perform rewriting on the graphs by translating term rewrite
rules into suitable graph transformation rules. Term graph rewriting is sound with respect to term
rewriting in that every graph transformation step corresponds to a sequence of applications of
term rewrite rules. The interested reader is referred to [45] for more details about the soundness
proof and the translation method.

4.4 Optimization with Backtracking Based on Equality Saturation
4.4.1 E-graph Structure. E-graph structure is de�ned as triple of (set of enode, set of eclass, set

of edge). Each enode contains a boolean operator (^, �) or boolean value (0, 1, boolean variable).
Eclass is a set of enodes. Edge connects an enode to an eclass.
The meaning of E-graph is as follows. Each enode represents a set of all boolean expressions

(i.e. boolean circuits) that can be generated by following manner. If an enode contains a boolean
value, it represents the node value itself. If an enode contains a boolean operator, we generate
child boolean expressions by following manner. we choose an enode from each child eclass, and
choose one of the boolean expressions represented by each chosen enode. All boolean expressions
generated by enodes in the same eclass must be semantically equivalent.

Note that E-graph also can be interpreted as a program grammar. Each of eclasses corresponds
to nonterminal symbol and each of enodes in that eclass corresponds to a production rule for the
nonterminal symbol. Every E-graph corresponds to a particular context free grammar.
In this context, equality saturation is a process of constructing a program grammar that can

generate all circuits equivalent to input circuit.

4.4.2 Equality Saturation Process. Equality saturation consists of two processes: saturation
process and extraction process. First, in the saturation process, we continually expand E-graph
by �nding all circuits which is semantically equivalent to an initial circuit. We call the E-graph
saturated if we can not �nd any other equivalent circuits. In the extraction process, we extract a
circuit that has the lowest multiplicative depth from a saturated E-graph.

Figure 3 and Figure 4 illustrates the saturation process. We start with a term graph of the input
boolean circuit ((x1 ^ x2) ^ (x2 � x3)) ^ x3 and following rewrite rules.

rule (1) : ((�1 ^�2) ^�3) ^�4 ! ((�1 ^�2) ^�4) ^ ((�2 � �4) � �3)
rule (2) : ((�1 ^�2) ^�3) ^�4 ! (�1 ^�2) ^ (�3 ^�4)
rule (3) : (�1 � �1) ! 0
rule (4) : (�1 ^ 0) ! 0

Then we explore optimized circuits that can be generated based on the rewrite rules by an iteration
of three steps: ematch, add, and merge. Figure 3 illustrates the �rst iteration. In the ematch step, we
�nd all enodes which can be rewritten by a certain rule. An enode is said rewritable by a certain
rule if it can generate a circuit which can be rewritten by the rule. As the root enode can generate
circuit ((x1 ^x2)^ (x2 � x3))^x3 that can be rewritten by rule (1) and rule (2), we get two rewritten
circuits as a result of ematch step for the root enode (Figure 3.(a)). In the add step, we add all
rewritten circuits to the E-graph in a recursive manner from bottom to top (Figure 3.(b)). Newly
added enodes are colored gray in Figure 3 and Figure 4. Note that each added rewritten circuit
corresponds to an enode. In the merge step, for each pair of rewritable enode and rewritten circuit,
we merge the rewritable enode and newly added enode (that corresponds to the rewritten circuit)
as the same eclass (Figure 3.(c)). In the second and third iteration, we expand E-graph by applying
rewrite rule (3) and rule (4) respectively (Figure 4.(c), Figure 4.(d)).3 As the root enode is merged
3More enodes are rewritable by rule (2), but we ruled out them in Figure 4 for clarity.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:17

Fig. 4. Change of E-graph during iterations. Do�ed box means eclass. (a) initial E-graph. (b) a�er 1 iteration.
(c) a�er 2 iteration. (d) saturated E-graph.

In a saturation-based rewriting system, the possibility of �nding the globally optimal circuit is
enlarged. As we e�ciently compress all possible result circuits as a form of program grammar, we
can explore an expansive space within a practical time budget.

Although equality saturation is a time-consuming method in general, we can successfully intro-
duce it for our term rewriting system since most of the homomorphic evaluation circuits have a
relatively small scale.

