
Constraint Solving-Based
Synthesis

Woosuk Lee

CSE9116 SPRING 2024

Hanyang University

Three Search Strategies

• Enumerative: enumeration + optimization

• Stochastic: probabilistic walk

• Constraint-based: encoding a synthesis problem as a
SAT/SMT instance

Applications

• API synthesis (from ~1000 classes and 10000 methods available)
SyPet: example

Area rotate(Area obj, Point2D pt, double angle)
{ ?? }

public void test1() {
Area a1 = new Area(new Rectangle(0, 0, 10, 2));
Area a2 = new Area(new Rectangle(-2, 0, 2, 10));
Point2D p = new Point2D.Double(0, 0);
assertTrue(a2.equals(rotate(a1, p, Math.PI/2)));

}

Signature

Test

java.awt.geom

Components

Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Output

https://utopia-group.github.io/sypet/

Applications

https://people.csail.mit.edu/asolar/

x y

x xor y x y

int W = 32;

void main(bit[W] x, bit[W] y){

bit[W] xold = x;

bit[W] yold = y;

if(??){ x = x ^ y; }else{ y = x ^ y; }

if(??){ x = x ^ y; }else{ y = x ^ y; }

if(??){ x = x ^ y; }else{ y = x ^ y; }

assert y == xold && x == yold;

}

x ^ y

x y

false true false

int W = 32;

void main(bit[W] x, bit[W] y){

bit[W] xold = x;

bit[W] yold = y;

y = x ^ y;

x = x ^ y;

y = x ^ y;

assert y == xold && x == yold;

}

x y

x xor y x y

int W = 32;

void main(bit[W] x, bit[W] y){

bit[W] xold = x;

bit[W] yold = y;

if(??){ x = x ^ y; }else{ y = x ^ y; }

if(??){ x = x ^ y; }else{ y = x ^ y; }

if(??){ x = x ^ y; }else{ y = x ^ y; }

assert y == xold && x == yold;

}

x ^ y

x y

false true false

int W = 32;

void main(bit[W] x, bit[W] y){

bit[W] xold = x;

bit[W] yold = y;

y = x ^ y;

x = x ^ y;

y = x ^ y;

assert y == xold && x == yold;

}

• SKETCH System

Applications

• Synthesizing sizable bit-twiddling tricks

P1(x) : Turn-off rightmost
1 bit. This is the running ex-
ample in the paper.
1 o1:=bvsub (x,1)
2 res:=bvand (x,o1)

P2(x) : Test whether an un-
signed integer is of the form
2n�1

1 o1:=bvadd (x,1)
2 res:=bvand (x,o1)

P3(x) : Isolate the right-
most 1-bit
1 o1:=bvneg (x)
2 res:=bvand (x,o1)

P4(x) : Form a mask that
identifies the rightmost 1 bit
and trailing 0s
1 o1:=bvsub (x,1)
2 res:=bvxor (x,o1)

P5(x) : Right propagate
rightmost 1-bit
1 o1:=bvsub (x,1)
2 res:=bvor (x,o1)

P6(x) : Turn on the right-
most 0-bit in a word
1 o1:=bvadd (x,1)
2 res:=bvor (x,o1)

P7(x) : Isolate the right-
most 0-bit
1 o1:=bvnot (x)
2 o2:=bvadd (x,1)
3 res:=bvand (o1,o2)

P8(x) : Form a mask that
identifies the trailing 0’s
1 o1:=bvsub (x,1)
2 o2:=bvnot (x)
3 res:=bvand (o1,o2)

P9(x) : Absolute Value
Function
1 o1:=bvshr (x,31)
2 o2:=bvxor (x,o1)
3 res:=bvsub (o2,o1)

P10(x, y) : Test if nlz(x) ==
nlz(y) where nlz is number
of leading zeroes
1 o1:=bvand (x,y)
2 o2:=bvxor (x,y)
3 res:=bvule (o2,o1)

P11(x, y) : Test if nlz(x) <
nlz(y) where nlz is number
of leading zeroes
1 o1:=bvnot (y)
2 o2:=bvand (x,o1)
3 res:=bvugt (o2,y)

P12(x, y) : Test if nlz(x)
<= nlz(y) where nlz is
number of leading zeroes
1 o1:=bvnot (y)
2 o2:=bvand (x,o1)
3 res:=bvule (o2,y)

P13(x) : Sign Function
1 o1:=bvshr (x,31)
2 o2:=bvneg (x)
3 o3:=bvshr (o2,31)
4 res:=bvor (o1,o3)

P14 (x, y) : Floor of aver-
age of two integers without
over-flowing
1 o1:=bvand (x,y)
2 o2:=bvxor (x,y)
3 o3:=bvshr (o2,1)
4 res:=bvadd (o1,o3)

P15 (x, y) : Ceil of aver-
age of two integers without
over-flowing
1 o1:=bvor (x,y)
2 o2:=bvxor (x,y)
3 o3:=bvshr (o2,1)
4 res:=bvsub (o1,o3)

P16 (x, y) : Compute max
of two integers
1 o1:=bvxor (x,y)
2 o2:=bvneg (bvuge (x,y))
3 o3:=bvand (o1,o2)
4 res:=bvxor (o3,y)

P17(x) : Turn-off the right-
most contiguous string of 1
bits
1 o1:=bvsub (x,1)
2 o2:=bvor (x,o1)
3 o3:=bvadd (o2,1)
4 res:=bvand (o3,x)

