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Dimension

User Intent

Search Strategy Search Space

Logical formula

Deductive search

Context-free grammar



The Synthesis Problem

• Enumerative approach 

• Enumerate all possible f until a desired one is found. 

• Deductive approach 

• Reaptedly apply pre-defined transformation rules into 
the given spec until a solution is found. 

 3

The Synthesis problem 

�f.�x.P(f,x) 
 
 There exists a function f such that for all x, property P holds 

� Most existing approaches for synthesis 
� E.g. [Solar-Lezama et al 2006, Udupa et al 2013, Milicevic et al 2014] 
� Rely on specialized solver that makes subcalls to an SMT Solver 

� Approach for synthesis in this talk: 
� Instrument an approach for synthesis entirely inside SMT solver 



Comparison to Compilers

• Compiler optimization: apply transformations in a predefined 
order

• Deductive synthesis: search is needed to apply transformations 
in order to arrive at a desired implementation

ImplementationLogical  
formula

. . .

Program space



Logical Specification ⇨ Program

• Waldinger and Manna 1979

• Example: synthesizing a function   that 
determines whether x is less than all elements in a list l 
with the following given spec: 
 
           
                              where x : number, l : list of numbers

lesall(x, l)

lesall(x, l) := compute x < all(l)

Z. Manna, R. Waldinger, Synthesis: Dreams => Programs

https://ieeexplore.ieee.org/abstract/document/1702636/


Transformation Rules

• Empty lists: for any predicate   
 
   if l is an empty list 

• Conditional formation:  
 
  
                           

P

P(all(l)) ⟹ true

S where Q ⟹ if (P) S where (P ∧ Q)
else S where (¬P ∧ Q)

transformed to



Transformation Rules

• Non-empty lists:  
 
  
                       if l is a non-empty list. 

• Recursive calls:  
given  ,  
 
   if Q is satisfied and   terminates 

P(all(l)) ⟹ P(head(l)) ∧ P(all(tail(l))

f(x) := compute P(x) where Q

P(t) ⟹ f(t) f(t)



Example

  
                     where x : number, l : list of numbers

  (conditional formation)

                              
                      
                    (  : x is a number and l is a list of numbers)

  (non-empty lists)

                     
               

lesall(x, l) := compute x < all(l)

⟶

lesall(x, l) := if (empty(l)) compute x < all(l) where (empty(l) ∧ Q)
else compute x < all(l) where (¬empty(l) ∧ Q)
Q

⟶

lesall(x, l) := if (empty(l)) compute x < all(l) where (empty(l) ∧ Q)
else x < head(l) ∧ x < all(tail(l)) where (¬empty(l) ∧ Q)



Example

                     
               

 
  (recursive call)

                     
              

  (empty list)

   
               

lesall(x, l) := if (empty(l)) compute x < all(l) where (empty(l) ∧ Q)
else x < head(l) ∧ x < all(tail(l)) where (¬empty(l) ∧ Q)

⟶

lesall(x, l) := if (empty(l)) compute x < all(l) where (empty(l) ∧ Q)
else x < head(l) ∧ lesall(x, tail(l)) where (¬empty(l) ∧ Q)

⟶

lesall(x, l) := if (empty(l)) true where (empty(l) ∧ Q)
else x < head(l) ∧ lesall(x, tail(l)) where (¬empty(l) ∧ Q)

Solution!



Properties of Deductive Synthesis

• Correct by construction

• Transformations are semantics-preserving

• No need to verify a solution candidate

• But some checks may be needed along the way

• Usually domain specific

• due to pre-defined transformation rules



Modern Deductive Synthesis for SyGuS

• Two deductive synthesizers for CLIA (conditional linear 
integer arithmetic)

• DryadSynth: Huang et al., Reconciling Enumerative 
and Deductive Program Synthesis, PLDI 2020

• CVC4: Reynolds et al., Counterexample-Guided 
Quantifi er Instantiation for Synthesis in SMT, CAV 
2015
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Deductive Synthesis for CLIA