5 EVALUATION
We implemented our method as a tool named L������4. This section evaluates our L������ system
to answer the following questions:
Q1: How e�ective is L������ for optimizing FHE applications from various domains?
Q2: How does L������ compare with existing general-purpose FHE optimization techniques?
Q3: What is the bene�t of reusing pre-learned rewrite rules?
Q4: What is the bene�t of using equality saturation technique?
Q5: What is the bene�t of the rule normalization and equational matching?
Q6: How long does L������ take to obtain optimized circuits?
Q7: How sensitive is L������ to changes in the training set for learning rewrite rules?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

5.1 Experimental Setup
Implementation
L������ comprises three pieces: (i) an o�ine rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. L������ is written in OCaml and RUST, and consists of about 3K
lines of code.
4Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Exhaustive Search with E-graphs
• Applying rule (4) and merging

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:15

we represent circuits as graphs and perform rewriting on the graphs by translating term rewrite
rules into suitable graph transformation rules. Term graph rewriting is sound with respect to term
rewriting in that every graph transformation step corresponds to a sequence of applications of
term rewrite rules. The interested reader is referred to [45] for more details about the soundness
proof and the translation method.

4.4 Optimization with Backtracking Based on Equality Saturation
4.4.1 E-graph Structure. E-graph structure is de�ned as triple of (set of enode, set of eclass, set

of edge). Each enode contains a boolean operator (^, �) or boolean value (0, 1, boolean variable).
Eclass is a set of enodes. Edge connects an enode to an eclass.
The meaning of E-graph is as follows. Each enode represents a set of all boolean expressions

(i.e. boolean circuits) that can be generated by following manner. If an enode contains a boolean
value, it represents the node value itself. If an enode contains a boolean operator, we generate
child boolean expressions by following manner. we choose an enode from each child eclass, and
choose one of the boolean expressions represented by each chosen enode. All boolean expressions
generated by enodes in the same eclass must be semantically equivalent.

Note that E-graph also can be interpreted as a program grammar. Each of eclasses corresponds
to nonterminal symbol and each of enodes in that eclass corresponds to a production rule for the
nonterminal symbol. Every E-graph corresponds to a particular context free grammar.
In this context, equality saturation is a process of constructing a program grammar that can

generate all circuits equivalent to input circuit.

4.4.2 Equality Saturation Process. Equality saturation consists of two processes: saturation
process and extraction process. First, in the saturation process, we continually expand E-graph
by �nding all circuits which is semantically equivalent to an initial circuit. We call the E-graph
saturated if we can not �nd any other equivalent circuits. In the extraction process, we extract a
circuit that has the lowest multiplicative depth from a saturated E-graph.

Figure 3 and Figure 4 illustrates the saturation process. We start with a term graph of the input
boolean circuit ((x1 ^ x2) ^ (x2 � x3)) ^ x3 and following rewrite rules.

rule (1) : ((�1 ^�2) ^�3) ^�4 ! ((�1 ^�2) ^�4) ^ ((�2 � �4) � �3)
rule (2) : ((�1 ^�2) ^�3) ^�4 ! (�1 ^�2) ^ (�3 ^�4)
rule (3) : (�1 � �1) ! 0
rule (4) : (�1 ^ 0) ! 0

Then we explore optimized circuits that can be generated based on the rewrite rules by an iteration
of three steps: ematch, add, and merge. Figure 3 illustrates the �rst iteration. In the ematch step, we
�nd all enodes which can be rewritten by a certain rule. An enode is said rewritable by a certain
rule if it can generate a circuit which can be rewritten by the rule. As the root enode can generate
circuit ((x1 ^x2)^ (x2 � x3))^x3 that can be rewritten by rule (1) and rule (2), we get two rewritten
circuits as a result of ematch step for the root enode (Figure 3.(a)). In the add step, we add all
rewritten circuits to the E-graph in a recursive manner from bottom to top (Figure 3.(b)). Newly
added enodes are colored gray in Figure 3 and Figure 4. Note that each added rewritten circuit
corresponds to an enode. In the merge step, for each pair of rewritable enode and rewritten circuit,
we merge the rewritable enode and newly added enode (that corresponds to the rewritten circuit)
as the same eclass (Figure 3.(c)). In the second and third iteration, we expand E-graph by applying
rewrite rule (3) and rule (4) respectively (Figure 4.(c), Figure 4.(d)).3 As the root enode is merged
3More enodes are rewritable by rule (2), but we ruled out them in Figure 4 for clarity.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:17

Fig. 4. Change of E-graph during iterations. Do�ed box means eclass. (a) initial E-graph. (b) a�er 1 iteration.
(c) a�er 2 iteration. (d) saturated E-graph.