P18(x) : Determine if an in-
teger is a power of 2 or not
1 o1:=bvsub (x,1)
2 o2:=bvand (o1,x)
3 o3:=bvredor (x)
4 o4:=bvredor (o2)
5 o5:=!(o4)
6 res:=(o5 && o3)

P19(x,m, k) : Exchanging
2 fields A and B of the same
register x where m is mask
which identifies field B and
k is number of bits from end
of A to start of B
1 o1:=bvshr (x,k)
2 o2:=bvxor (x,o1)
3 o3:=bvand (o2,m)
4 o4:=bvshl (o3,k)
5 o5:=bvxor (o4,o3)
6 res:=bvxor (o5,x)

P20(x) : Next higher un-
signed number with same
number of 1 bits
1 o1:=bvneg (x)
2 o2:=bvand (x,o1)
3 o3:=bvadd (x,o2)
4 o4:=bvxor (x,o2)
5 o5:=bvshr (o4,2)
6 o6:=bvdiv (o5,o2)
7 res:=bvor (o6,o3)

P21(x, a, b, c) : Cycling
through 3 values a,b,c
1 o1:=bvneg (bveq (x,c))
2 o2:=bvxor (a,c)
3 o3:=bvneg (bveq (x,a))
4 o4:=bvxor (b,c)
5 o5:=bvand (o1,o2)
6 o6:=bvand (o3,o4)
7 o7:=bvxor (o5,o6)
8 res:=bvxor (o7,c)

P22(x) : Compute Parity
1 o1:=bvshr (x,1)
2 o2:=bvxor (o1,x)
3 o3:=bvshr (o2,2)
4 o4:=bvxor (o2,o3)
5 o5:=bvand (o4,0x11111111)
6 o6:=bvmul (o5,0x11111111)
7 o7:=bvshr (o6,28)
8 res:=bvand (o7,0x1)

P23(x) : Counting number of bits
1 o1:=bvshr (x,1)
2 o2:=bvand (o1,0x55555555)
3 o3:=bvsub (x,o2)
4 o4:=bvand (o3,0x33333333)
5 o5:=bvshr (o3,2)
6 o6:=bvand (o3,0x33333333)
7 o7:=bvadd (o4,o6)
8 o8:=bvshr (o7,4)
9 o9:=bvadd (o8,o7)

10 res:=bvand (o9,0x0F0F0F0F)

P24(x) : Round up to the next highest
power of 2

1 o1:=bvsub (x,1)
2 o2:=bvshr (o1,1)
3 o3:=bvor (o1,o2)
4 o4:=bvshr (o3,2)
5 o5:=bvor (o3,o4)
6 o6:=bvshr (o5,4)
7 o7:=bvor (o5,o6)
8 o8:=bvshr (o7,8)
9 o9:=bvor (o7,o8)

10 o10:=bvshr (o9,16)
11 o11:=bvor (o9,o10)
12 res:=bvadd (o10,1)

P25(x, y) : Compute higher order half
of product of x and y

1 o1:=bvand (x,0xFFFF)
2 o2:=bvshr (x,16)
3 o3:=bvand (y,0xFFFF)
4 o4:=bvshr (y,16)
5 o5:=bvmul (o1,o3)
6 o6:=bvmul (o2,o3)
7 o7:=bvmul (o1,o4)
8 o8:=bvmul (o2,o4)
9 o9:=bvshr (o5,16)

10 o10:=bvadd (o6,o9)
11 o11:=bvand (o10,0xFFFF)
12 o12:=bvshr (o10,16)
13 o13:=bvadd (o7,o11)
14 o14:=bvshr (o13,16)
15 o15:=bvadd (o14,o12)
16 res:=bvadd (o15,o8)

Figure 4. Benchmark Examples. The functions used in the examples have the usual semantics defined in SMTLIB QF BV logic [2].

P1(x) : Turn-off rightmost
1 bit. This is the running ex-
ample in the paper.
1 o1:=bvsub (x,1)
2 res:=bvand (x,o1)

P2(x) : Test whether an un-
signed integer is of the form
2n�1

1 o1:=bvadd (x,1)
2 res:=bvand (x,o1)

P3(x) : Isolate the right-
most 1-bit
1 o1:=bvneg (x)
2 res:=bvand (x,o1)

P4(x) : Form a mask that
identifies the rightmost 1 bit
and trailing 0s
1 o1:=bvsub (x,1)
2 res:=bvxor (x,o1)

P5(x) : Right propagate
rightmost 1-bit
1 o1:=bvsub (x,1)
2 res:=bvor (x,o1)

P6(x) : Turn on the right-
most 0-bit in a word
1 o1:=bvadd (x,1)
2 res:=bvor (x,o1)

P7(x) : Isolate the right-
most 0-bit
1 o1:=bvnot (x)
2 o2:=bvadd (x,1)
3 res:=bvand (o1,o2)

P8(x) : Form a mask that
identifies the trailing 0’s
1 o1:=bvsub (x,1)
2 o2:=bvnot (x)
3 res:=bvand (o1,o2)

P9(x) : Absolute Value
Function
1 o1:=bvshr (x,31)
2 o2:=bvxor (x,o1)
3 res:=bvsub (o2,o1)