• Example (max3): synthesize the function   

• Syntactic:   
where  

• Semantic: 
  
           
 

• Solution:    

f(x, y, z) : int

S → 0 ∣ 1 ∣ x ∣ y ∣ z ∣ max2(S, S)
max2(x, y) ≜ ite(x ≥ y, x, y)

f(x, y, z) ≥ x ∧ f(x, y, z) ≥ y ∧ f(x, y, z) ∧ ≥ z

∧ ( f(x, y, z) = x ∨ f(x, y, z) = y ∨ f(x, y, z) = z)

f(x, y, z) = max2(max2(x, y), z)



Transformation RulesPLDI ’20, June 15–20, 2020, London, UK Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang

GeMax

f (e) ≥ e1 ∧ f (e) ≥ e2 =⇒ f (e) ≥ ite(e1 ≥ e2, e1, e2)
LeMin

f (e) ≤ e1 ∧ f (e) ≤ e2 =⇒ f (e) ≤ ite(e1 ≥ e2, e2, e1)
GeMin

f (e) ≥ e1 ∨ f (e) ≥ e2 =⇒ f (e) ≥ ite(e1 ≥ e2, e2, e1)
LeMax

f (e) ≤ e1 ∨ f (e) ≤ e2 =⇒ f (e) ≤ ite(e1 ≥ e2, e1, e2)
Eq

f (e) ≥ e1 ∧ f (e) ≤ e2 =⇒ f (e) = e1
if T |= e1 = e2

NotEq

f (e) ≥ e1 ∨ f (e) ≤ e2 =⇒ f (e) ! e1 − 1
if T |= e1 = e2 + 2

CNF

(Φ ∨ Ψ1) ∧ (Φ ∨ Ψ2) =⇒ Φ ∨ (Ψ1 ∧ Ψ2)
if f does not occur in Ψ1 or Ψ2

Figure 8. Deductive rules for GCLIA .

f (x,y, z) ≥ x ∧ f (x,y, z) ≥ y ∧ f (x,y, z) ≥ z ∧
(

f (x,y, z) = x ∨ f (x,y, z) = y ∨ f (x,y, z) = z
) CNF
===⇒

f (x,y, z) ≥ x ∧ f (x,y, z) ≥ y ∧ f (x,y, z) ≥ z
∧
(

f (x,y, z) ≥ x ∨ f (x,y, z) ≥ y ∨ f (x,y, z) ≥ z
)

∧
(

f (x,y, z) ≤ x ∨ f (x,y, z) ≤ y ∨ f (x,y, z) ≤ z
)

∧ . . .
GeMax,LeMax,...
=============⇒

f (x,y, z) ≥ ite(ite(x ≥ y, x,y) ≥ z, ite(x ≥ y, x,y), z)
∧ f (x,y, z) ≤ ite(ite(x ≥ y, x,y) ≥ z, ite(x ≥ y, x,y), z)

∧ . . .
Eq,IntEq
======⇒

f (x,y, z) = ite(ite(x ≥ y, x,y) ≥ z, ite(x ≥ y, x,y), z)
Match
=====⇒ f (x,y, z) = max2(max2(x,y), z)

Figure 9. Rewriting sequence for Example 6.1.

Merging and Substituting for CLIA.. For GCLIA , a very
common grammar for syntax-guided synthesis, we designed
a set of ad hoc rules as illustrated in Figure 8. Intuitively,
these rules !nd two occurrences of f and merge them into a
single occurrence.

Example 6.1. Let G be a grammar with only an operator

max2(x,y)
def
= ite(x ≥ y, x,y). Our deductive synthesis algo-

rithm can synthesize a ternary maximum function f (x,y, z)
using the rewriting sequence shown in Figure 9.