In a saturation-based rewriting system, the possibility of �nding the globally optimal circuit is
enlarged. As we e�ciently compress all possible result circuits as a form of program grammar, we
can explore an expansive space within a practical time budget.

Although equality saturation is a time-consuming method in general, we can successfully intro-
duce it for our term rewriting system since most of the homomorphic evaluation circuits have a
relatively small scale.

5 EVALUATION
We implemented our method as a tool named L������4. This section evaluates our L������ system
to answer the following questions:
Q1: How e�ective is L������ for optimizing FHE applications from various domains?
Q2: How does L������ compare with existing general-purpose FHE optimization techniques?
Q3: What is the bene�t of reusing pre-learned rewrite rules?
Q4: What is the bene�t of using equality saturation technique?
Q5: What is the bene�t of the rule normalization and equational matching?
Q6: How long does L������ take to obtain optimized circuits?
Q7: How sensitive is L������ to changes in the training set for learning rewrite rules?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

5.1 Experimental Setup
Implementation
L������ comprises three pieces: (i) an o�ine rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. L������ is written in OCaml and RUST, and consists of about 3K
lines of code.
4Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Exhaustive Search with E-graphs
• Applying any rule doesn’t change the e-graph => saturated!

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:17

Fig. 4. Change of E-graph during iterations. Do�ed box means eclass. (a) initial E-graph. (b) a�er 1 iteration.
(c) a�er 2 iteration. (d) saturated E-graph.

In a saturation-based rewriting system, the possibility of �nding the globally optimal circuit is
enlarged. As we e�ciently compress all possible result circuits as a form of program grammar, we
can explore an expansive space within a practical time budget.

Although equality saturation is a time-consuming method in general, we can successfully intro-
duce it for our term rewriting system since most of the homomorphic evaluation circuits have a
relatively small scale.

5 EVALUATION
We implemented our method as a tool named L������4. This section evaluates our L������ system
to answer the following questions:
Q1: How e�ective is L������ for optimizing FHE applications from various domains?
Q2: How does L������ compare with existing general-purpose FHE optimization techniques?
Q3: What is the bene�t of reusing pre-learned rewrite rules?
Q4: What is the bene�t of using equality saturation technique?
Q5: What is the bene�t of the rule normalization and equational matching?
Q6: How long does L������ take to obtain optimized circuits?
Q7: How sensitive is L������ to changes in the training set for learning rewrite rules?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

5.1 Experimental Setup
Implementation
L������ comprises three pieces: (i) an o�ine rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. L������ is written in OCaml and RUST, and consists of about 3K
lines of code.
4Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Exhaustive Search with E-graphs
• Pick the best result: 0

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:17

Fig. 4. Change of E-graph during iterations. Do�ed box means eclass. (a) initial E-graph. (b) a�er 1 iteration.
(c) a�er 2 iteration. (d) saturated E-graph.

In a saturation-based rewriting system, the possibility of �nding the globally optimal circuit is
enlarged. As we e�ciently compress all possible result circuits as a form of program grammar, we
can explore an expansive space within a practical time budget.

Although equality saturation is a time-consuming method in general, we can successfully intro-
duce it for our term rewriting system since most of the homomorphic evaluation circuits have a
relatively small scale.

5 EVALUATION
We implemented our method as a tool named L������4. This section evaluates our L������ system
to answer the following questions:
Q1: How e�ective is L������ for optimizing FHE applications from various domains?
Q2: How does L������ compare with existing general-purpose FHE optimization techniques?
Q3: What is the bene�t of reusing pre-learned rewrite rules?
Q4: What is the bene�t of using equality saturation technique?
Q5: What is the bene�t of the rule normalization and equational matching?
Q6: How long does L������ take to obtain optimized circuits?
Q7: How sensitive is L������ to changes in the training set for learning rewrite rules?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

5.1 Experimental Setup
Implementation
L������ comprises three pieces: (i) an o�ine rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. L������ is written in OCaml and RUST, and consists of about 3K
lines of code.
4Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Rewriting vs. Exhaustive search (aka equality saturation)

• Rewriting: scalable but may find a sub-optimal result

• Equality saturation: unscalable but guaranteed to find an optimal result†

• We use the rewriting method for large circuits and equality saturation for small circuits.