P10(x, y) : Test if nlz(x) ==
nlz(y) where nlz is number
of leading zeroes
1 o1:=bvand (x,y)
2 o2:=bvxor (x,y)
3 res:=bvule (o2,o1)

P11(x, y) : Test if nlz(x) <
nlz(y) where nlz is number
of leading zeroes
1 o1:=bvnot (y)
2 o2:=bvand (x,o1)
3 res:=bvugt (o2,y)

P12(x, y) : Test if nlz(x)
<= nlz(y) where nlz is
number of leading zeroes
1 o1:=bvnot (y)
2 o2:=bvand (x,o1)
3 res:=bvule (o2,y)

P13(x) : Sign Function
1 o1:=bvshr (x,31)
2 o2:=bvneg (x)
3 o3:=bvshr (o2,31)
4 res:=bvor (o1,o3)

P14 (x, y) : Floor of aver-
age of two integers without
over-flowing
1 o1:=bvand (x,y)
2 o2:=bvxor (x,y)
3 o3:=bvshr (o2,1)
4 res:=bvadd (o1,o3)

P15 (x, y) : Ceil of aver-
age of two integers without
over-flowing
1 o1:=bvor (x,y)
2 o2:=bvxor (x,y)
3 o3:=bvshr (o2,1)
4 res:=bvsub (o1,o3)

P16 (x, y) : Compute max
of two integers
1 o1:=bvxor (x,y)
2 o2:=bvneg (bvuge (x,y))
3 o3:=bvand (o1,o2)
4 res:=bvxor (o3,y)

P17(x) : Turn-off the right-
most contiguous string of 1
bits
1 o1:=bvsub (x,1)
2 o2:=bvor (x,o1)
3 o3:=bvadd (o2,1)
4 res:=bvand (o3,x)

P18(x) : Determine if an in-
teger is a power of 2 or not
1 o1:=bvsub (x,1)
2 o2:=bvand (o1,x)
3 o3:=bvredor (x)
4 o4:=bvredor (o2)
5 o5:=!(o4)
6 res:=(o5 && o3)

P19(x,m, k) : Exchanging
2 fields A and B of the same
register x where m is mask
which identifies field B and
k is number of bits from end
of A to start of B
1 o1:=bvshr (x,k)
2 o2:=bvxor (x,o1)
3 o3:=bvand (o2,m)
4 o4:=bvshl (o3,k)
5 o5:=bvxor (o4,o3)
6 res:=bvxor (o5,x)

P20(x) : Next higher un-
signed number with same
number of 1 bits
1 o1:=bvneg (x)
2 o2:=bvand (x,o1)
3 o3:=bvadd (x,o2)
4 o4:=bvxor (x,o2)
5 o5:=bvshr (o4,2)
6 o6:=bvdiv (o5,o2)
7 res:=bvor (o6,o3)

P21(x, a, b, c) : Cycling
through 3 values a,b,c
1 o1:=bvneg (bveq (x,c))
2 o2:=bvxor (a,c)
3 o3:=bvneg (bveq (x,a))
4 o4:=bvxor (b,c)
5 o5:=bvand (o1,o2)
6 o6:=bvand (o3,o4)
7 o7:=bvxor (o5,o6)
8 res:=bvxor (o7,c)

P22(x) : Compute Parity
1 o1:=bvshr (x,1)
2 o2:=bvxor (o1,x)
3 o3:=bvshr (o2,2)
4 o4:=bvxor (o2,o3)
5 o5:=bvand (o4,0x11111111)
6 o6:=bvmul (o5,0x11111111)
7 o7:=bvshr (o6,28)
8 res:=bvand (o7,0x1)

P23(x) : Counting number of bits
1 o1:=bvshr (x,1)
2 o2:=bvand (o1,0x55555555)
3 o3:=bvsub (x,o2)
4 o4:=bvand (o3,0x33333333)
5 o5:=bvshr (o3,2)
6 o6:=bvand (o3,0x33333333)
7 o7:=bvadd (o4,o6)
8 o8:=bvshr (o7,4)
9 o9:=bvadd (o8,o7)

10 res:=bvand (o9,0x0F0F0F0F)

P24(x) : Round up to the next highest
power of 2

1 o1:=bvsub (x,1)
2 o2:=bvshr (o1,1)
3 o3:=bvor (o1,o2)
4 o4:=bvshr (o3,2)
5 o5:=bvor (o3,o4)
6 o6:=bvshr (o5,4)
7 o7:=bvor (o5,o6)
8 o8:=bvshr (o7,8)
9 o9:=bvor (o7,o8)

10 o10:=bvshr (o9,16)
11 o11:=bvor (o9,o10)
12 res:=bvadd (o10,1)

P25(x, y) : Compute higher order half
of product of x and y

1 o1:=bvand (x,0xFFFF)
2 o2:=bvshr (x,16)
3 o3:=bvand (y,0xFFFF)
4 o4:=bvshr (y,16)
5 o5:=bvmul (o1,o3)
6 o6:=bvmul (o2,o3)
7 o7:=bvmul (o1,o4)
8 o8:=bvmul (o2,o4)
9 o9:=bvshr (o5,16)

10 o10:=bvadd (o6,o9)
11 o11:=bvand (o10,0xFFFF)
12 o12:=bvshr (o10,16)
13 o13:=bvadd (o7,o11)
14 o14:=bvshr (o13,16)
15 o15:=bvadd (o14,o12)
16 res:=bvadd (o15,o8)

Figure 4. Benchmark Examples. The functions used in the examples have the usual semantics defined in SMTLIB QF BV logic [2].