Loop Summary for Invariant Synthesis. We also devel-
oped a special class of simpli!cation rules for loop invariant
synthesis. The idea is to !nd a predicate that precisely sum-
marizes the e"ect of arbitrary k-steps of loop transformation.
Formally, if there exists a binary predicate fast-trans such
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Figure 10. Solved benchmarks (breakdown by tracks).

that

fast-trans(x,y)⇔ ∃k ≥ 0.transk (x) = y

then the original speci!cation can be reduced to a simpler
constraint:
(
(

pre(x)∧fast-trans(x,y)
)

→ inv(y)
)

∧
(

inv(y)→ post(y)
)

For example, the loop transformation in Example 2.14 can
be summarized as:

fast-trans(x,y) ≡ (x < 100 ∧ x ≤ y) ∨ x = y

We have identi!ed a class of Acyclic Translational loop
transformations for which such summarization exists and
the synthesis problem is decidable. We leave the details in
Appendix A of the supplementary material.

7 Experimental Evaluation
We have prototyped our cooperative synthesis technique as a
system called DryadSynth,3 which supports the CLIA back-
ground theory. DryadSynth is written in Java with around
11k LOC, and employs Z3 [11] as the constraint solving
engine. This is a relatively small and lightweight implemen-
tation in terms of engineering (Comparing to, e.g. 343k+ LOC
of the CVC4 code base and 33k+ LOC of the EUSolver code
base).
To evaluate our algorithms, we compared DryadSynth

with state-of-the-art SyGuS solvers, CVC4, EUSolver and
LoopInvGen. 4 They are winning solvers in recent years’
SyGuS competition and we used the latest version from their
public repositories. CVC4 and EUSolver are two general-
purpose solvers that participate in the General, CLIA and
INV tracks. LoopInvGen focuses on INV track only.

3https://github.com/purdue-cap/DryadSynth
4We omitted other solvers as they focus on other background theories
and not comparable with ours. For example, while Euphony’s AI-guided
algorithm [26] is promising, it supports String and BitVector theories only,
and its old algorithm was not competitive in the CLIA theories.
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Transformation Rules

Reconciling Enumerative and Deductive Program Synthesis PLDI ’20, June 15–20, 2020, London, UK

Interpret Function. Then for a !xed height h, we can
build an interpreth function that interprets the vectors back
to the function of height h. For any function f of height h, its
decision tree can be represented as 2h−1 vectors c0, . . . ,c2h−1.
Then for any vector of constants d , interpreth essentially
interprets the decision tree on d and determines the value
of f (d). In other words, interpreth(c0, . . . ,c2h−1,d) = f (d).
For example, continuing on the example of Figure 6. Assume
d = (1,−2), then the value of f (d) can be computed as:

interpret2(c0,c1,c2,d)
= ite

(

c0 · d ⊕ (1) ≥ 0, c1 · d ⊕ (1), c2 · d ⊕ (1)
)

= ite
(

c0 · (1,−2, 0) ≥ 0, c1 · (1,−2, 0), c2 · (1,−2, 0)
)

Now to solve ind-synth(
∧

e ∈E

Φ[e/x], G, h), we can replace

every occurrences of f in Φ[e/x]with a corresponding inter-
pret function. The resulting CLIA formula involves variables
c0,c1,c2 only and can be solved by a single SMT query.

Extension to General Grammar. We have generalized
above encoding to arbitrary grammar G . As an example, con-
sider the Gqm grammar de!ned in Figure 1a. In the decision-
tree representation, non-leaf nodes will represent the qm
function invocation, which can be interpreted by the follow-
ing adapted interpret2 function:

interpret2(c0,c1,c2,d)
= qm

(

interpret1(c1,d), interpret1(c2,d)
)

= ite
(

c1 · (1,−2, 0) < 0, c1 · (1,−2, 0), c2 · (1,−2, 0)
)

This generalization allows us to solve arbitrary SyGuS prob-
lems with the CLIA background theory (see theGeneral track
benchmarks in Section 7). We leave further generalization to
other background theories, e.g., bit vectors, to future work.