† egg: Fast and Extensible Equality Saturation, ACM POPL 2021

Lobster Performance (1/4)

• 25 HE algorithms from 4 sources
Cingulata benchmarks
Sorting benchmarks
Hackers Delight benchmarks
EPFL benchmarks

Benchmarks

2 HE friendly algorithms
(medical, sorting)

4 privacy-preserving sorting
algorithms

(merge, insert, bubble, odd-even)

12 Homomorphic
bitwise operations

7 EPFL combinational benchmark suite
(to test circuit optimizer)

Lobster Performance (1/4)
Benchmarks

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

111:20 Dongkwon Lee et al

Sp
ee

du
p

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l

dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Lobster Performance (2/4)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

111:20 Dongkwon Lee et al

Sp
ee

du
p

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l

dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Lobster Performance (2/4)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

Hand-written-rule based
HE circuit optimizer

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

111:20 Dongkwon Lee et al

Sp
ee

du
p

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l

dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Lobster Performance (2/4)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

Success rate ↑

Speedup ↑

Depth Reduction ↑

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

111:20 Dongkwon Lee et al

Sp
ee

du
p

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l

dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Lobster Performance (2/4)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

Optimized 15 benchmarks Optimized 22 benchmarks

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

111:20 Dongkwon Lee et al

Sp
ee

du
p

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l

dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Lobster Performance (2/4)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

x5.4 speedup

x3.0 speedup

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

111:20 Dongkwon Lee et al

Sp
ee

du
p

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l

dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Lobster Performance (2/4)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

x2.3 speedupx1.5 speedup

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

111:20 Dongkwon Lee et al

Sp
ee

du
p

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l

dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Lobster Performance (2/4)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

15.7% 24.1%

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

111:20 Dongkwon Lee et al

Sp
ee

du
p

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l

dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Carpov et al Ours

Fig. 5. Main results comparing the optimization performance of L������ and Carpov et al [14] – Speedups in
overall homomorphic evaluation time (le�) (vs. initial C��������-generated circuits) and depth reduction
ratios (right).

5.2 E�ectiveness of L������
Optimization E�ect
We evaluate L������ on the benchmarks and compare it with [14]. Both of the tools are provided
circuits initially generated by C��������. We aim to determine whether L������ can learn rewrite
rules from training circuits and e�ectively generalize them for optimizing other unseen circuits. To
this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules
learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results
computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall
homomorphic evaluation time (vs. initial C��������-generated circuits).

The results are summarized in Fig. 5. More detailed information can be found in Table 2. L������
is able to optimize 22 out of 25 benchmarks within the timeout limit. L������ achieves 1.08x –
5.43x speedups with the geometric mean of 2.26x. The number of AND gates increases up to 1.9x
more with the geometric mean of 1.31x. The depth reduction ratios range from 12.5% to 53.3% with
the geometric mean of 24.1%. Note that the depth reduction ratios are generally proportional to
performance improvements (but not exactly proportional since the number of AND operations
also in�uences the performance).
We next study the results in detail. Most notably, L������ achieves 2.62x and 1.60x speedups

for the two C�������� benchmarks cardio and dsort, respectively. Recall that they are already
carefully hand-tuned to be depth optimized. This result shows that our method provides signi�cant
performance gains that are complementary to those achieved by domain-speci�c optimizations. The
four sorting benchmarks also observe signi�cant performance improvements.9 L������ reduces
the depth by 20% for each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10 out of 12 observe
improvements. The speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (3.8x, 2.6x, 2.4x and
3.3x, respectively). For the other benchmarks, we observe 1.08x – 1.89x speedups. However, both
of the two optimizers fail to optimize the other 2 benchmarks, which are relatively simple. Based

9We used single-path term rewriting for the four sorting benchmarks, because EGG library failed to perform saturation
task for circuits that has multiplicative depth over 25.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Lobster Performance (2/4)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