Key Idea

• Program = composition of components

• Step 1: Encoding: syntactic/semantic constraints →
SAT/SMT formulas

• Step 2: Solving SAT/SMT

• Step 3: Decoding: Satisfying model → program

How to Encode?
• Brahma:

• Oracle-guided Component-Based Program Synthesis, ICSE’10 (ACM/
IEEE 2020 Most Influential Paper Award)

• https://github.com/fitzgen/synth-loop-free-prog

• SyPet:

• Component-Based Synthesis for Complex APIs, POPL’17

• https://github.com/utopia-group/sypet

• Sketch:

• https://people.csail.mit.edu/asolar/

https://github.com/fitzgen/synth-loop-free-prog
https://github.com/utopia-group/sypet
https://people.csail.mit.edu/asolar/

How to Encode?
• Brahma:

• Oracle-guided Component-Based Program Synthesis, ICSE’10 (ACM/
IEEE 2020 Most Influential Paper Award)

• https://github.com/fitzgen/synth-loop-free-prog

• SyPet:

• Component-Based Synthesis for Complex APIs, POPL’17

• https://github.com/utopia-group/sypet

• Sketch:

• https://people.csail.mit.edu/asolar/

https://github.com/fitzgen/synth-loop-free-prog
https://github.com/utopia-group/sypet
https://people.csail.mit.edu/asolar/

Target Programs

• Straight-line code without loops

• viewed as a composition of usable components

• Component: any function whose input-output
relationship can be written as an SMT formula

Target Programs

synthesized_program(inputs...):
 temp0 ← component0(params0...)
 temp1 ← component1(params1...)
 // ...
 tempN-1 ← componentN-1(paramsN-1...)
 return tempN-1

Given: a bag of available components (=functions) [component0 ,

… , componentN-1] (multiplicity matters)

Target Programs

tmp0 ← g(x, x)
tmp1 ← f(tmp0)
return tmp1

tmp0 ← f(x)
tmp1 ← g(tmp0, x)
return tmp1

tmp0 ← f(x)
tmp1 ← g(x, x)
return tmp1

• With parameter variable x and the following
components

• function f whose arity is 1

• function g whose arity is 2

• Examples that can be synthesized
May contain

redundant lines

Target Programs

tmp0 ← g(x, x)
tmp1 ← h(x)
return tmp1

tmp0 ← f(x)
tmp1 ← f(x)
tmp2 ← g(tmp0, tmp0)
return tmp2

• With parameter variable x and the following
components

• function f whose arity is 1

• function g whose arity is 2

• Examples that cannot be synthesized

f is allowed only once! h is not allowed!

Example: Hackers Delight

• Change rightmost contiguous 1’s to 0’s

• Target: f(BitVec x) : BitVec

• Components :

•f1(a) = a - 1

•f2(a, b) = a & b

• Constraints: f(01100) = 01000, f(10001) = 10000, …

• Solution: f(x) = x & (x - 1)

Example: Programming by Examples

• Find a program P for bit-vector transformation such that

• P is constructed from standard bit-vector operations 
(|, &, ~, +, -, <<, >>, 0, 1, …)

• P is consistent with the following input-output examples  
(00101 → 00100,  
 10111 → 10000,  
 00111 → 00000)

• Resets rightmost substring of contiguous 1’s to 0’s.

• Desired solution: x & (1 + (x | (x - 1)))

Program as DAG

Components:
f1(a) = a - 1
f2(a, b) = a & b

Solution:
1: O1 = f1(x)
2: O2 = f2(x, O1)

f2

f1

o

x

Line number

IDs of Inputs / Outputs of Components

Components:
f1(a) = a - 1
f2(a, b) = a & b

Solution:
1: O1 = f1(x)
2: O2 = f2(x, O1)

f2

f1

o

x
I0

O1

I1

I3I2

O2

O0

Connecting Components

Components:
f1(a) = a - 1
f2(a, b) = a & b

Solution:
1: O1 = f1(x)
2: O2 = f2(x, O1)f2

f1

o

x

O1

I1

I3I2

O2

1

2

줄번호

0

O0

I0 Line number

Connecting Components

Components:
f1(a) = a - 1
f2(a, b) = a & b

Solution:
1: O1 = f1(x)
2: O2 = f2(x, O1)

Model for the solution:

I1 = 0 I2 = 0 I3 = 1
O1 = 1 O2 = 2 O0 = 2

f2

f1

o

x

O1

I1

I3I2

O2

1

2

줄번호

0

O0

I0 Line number

SMT Encoding

• Parameter vars. of components

• Output vars. of components

• Location vars. for connecting components

<latexit sha1_base64="dnxZofpljp9GmYuc9RW8PA1bk/M=">AAACB3icbVDLSsNAFJ3UV62vqEtBhhZBUEpSQUUQim50V8E+oAlhMp20QycPZiZCCNm5ce9XuHGhiFt/wV3/xknbhbYemMvhnHu5c48bMSqkYYy0wsLi0vJKcbW0tr6xuaVv77REGHNMmjhkIe+4SBBGA9KUVDLSiThBvstI2x1e5377gXBBw+BeJhGxfdQPqEcxkkpy9P3Ucj3YyODFJbRSeOuYx6rU8nICrczRK0bVGAPOE3NKKvWydfQ8qicNR/+2eiGOfRJIzJAQXdOIpJ0iLilmJCtZsSARwkPUJ11FA+QTYafjOzJ4oJQe9EKuXiDhWP09kSJfiMR3VaeP5EDMern4n9eNpXdupzSIYkkCPFnkxQzKEOahwB7lBEuWKIIwp+qvEA8QR1iq6EoqBHP25HnSqlXN06p5p9K4AhMUwR4og0NggjNQBzegAZoAg0fwAt7Au/akvWof2uektaBNZ3bBH2hfPx6AmUE=</latexit>