6 The Deductive Component
In this section, we introduce the deductive component of
the framework (i.e., the deduct function in Algorithm 1).
This component integrates a set of deductive rules that can
simplify the speci!cation Φ or !nd a solution directly. The
implementation, as shown in Algorithm 3, just repeatedly
and exhaustively applies these rules to simplify the speci-
!cation Φ. If the simpli!ed Φ is already a solution (of the
form f (x1, . . . , xn) = e), return the solution; otherwise re-
turn ⊥. As deduction can be performed very e"ciently, this
component serves as the !rst step for all (sub)problems.
Note that our deductive rules are designed as a compo-

nent for the cooperative synthesis framework, they are not
expected to be complete in any sense. That said, they are
already powerful enough to solve many synthesis problems.
For instance, the rules in Figures 7 and 8 have already super-
seded the class of Single Invocation Problems, a common class
of problems that can be solved using the counterexample-
guided quanti!er instantiation algorithm [35].

input :A SyGuS problem p = (f ,Φ,G)
output :A solution λx .e(x), if any; otherwise ⊥

1 def deduct(p):
2 f ← p.target; Φ← p.spec; G ← p.grammar

3 Φ← Simplify(f , Φ, G); p.spec← Φ

4 if IsSolution(Φ, G) :
5 return Φ

6 else:
7 return ⊥

Algorithm 3: Deductive synthesis.

IntEq

f (y) = e ∧ Ψ =⇒ f (y) = e ∧ Ψ[λy.e/f ]
IntNeq

f (y) ! e ∨ Ψ =⇒ f (y) ! e ∨ Ψ[λy.e/f ]
BoolPos

(f (y) ∨ Φ) ∧ Ψ =⇒ Ψ[λy.((¬Φ) ∨ f (y))/f ]
if f does not occur in Φ

BoolNeg

(¬f (y) ∨ Φ) ∧ Ψ =⇒ Ψ[λy.(Φ ∧ f (y))/f ]
if f does not occur in Φ

RemoveVar

Ψ =⇒ Ψ[0/yi ] if T |= Φ↔ Φ[y ′
i
/yi ]

RemoveArg

(f ,Φ,G) =⇒ (д,Φ[д(e,e ′)/f (e,C,e ′)],G)
if the i-th arg of f is always constant C

Match

(f , f (y) = e,G) =⇒ (f , f (y) = e ′,G)
if e =⇒∗G e ′ and e ′ ∈ !G(y)"

Figure 7. Deductive rules for arbitrary grammar.

We next present deductive rules that are general and ap-
plicable to arbitrary grammar, followed by special simpli-
!cation for two special classes of problems. To the best of
our knowledge, these rules are not explicitly integrated in
any existing deductive synthesizer. Our framework can also
integrate more deductive rules in the future.

General Deduction. Figure 7 shows a set of general de-
ductive rules for arbitrary grammar. Assuming f is the func-
tion to be synthesized, these rules soundly substitute occur-
rences of f , arguments or variables with a concrete imple-
mentation. Most of the rules are self explanatory. In partic-
ular, the last rule Match applies when the speci!cation is a
reference implementation f (y) = e but e does not conform
to the grammar G. In that case, we can exhaustively match
and replace subexpressions of e with interpreted functions in
G, and check if the !nal expression falls in !G". For example,
let e be x + x + x + x and let G be a grammar that contains

only one operator double(x)
def
= x +x , then e can be rewritten

to double(double(x)).

1167

f(y) = e ⟹ f(y) = e′ 

e and e′  are semantically equivalent



Synthesis Process

PLDI ’20, June 15–20, 2020, London, UK Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang

GeMax

f (e) ≥ e1 ∧ f (e) ≥ e2 =⇒ f (e) ≥ ite(e1 ≥ e2, e1, e2)
LeMin

f (e) ≤ e1 ∧ f (e) ≤ e2 =⇒ f (e) ≤ ite(e1 ≥ e2, e2, e1)
GeMin

f (e) ≥ e1 ∨ f (e) ≥ e2 =⇒ f (e) ≥ ite(e1 ≥ e2, e2, e1)
LeMax

f (e) ≤ e1 ∨ f (e) ≤ e2 =⇒ f (e) ≤ ite(e1 ≥ e2, e1, e2)
Eq

f (e) ≥ e1 ∧ f (e) ≤ e2 =⇒ f (e) = e1
if T |= e1 = e2

NotEq

f (e) ≥ e1 ∨ f (e) ≤ e2 =⇒ f (e) ! e1 − 1
if T |= e1 = e2 + 2

CNF

(Φ ∨ Ψ1) ∧ (Φ ∨ Ψ2) =⇒ Φ ∨ (Ψ1 ∧ Ψ2)
if f does not occur in Ψ1 or Ψ2

Figure 8. Deductive rules for GCLIA .

f (x,y, z) ≥ x ∧ f (x,y, z) ≥ y ∧ f (x,y, z) ≥ z ∧
(

f (x,y, z) = x ∨ f (x,y, z) = y ∨ f (x,y, z) = z
) CNF
===⇒

f (x,y, z) ≥ x ∧ f (x,y, z) ≥ y ∧ f (x,y, z) ≥ z
∧
(

f (x,y, z) ≥ x ∨ f (x,y, z) ≥ y ∨ f (x,y, z) ≥ z
)

∧
(

f (x,y, z) ≤ x ∨ f (x,y, z) ≤ y ∨ f (x,y, z) ≤ z
)

∧ . . .
GeMax,LeMax,...
=============⇒

f (x,y, z) ≥ ite(ite(x ≥ y, x,y) ≥ z, ite(x ≥ y, x,y), z)
∧ f (x,y, z) ≤ ite(ite(x ≥ y, x,y) ≥ z, ite(x ≥ y, x,y), z)

∧ . . .
Eq,IntEq
======⇒

f (x,y, z) = ite(ite(x ≥ y, x,y) ≥ z, ite(x ≥ y, x,y), z)
Match
=====⇒ f (x,y, z) = max2(max2(x,y), z)

Figure 9. Rewriting sequence for Example 6.1.

Merging and Substituting for CLIA.. For GCLIA , a very
common grammar for syntax-guided synthesis, we designed
a set of ad hoc rules as illustrated in Figure 8. Intuitively,
these rules !nd two occurrences of f and merge them into a
single occurrence.

Example 6.1. Let G be a grammar with only an operator

max2(x,y)
def
= ite(x ≥ y, x,y). Our deductive synthesis algo-

rithm can synthesize a ternary maximum function f (x,y, z)
using the rewriting sequence shown in Figure 9.

Loop Summary for Invariant Synthesis. We also devel-
oped a special class of simpli!cation rules for loop invariant
synthesis. The idea is to !nd a predicate that precisely sum-
marizes the e"ect of arbitrary k-steps of loop transformation.
Formally, if there exists a binary predicate fast-trans such
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that

fast-trans(x,y)⇔ ∃k ≥ 0.transk (x) = y

then the original speci!cation can be reduced to a simpler
constraint:
(
(

pre(x)∧fast-trans(x,y)
)

→ inv(y)
)

∧
(

inv(y)→ post(y)
)

For example, the loop transformation in Example 2.14 can
be summarized as:

fast-trans(x,y) ≡ (x < 100 ∧ x ≤ y) ∨ x = y

We have identi!ed a class of Acyclic Translational loop
transformations for which such summarization exists and
the synthesis problem is decidable. We leave the details in
Appendix A of the supplementary material.

7 Experimental Evaluation
We have prototyped our cooperative synthesis technique as a
system called DryadSynth,3 which supports the CLIA back-
ground theory. DryadSynth is written in Java with around
11k LOC, and employs Z3 [11] as the constraint solving
engine. This is a relatively small and lightweight implemen-
tation in terms of engineering (Comparing to, e.g. 343k+ LOC
of the CVC4 code base and 33k+ LOC of the EUSolver code
base).
To evaluate our algorithms, we compared DryadSynth

with state-of-the-art SyGuS solvers, CVC4, EUSolver and
LoopInvGen. 4 They are winning solvers in recent years’
SyGuS competition and we used the latest version from their
public repositories. CVC4 and EUSolver are two general-
purpose solvers that participate in the General, CLIA and
INV tracks. LoopInvGen focuses on INV track only.