Machine-found optimization rules can
work better than hand-written rules

Lobster Performance (3/4)
Efficacy of Reusing Learned Optimization Patterns

Depth Reduction

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:23

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Synthesis-based Rewriting-based

Fig. 6. Comparison between on-the-fly synthesis and equality saturation with learned rules

Fig. 7. Impact of changing rewrite rules

Fig. 6 summarizes the results. The synthesis-based optimizer can optimize only 14 benchmarks
within the timeout limit. Furthermore, in all the 14 benchmarks, the depth reduction ratio is less
than that of L������ that reuses pre-learned rewrite rules (geometric mean of 10.9% vs 24.1%).
That is mainly due to its limited scalability; if the synthesis-based optimizer is given 7 days, it can
achieve optimization e�ects similar to L������’s. Such enormous optimization costs are mainly

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Lobster Performance (3/4)
Efficacy of Reusing Learned Optimization Patterns

Depth Reduction

Optimized 13 benchmarks Optimized 22 benchmarks

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:23

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Synthesis-based Rewriting-based

Fig. 6. Comparison between on-the-fly synthesis and equality saturation with learned rules

Fig. 7. Impact of changing rewrite rules

Fig. 6 summarizes the results. The synthesis-based optimizer can optimize only 14 benchmarks
within the timeout limit. Furthermore, in all the 14 benchmarks, the depth reduction ratio is less
than that of L������ that reuses pre-learned rewrite rules (geometric mean of 10.9% vs 24.1%).
That is mainly due to its limited scalability; if the synthesis-based optimizer is given 7 days, it can
achieve optimization e�ects similar to L������’s. Such enormous optimization costs are mainly

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Lobster Performance (3/4)
Efficacy of Reusing Learned Optimization Patterns

Depth Reduction

10.0% 24.1%

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:23

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Synthesis-based Rewriting-based

Fig. 6. Comparison between on-the-fly synthesis and equality saturation with learned rules

Fig. 7. Impact of changing rewrite rules

Fig. 6 summarizes the results. The synthesis-based optimizer can optimize only 14 benchmarks
within the timeout limit. Furthermore, in all the 14 benchmarks, the depth reduction ratio is less
than that of L������ that reuses pre-learned rewrite rules (geometric mean of 10.9% vs 24.1%).
That is mainly due to its limited scalability; if the synthesis-based optimizer is given 7 days, it can
achieve optimization e�ects similar to L������’s. Such enormous optimization costs are mainly

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:23

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Synthesis-based Rewriting-based

Fig. 6. Comparison between on-the-fly synthesis and equality saturation with learned rules

Fig. 7. Impact of changing rewrite rules

Fig. 6 summarizes the results. The synthesis-based optimizer can optimize only 14 benchmarks
within the timeout limit. Furthermore, in all the 14 benchmarks, the depth reduction ratio is less
than that of L������ that reuses pre-learned rewrite rules (geometric mean of 10.9% vs 24.1%).
That is mainly due to its limited scalability; if the synthesis-based optimizer is given 7 days, it can
achieve optimization e�ects similar to L������’s. Such enormous optimization costs are mainly

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Lobster Performance (3/4)
Efficacy of Reusing Learned Optimization Patterns

Depth Reduction

Reusing the learned patterns
improves the scalability of Lobster

Depth Reduction

Effectiveness of Equational Term Rewriting

Lobster Performance (4/4)
1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:27

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

mso
rt

iso
rt

bso
rt

hd
04

hd
05

hd
06

hd
09

hd
11

hd
12

ca
vlc i2c

int
2fl

oa
t
rou

ter

Two-fold cross validation Leave-one-out cross validation

Fig. 11. Comparison between the optimization results with two-fold cross validation and leave-one-out cross
validation.

observe optimization e�ects less powerful than before, but the other benchmarks remain the same.
We conclude that overall, the performance of L������ is not much sensitive to changes in a given
set of training programs.

Answer to Q7: L������ is not critically sensitive to changes in a given set of training circuits.
(11 vs 14 optimized benchmarks, 24.0% vs 24.6% depth reduction)

6 RELATEDWORK
FHE Compilers
FHE compilers [4, 15, 22–24] allow programmers to easily write FHE applications without detailed
knowledge of the underlying FHE schemes. These compilers also provide optimizations for reducing
the multiplicative depth of the compiled circuits. However, the optimization rules used by modern
FHE compilers are hand-written, which requires manual e�ort and is likely to be sub-optimal. In
this paper, we aimed to automatically generate optimization rules that can be used by existing
compilers.