P := {I1, I2, I3}

<latexit sha1_base64="GnlsjLuglMAfTUn/fLYTAxsn27o=">AAACA3icbVDLSsNAFJ3UV62vqDvdDC2CoJSkCxVBKLpxZxX7gCaEyXTSDp1MwsxEKCHgxj/wG9y4UMStP+Guf+P0sdDWA/dyOOdeZu7xY0alsqyhkVtYXFpeya8W1tY3NrfM7Z2GjBKBSR1HLBItH0nCKCd1RRUjrVgQFPqMNP3+1chvPhAhacTv1SAmboi6nAYUI6Ulz9xLHT+Adxk8v4BOCuGNZx/rVoFO5pklq2yNAeeJPSWlatE5eh5WBzXP/HY6EU5CwhVmSMq2bcXKTZFQFDOSFZxEkhjhPuqStqYchUS66fiGDB5opQODSOjiCo7V3xspCqUchL6eDJHqyVlvJP7ntRMVnLkp5XGiCMeTh4KEQRXBUSCwQwXBig00QVhQ/VeIe0ggrHRsBR2CPXvyPGlUyvZJ2b7VaVyCCfJgHxTBIbDBKaiCa1ADdYDBI3gBb+DdeDJejQ/jczKaM6Y7u+APjK8f8ZiYIA==</latexit>

R := {O1, O2}

• the order in which base components occur in the program.
• the value of each input parameter of each base component.

EXAMPLE 2 (Verification Constraint). The verification constraint
for the program in Figure 1(e) when regarded as a solution to the
running example formally described in Example 1 is the following
formula.

8I,O, I1, I2, I
0
2, O1, O2 (�lib ^ �conn) �spec)

where �lib := �1(I1, O1) ^ �2(I2, I
0
2, O2)

and �conn := I1 = I ^ I2 = O1 ^ I
0
2 = I ^ O = O2

and �1,�2,�spec are as defined in Example 1.

We now briefly discuss the process of solving the verification
constraint, which is a universally quantified formula. The complex-
ity of deciding the validity of the formula in Eq. 2 depends on the
expression language used for defining �spec and �i’s. If this ex-
pression language is a subset of the language that can be handled
by Satisfiability Modulo Theory (SMT) solvers, then we can use
off-the-shelf SMT solvers to decide the formula in Eq. 2 and thus
solve the verification problem. Specifically, we can check validity
of a (universal) formula by asking an SMT solver for checking sat-
isfiability of the negation of that formula.

5. Synthesis Constraint

In this section, we show how to reduce the problem of straight-line-
program synthesis to that of finding a satisfying assignment to a
first order logic constraint. Given a library of base components, and
a specification for the desired program, we show how to generate a
formula that encodes the existence of a program that is constructed
using the base components and that meets the given specification.

Consider the verification constraint in Eq. 2. We are given �spec

and �lib as part of the synthesis problem. However, we do not
know the interconnections �conn between the inputs and outputs of
the base components. Hence, the synthesis problem is equivalent to
solving the following constraint:

9�conn : 8~I,O,P,R :

(�lib(P,R) ^ �conn(~I,O
0
,P,R))) �spec(~I,O)

where we have a second-order existential quantifier over the set of
all possible interconnections.

In the remaining part of this section, we show how to convert
the second-order existential quantifier into a first-order existential
quantifier. The basic idea is to introduce new first-order integer-
valued variables, referred to as location variables, whose values
decide the interconnections between the various components. To
describe a program, we have to determine which component goes
on which location (line-number), and from which location (line-
number or program input) does it get its input arguments. This
information can be described by a set of location variables L

L := {lx | x 2 P [R}
that contains one new variable lx for each variable x in P[R with
the following interpretation associated with each of these variables.
• If x is the output variable Oi of component fi, then lx repre-

sents the line in the program where the component fi is posi-
tioned.

• If x is the j
th input parameter of component fi, then lx repre-

sents the location “from where component fi gets its jth input”.

A location above refers to either a line of the program, or
to some program input. To represent different possible locations,
we use integers in the set {0, . . ,M � 1}, where M is the sum

of the number N of components in the library and the number
|~I| of program inputs, i.e., M = N + |~I|, with the following
interpretation.

• The j
th input is identified with the location j � 1.

• The j
th line or the assignment statement in the program is

identified with the location j + |~I|� 1.

EXAMPLE 3 (Location Variables). For our running example for-
mally described in Example 1, the set L of location variables con-
sists of 5 integer variables. L = {lO1 , lO2 , lI1 , lI2 , lI02

}. The vari-
ables lO1 and lO2 denote the location at which the components f1
and f2 are positioned respectively. The variable lI1 denotes the lo-
cation of the definition of the input to the unary component f1. The
variables lI2 and lI02

denote the locations of the definitions of the
first and the second input respectively of the binary component f2.
Since there are two components and one input, we have N = 2
and M = 3. The variables lO1 , lO2 take values from the set {1, 2},
while the variables lI1 , lI2 , lI02 take values from the set {0, 1, 2}.