3https://github.com/purdue-cap/DryadSynth
4We omitted other solvers as they focus on other background theories
and not comparable with ours. For example, while Euphony’s AI-guided
algorithm [26] is promising, it supports String and BitVector theories only,
and its old algorithm was not competitive in the CLIA theories.
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Other Ideas in the Paper

• Divide-and-Conquer: synthesize a partial solution 
satisfying only a sub-part of the given spec and use it to 
get the entire solution

• e.g., synthesize max2 function first and use it to 
synthesize max3

• Synthesizing ite expressions by finding coefficients



Synthesizing ite expressions by 
finding coefficients

• Example (max2): finding the function   s.t.  
 

• Express a solution as  
 

• Invoke an SMT solver with 
  and obtains 
  

• If a solution cannot be found, increase the size of a potential 
solution and try again

f(x, y)
f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ ( f(x, y) = x ∨ f(x, y) = y)

ite(c1x + c2y + d1 ≥ 0,c3x + c4y + d2, c3x + c4y + d3)

∀x, y . g ≥ x ∧ g ≥ y ∧ (g = x ∨ g = y)
{c1 = 1,c2 = − 1,d1 = 0,c3 = 1,c4 = 0,d2 = 0,c3 = 0,c4 = 1,d3 = 0}

Let’s call it  g



Modern Deductive Synthesis for SyGuS

• Two deductive synthesizers for CLIA (conditional linear 
integer arithmetic)

• DryadSynth: Huang et al., Reconciling Enumerative 
and Deductive Program Synthesis, PLDI 2020

• CVC4: Reynolds et al., Counterexample-Guided 
Quantifi er Instantiation for Synthesis in SMT, CAV 
2015



Refutation-based Synthesis

• Given 

 

• Negate it  

              

• If an SMT solver determines it unsatisfiable, 

• We know   is satisfiable, i.e., there exists a solution.

The Synthesis problem 

�f.�x.P(f,x) 
 
 There exists a function f such that for all x, property P holds 

� Most existing approaches for synthesis 
� E.g. [Solar-Lezama et al 2006, Udupa et al 2013, Milicevic et al 2014] 
� Rely on specialized solver that makes subcalls to an SMT Solver 

� Approach for synthesis in this talk: 
� Instrument an approach for synthesis entirely inside SMT solver 

¬9f. 8x. P (f, x)() 8f. 9x. ¬P (f, x)

9f. 8x. P (f, x)



Max2 Example

• Finding the function   

• Syntactic:   
               

• Semantic: 
 

f(x, y)

S → 0 ∣ 1 ∣ x ∣ y ∣ ite(B, S, S)
B → S ≤ S ∣ S ≥ S

f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ ( f(x, y) = x ∨ f(x, y) = y)



Max2 Example

• Finding the function   

• Syntactic:   
               

• Semantic: 
 

f(x, y)

S → 0 ∣ 1 ∣ x ∣ y ∣ ite(B, S, S)
B → S ≤ S ∣ S ≥ S

f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ ( f(x, y) = x ∨ f(x, y) = y)

Single invocation property: all occurrences of   are 
of a particular form, e.g.,  

f
f(x, y)



Refuting the Spec

 

 
 

 
 

 
 

¬∃f . ∀x, y . f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ ( f(x, y) = x ∨ f(x, y) = y)

∀f . ∃x, y . f(x, y) < x ∨ f(x, y) < y ∨ ( f(x, y) ≠ x ∧ f(x, y) ≠ y)

∀g . ∃x, y . g < x ∨ g < y ∨ (g ≠ x ∧ g ≠ y)

∀g . g < a ∨ g < b ∨ (g ≠ a ∧ g ≠ b)

Push negation inwards

Replace   with a new variable   f(x, y) g

Introduce new vars   for the existential quantifier 
(a.k.a skolemization)

a, b



(Universal) Quantifier Instantiation

• Find a set   such that  
 
          
  
is unsatisfiable. 