Cingulata [15] is an open-source compiler that translates high-level programs written in C++ into
boolean circuits. Cingulata also supports optimization of circuits for reducing multiplicative depth.
It uses ABC [12], an open-source boolean circuit optimizer. Cingulata also uses more advanced,
yet hand-written, circuit optimization techniques specially designed for minimizing multiplicative
depth [5, 14]. In particular, the multi-start heuristic by [14], which we used for comparison with
L������ in Section 5, shows a signi�cant reduction in multiplicative depths for their benchmarks.
However, we note that the benchmark circuits used in [14] are “intendedly suboptimal to test the
ability of optimization tools” [1]. By contrast, the benchmarks used in this paper include circuits
that are already carefully optimized in terms of FHE evaluation as explained in Section 5.1, thereby
leaving relatively small room for depth reduction. We observe the heuristic in [14] does not perform
very well for such a harder optimization task. We recently implemented [5] and observed that [5]

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:27

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

mso
rt

iso
rt

bso
rt

hd
04

hd
05

hd
06

hd
09

hd
11

hd
12

ca
vlc i2c

int
2fl

oa
t
rou

ter

Two-fold cross validation Leave-one-out cross validation

Fig. 11. Comparison between the optimization results with two-fold cross validation and leave-one-out cross
validation.

observe optimization e�ects less powerful than before, but the other benchmarks remain the same.
We conclude that overall, the performance of L������ is not much sensitive to changes in a given
set of training programs.

Answer to Q7: L������ is not critically sensitive to changes in a given set of training circuits.
(11 vs 14 optimized benchmarks, 24.0% vs 24.6% depth reduction)

6 RELATEDWORK
FHE Compilers
FHE compilers [4, 15, 22–24] allow programmers to easily write FHE applications without detailed
knowledge of the underlying FHE schemes. These compilers also provide optimizations for reducing
the multiplicative depth of the compiled circuits. However, the optimization rules used by modern
FHE compilers are hand-written, which requires manual e�ort and is likely to be sub-optimal. In
this paper, we aimed to automatically generate optimization rules that can be used by existing
compilers.

Cingulata [15] is an open-source compiler that translates high-level programs written in C++ into
boolean circuits. Cingulata also supports optimization of circuits for reducing multiplicative depth.
It uses ABC [12], an open-source boolean circuit optimizer. Cingulata also uses more advanced,
yet hand-written, circuit optimization techniques specially designed for minimizing multiplicative
depth [5, 14]. In particular, the multi-start heuristic by [14], which we used for comparison with
L������ in Section 5, shows a signi�cant reduction in multiplicative depths for their benchmarks.
However, we note that the benchmark circuits used in [14] are “intendedly suboptimal to test the
ability of optimization tools” [1]. By contrast, the benchmarks used in this paper include circuits
that are already carefully optimized in terms of FHE evaluation as explained in Section 5.1, thereby
leaving relatively small room for depth reduction. We observe the heuristic in [14] does not perform
very well for such a harder optimization task. We recently implemented [5] and observed that [5]

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.

Lobster Performance (4/4)

Depth Reduction

Effectiveness of Equational Term Rewriting

Lobster is not very sensitive to changes
in a training set.

Related Work
• Hardware synthesis (e.g., ABC)

For decreasing circuit area and circuit depth (latency), not for multiplicative depth reduction

• General-purpose FHE compilers (e.g., Cingulata, Ramparts, Alchemy)

Optimization rules are hand-written, which requires manual efforts and often sub-optimal.

• Domain-specific FHE compilers (e.g., CHET)

Optimizations specialized for specific tasks (e.g., secure neural-network inference)

• Synthesis-based program optimization (e.g., STOKE, Optgen, Souper)

Optimization rules are also automatically learned, and applied via syntactic matching

We use equational matching to maximize generalization.

In the Paper…

• Detailed description of synthesis via localization

• Formalized Equational Term Rewriting

• Detailed description of experiment results

Thank you!