The synthesis constraint, which uses the location variables L, is
given in Eq. 4 in Section 5.3. We next discuss the key constituents
of the synthesis constraint. For notational convenience (for the
discussion below), we also define lx for the global inputs ~I and
output O. We define lO to be equal to M � 1, denoting that the
output O of the program is defined on the last line of the program.
For the jth input x to the program, we define lx to be j�1, which is
the integer location that we associated with the j

th program input.

5.1 Encoding Well-formed Programs: wfp

We noted above that every straight-line program can be encoded by
assigning appropriate values from the set {0, . . ,M � 1} to vari-
ables in L. On the other hand, any possible assignment to variables
in L from the set {0, . . ,M � 1} does not necessarily correspond
to a well-formed straight-line program. We require the variables in
L to satisfy certain constraints to guarantee that they define well-
formed programs. The following two constraints guarantee this.

Consistency Constraint : Every line in the program has at most
one component. In our encoding, lOi encodes the line number
where component fi is positioned. Hence for different i, lOi

should be different. Thus we get the following consistency
constraint.

 cons :=
^

x,y2R,x 6⌘y

(lx 6= ly)

Acyclicity Constraint : In a well-formed program, every variable
is initialized before it is used. In our encoding, component fi
is positioned at location lOi and its inputs are coming from
locations {lx | x 2 ~Ii}. Thus, we get the following acyclicity
constraint.

 acyc :=
N^

i=1

(
^

x2~Ii,y⌘Oi

lx < ly)

The acyclicity constraint says that, for every component, if
x is an input of that component and y is an output of that
component, then the location lx where the input is defined,
should be earlier than the location ly where the component is
positioned and its output is defined.

We now define wfp(L) to be following constraint that encodes
the interpretation of the location variables lx along with the consis-
tency and acyclicity constraints.

 wfp(L) :=
^

x2P

(0 lx M � 1) ^
^

x2R

(|~I| lx M � 1) ^

Syntactic Constraint

<latexit sha1_base64="uYPK+5hEa5CGhIQ3TPOrCUUU3oM=">AAACiHicdVFLTtxAEG07IYHJbxKW2ZRAkSaKNLLJh4+IhMiGBYtJlAGk8chql8tDi3bb6W4DI8sXyCoXQLlHjpEdt6HNoChhSEktvXqvnqq6KimlMDYILj3/3v2FBw8XlzqPHj95+qz7/MWBKSqNNMRCFvoo4YakUDS0wko6KjXxPJF0mJx8avXDU9JGFOqrnZY0zvlEiUwgt46Kuz+j0oi4jqyFs6xsYOsjRImYnFE6obg+h0goqKMkg0HTQC+ASNI3kPE5bMPb1y7jKv2P4UtrCO82/OmJhTJNb39e4DjFVoi7q0E/uA6YB+ENWN3Zw+bi14/vg7j7O0oLrHJSFiU3ZhQGpR3XXFuBkppOVBkqOZ7wCY0cVDwnM66vF9nAK8ekkBXaPdVO59i/HTXPjZnmiavMuT02t7WWvEsbVTbbGNdClZUlhbNGWSXBFtBeBVKhCa2cOsBRCzcr4DHXHK27XcctIbz95XlwsNYPP/TDz24bu2wWi+wlW2E9FrJ1tsP22IANGXoL3hvvnffe7/iBv+5vzkp978azzP4Jf/cKpoXD5Q==</latexit>

 wfp :=
^

x2P

(0 lx < 3) ^
^

x2R

(1 lx < 3) ^ cons(L) ^ acyc(L)

<latexit sha1_base64="ywkVBmJBNbDyRGg/eEredwPb/Xc=">AAACLXicbZDPattAEMZXSdu47p84zbGXoaaQQzBSD00ItJgmh6Qnt9SJwRJitRo526xWyu7KsRB6oVzyBnmGUOjBpfTapyh0/efQJvlg4cc3M+zMF+WCa+O6U2dl9cHDR2uNx80nT589X29tvDjWWaEY9lkmMjWIqEbBJfYNNwIHuUKaRgJPorP9Wf1kjErzTH4xZY5BSkeSJ5xRY62wdeDnmoeVbwywTOoa9t6BH/HRBcYjDKvJdgk+l1D5UQKf622Y+BLPoaxBhBOYswjLsNV2O+5ccBe8JbS7R3/G7z9ef+2FrW9+nLEiRWmYoFoPPTc3QUWV4Uxg3fQLjTllZ3SEQ4uSpqiDan5tDa+tE0OSKfvkbG3r/jtR0VTrMo1sZ0rNqb5dm5n31YaFSXaDisu8MCjZ4qOkEGAymEUHMVfIjCgtUKa43RXYKVWUGRtw04bg3T75Lhy/6XhvO94nm8YHslCDvCSvyBbxyA7pkkPSI33CyCW5IVPyw7lyvjs/nV+L1hVnObNJ/pPz+y+KuKth</latexit>