•   is such a set. 
 
  
  
 

S

∀g ∈ S . g < a ∨ g < b ∨ (g ≠ a ∧ g ≠ b)

S = {a, b}

(a < a ∨ a < b ∨ (a ≠ a ∧ a ≠ b)) ∧
(b < a ∨ b < b ∨ (b ≠ a ∧ b ≠ b))
⟺ a < b ∧ b < a

 g ↦ a

 g ↦ b



Solution Construction

• A solution can be constructed from the set   
 
  
 
 
  
 
 
 

S

ite(a < a ∨ a < b ∨ (a ≠ a ∧ a ≠ b), a, b)

ite(a < b, a, b)

f(x, y) := ite(x ≥ y, x, y)

 g ↦ aSimplify

Negate the condition and replace   with  a, b x, y



Why is That a Solution?

• Given:      where 

•   satisfies the single invocation property

•  : input variables

• Found:    

• i.e.,   is always false

•  :  skolemized variables

∃f . ∀x . P( f(x), x)

P

x

S = {t1, t2, ⋯, tn}

¬P(t1, k) ∧ ¬P(t2, k) ∧ ⋯ ∧ ¬P(tn, k)

k



Why is That a Solution?

• Theorem.  The following is the solution. 
 
 , 

            , 
           … 
             

                                       

f(x) := ite(P(t1, k), t1
(ite(P(t2, k), t2

(…(ite(P(tn−1, k), tn−1,
tn)…)[x/k]

Replace all occurrences of  
  with  k x



Why is That a Solution?

• Theorem.  The following is the solution. 
 
 , 

            , 
           … 
             

                                       

f(x) := ite(P(t1, k), t1
(ite(P(t2, k), t2

(…(ite(P(tn−1, k), tn−1,
tn)…)[x/k]

If   holds for  , return  : 
For a given input  ,   makes the 

spec satisfied. Thus,   outputs  .

P t1 t1
x f(x) = t1

f t1



Why is That a Solution?

• Theorem.  The following is the solution. 
 
 , 

            , 
           … 
             

                                       

f(x) := ite(P(t1, k), t1
(ite(P(t2, k), t2

(…(ite(P(tn−1, k), tn−1,
tn)…)[x/k]

If   holds for  , return  P t2 t2



Why is That a Solution?

• Theorem.  The following is the solution. 
 
 , 

            , 
           … 
             

                                       

f(x) := ite(P(t1, k), t1
(ite(P(t2, k), t2

(…(ite(P(tn−1, k), tn−1,
tn)…)[x/k]

If   holds for  , return  P tn−1 tn−1



Why is That a Solution?

• Theorem.  The following is the solution. 
 
 , 

            , 
           … 
             

                                       

f(x) := ite(P(t1, k), t1
(ite(P(t2, k), t2

(…(ite(P(tn−1, k), tn−1,
tn)…)[x/k]

If   holds for  , return  P tn tn

¬P(t1, k) ∧ ¬P(t2, k) ∧ ⋯ ∧ ¬P(tn, k) is false
¬P(t1, k) ∧ ⋯ ∧ ¬P(tn−1, k) is true 
∴ P(tn, k)



Other Details

• How to find such a set  ?

• Counterexample-guided quantifier instantiation (CEGQI)

• Limitation: single invocation property

• However, if all occurrences of   in a spec are of a form either 
  or   and   satisfies the commutativity, such a spec can 
be handled.

• How to construct a solution complying with a syntactic restriction?

• First, find a solution while ignoring the syntactic restriction and 
then transform it into equivalent one that meets the restriction. 

S

f
f(x, y) f(y, x) f



Summary

• Deductive synthesis = applying transformations

• Efficient for specific domains (e.g., for a specific theory 
like CLIA or particular form of logical spec)

• Synergistically combined with inductive enumerative 
search nowadays