 cons :=
^

x,y2R,x 6=y

lx 6= ly

<latexit sha1_base64="lj3R/UZTA6gaFoz/zk5Hufro/VQ=">AAACPXicbZDLSgMxFIYzXmu9VV2KEBTFVZmpoCIKohvFhQpWhU4ZzqSpxmYyQ3JGKENfxQdx4zu4c+fGhSJu3ZppRbwdCHx854Tk/GEihUHXfXD6+gcGh4YLI8XRsfGJydLU9KmJU814lcUy1uchGC6F4lUUKPl5ojlEoeRnYWs3759dc21ErE6wnfB6BBdKNAUDtCoonfiJEUHmI1JgbdahG1tUBtl+4HXoZk6HOfkSVKPnK1++8sOvfPNBacEtu92if8H7hIXtJX/u4ApujoLSvd+IWRpxhUyCMTXPTbCegUbBJO8U/dTwBFgLLnjNooKIm3rW3b5DF61p0Gas7VFIu/b7jQwiY9pRaCcjwEvzu5fL/3q1FJvr9UyoJEWuWO+hZiopxjSPkjaE5gxl2wIwLexfKbsEDQxt4EUbgvd75b9wWil7q2Xv2KaxQ3pVILNkniwTj6yRbbJHjkiVMHJLHskzeXHunCfn1XnrjfY5n3dmyI9y3j8A7oGu6w==</latexit>

 acyc := lI1 < lO1 ^ lI2 < lO2 ^ lI3 < lO2

Possible range of

parameter vars

Possible range of

output var

One component at a line

Must use already defined ones: ← prohibited!
f2

I3I2

O2

Library Specification

Components:
f1(a) = a - 1
f2(a, b) = a & b

f2

I3I2

O2

f1

O1

I1

<latexit sha1_base64="cFwg7UOspsMiSLeDqI2mPijh96c=">AAACRXicbVDLSgMxFM34tr6qLt0Ei+LGMlNF3QiiG12pYFVoypBJUxvMZIbkjlCG/pwb9+78AzcuFHGrtw/F14WEk3POTXJPlGrlwPcfvKHhkdGx8YnJwtT0zOxccX7h3CWZFbIqEp3Yy4g7qZWRVVCg5WVqJY8jLS+i64OufnEjrVOJOYN2KusxvzKqqQQHpMIiY2lLhTkDoFpFHbpLmY4sF9f0OAzwdIT7Og0os30WZW4aXyZ0VXquCmWUreKGeOPTHRZLftnvFf0LggEokUGdhMV71khEFksDQnPnaoGfQj3nFpTQslNgmZMpXsyvZA2h4bF09byXQoeuINOgzcTiMkB77PeOnMfOtWMcciXm0HK/tS75n1bLoLlTz5VJM5BG9B9qZppCQruR0oayUoBuI+DCKvwrFS2OAQAGX8AQgt8j/wXnlXKwVQ5ON0t7+4M4JsgSWSZrJCDbZI8ckhNSJYLckkfyTF68O+/Je/Xe+tYhb9CzSH6U9/4BkCqsRw==</latexit>

�lib = [O1 = I1 � 1] ^ [O2 = I2 & I3]

Connecting Components

f2

f1

O1

I1

I3I2

1

2

줄번호

O1 = I3 !

<latexit sha1_base64="ssppsXZnpDxiboc6ZwX3+dYBob8=">AAACUHicbVFNb9QwEHUWKGX5WuiRy4gKqaBqlfQAvVSq6KVVDyyo21ZaryzHmWStOk5kO9Aoyk/spTdOHPoTeuEAap3dIkHLSJaf35uxZ57jUknrwvB70Lt3/8HSw+VH/cdPnj57Pnjx8tAWlRE4FoUqzHHMLSqpceykU3hcGuR5rPAoPtnp9KOvaKws9IGrS5zmPNMylYI7T7FBRsuZZA11DkShdQtbADSW2TdMMmTN6XoNVGpoaJzCqAUqqnJx+NLOMW32WLgOn1hI2xbWFDv1NyjWVeW+f7TQEfVbNlgNh+E84C6IbsDq9r74cfFuKRmxwTlNClHlqJ1Q3NpJFJZu2nDjpFDY9mllseTihGc48VDzHO20mRvSwhvPJJAWxi/dTebZvysanltb57HPzLmb2dtaR/5Pm1Qu3Zw2UpeVQy0WD6WVAldA5y4k0qBwqvaACyN9ryBm3HDh/B/0vQnR7ZHvgsONYfR+GH32bnwki1gmr8hrskYi8oFsk10yImMiyBm5JL/I7+A8+Blc9YJF6p+drJB/ote/BisOtQM=</latexit>

�conn =
^

x,y2P[R[{I0,O0}

(lx = ly =) x = y)

Line number

Final SMT Formula

Programs should

look good

Usable components

Encoding of data flows

I/O constraint

• For brevity, assume a single I/O example

<latexit sha1_base64="Ojh+a8IWFj+jOXpJoEa9Jnz0DZY=">AAACSnicbZDLSgMxFIYztd7qrepShKAouikZF+pGEN0oLlSwKnTKcCbN2GgmE5KMUoa+iq/jxpU7H8KNC0XcmF4Etf4Q+PlODuecP1KCG0vIs1cYKg6PjI6NlyYmp6ZnyrNz5ybNNGVVmopUX0ZgmOCSVS23gl0qzSCJBLuIbvY79Ytbpg1P5ZltKVZP4ErymFOwDoVlCJThYR5Yi+9i1caBANnAgWr2oeDRIKSplN907TAkeAcT3ydk/Zsd9xlxLCwvkwrpCg8av2+Wd1eDxaNruD8Jy09BI6VZwqSlAoyp+UTZeg7acipYuxRkhimgN3DFas5KSJip590o2njFkQaOU+2e7Gzq6M+OHBJjWok7aiUB2zR/ax34X62W2Xi7nnOpMssk7Q2KM4Ftiju54gbXjFrRcgao5m5XTJuggVqXfsmF4P89edCcb1T8zYp/6tLYQz2NoQW0hNaQj7bQLjpAJ6iKKHpAL+gNvXuP3qv34X32vha8fs88+qVC8QtJZLFx</latexit>

 wfp ^ �lib ^ �conn ^ (I0 = 01100) ^ (O0 = 01000)

Properties

• Decisive performance factor: size of library

• Relying on modern SMT solvers with performance being
continuously improved

• Multiplicity constraints

• Must use some operator ≤ n times ← Hard to specify
using a CFG

Application of Brahma: Program Repair

S. Mechtaev, J. Yi, A. Roychoudhury, Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Analysis, ICSE’16

for component-based synthesis that is based on constraint
solving. We also apply two other important performance
optimizations. First, instead of creating a constraint over the
entire test suite, we create it using a subset of tests, adding tests
incrementally to the mix. Second, among the set of possible
expressions that can be synthesized, we explore in order of
increasing complexity, so the tool can find simple fixes quicker.

We have experimentally evaluated our method as well as
genetic programming on SIR subjects with seeded bugs, as
well as fragments of GNU Coreutils with real bugs. The
use of state-of-the-art SMT solvers and program synthesis
engines allow our repair timings to be less than that of genetic
programming based repair, on these subjects. For the programs
with seeded bugs, our repair method can repair three times as
many buggy versions as compared to genetic programming.
For the Coreutils programs with real bugs, our repair method
took an average of 3.8 minutes while genetic programming
took an average of 6 minutes.

II. OVERVIEW

Given a buggy program P and a test suite T containing
at least one failing test case, our program repair technique
works as follows. First, we employ statistical fault localization
to generate a list L of program statements ranked by their
suspiciousness of being the bug. Our core program repair
method then scans through the statement list from the most
suspicious one to the least suspicious one until a successful
repair is generated. For each scanned statement s, our core
program repair method tries to repair the program by altering
statement s. Assuming that statement s is the root-cause of the
failure, our core repair method consists of two major steps: i)
we first generate the repair constraint that has to be satisfied
by a successful repair on s and ii) we try to solve the repair
constraint using program synthesis.

1 int is_upward_preferred(int inhibit, int up_sep,

int down_sep) {

2 int bias;

3 if(inhibit)
4 bias = down_sep; //fix: bias=up_sep+100
5 else
6 bias = up_sep;

7 if (bias > down_sep)

8 return 1;

9 else
10 return 0;

11 }

Fig. 1. Code excerpt from Tcas

We illustrate our technique using the sample program in
Fig. 1. It is a code excerpt taken from Tcas, traffic col-
lision avoidance system [12]. Suppose inhibit has only
two allowable values ({0,1}). The intended behavior of this
program is described as follows: is_upward_preferred =

(inhibit*100 + up_sep > down_sep). A test suite for
checking the correctness of the program is presented in Table I.
The testing result shows that the implementation is buggy as
two tests are failed. To repair this program, we first employ

TABLE I
A TEST SUITE FOR THE PROGRAM IN FIG. 1

Test Inputs Expected Observed Statusinhibit up sep down sep output output
1 1 0 100 0 0 pass
2 1 11 110 1 0 fail
3 0 100 50 1 1 pass
4 1 -20 60 1 0 fail
5 0 0 10 0 0 pass

TABLE II
TARANTULA FAULT LOCALIZATION RESULT ON THE PROGRAM IN FIG. 1

Line Score Rank
4 0.75 1

10 0.6 2
3 0.5 3
7 0.5 3
6 0 5
8 0 5

Tarantula fault localization [13] for the buggy program using
the given test suite. Tarantula is a statistical fault localization
technique that is explained in details in Section III-A. Basi-
cally, it ranks program statements in a descending order of
their suspiciousness. A statement exercised by more failing
tests and fewer passing tests will have a higher suspiciousness
score. The result of Tarantula shown in Table II is a list of
statements ranked by their suspiciousness score. Since line 4 is
ranked at the top, we start investigating whether the program
can be repaired by changing line 4.

Suppose we want to replace line 4 with bias = f(. . .),
where f(. . .) is to be figured out by our method. There are four
accessible variables at line 4: inhibit, up_sep, down_sep
and bias. Since variable bias is not initialized, we assume
that it cannot be used by f(. . .). Let us now assume the
signature of function f to be:
int f(int inhibit, int up_sep, int down_sep)

We then find the constraint that has to be satisfied by f(. . .)
to pass all the test cases in the test suite. This is achieved
through symbolic execution.

For each test exercising line 4, we generate one constraint
on f(. . .) whose satisfaction guarantees that the fixed pro-
gram produces the expected output. We use the second test
in Table I to explain how such a constraint is generated.
Fig. 2 presents the symbolic execution tree for test 2, with
input vector h1, 11, 110i. Note that our symbolic execution
does not start with program input. Instead, the program is
executed concretely with input h1, 11, 110i until it reaches
line 4. Then the value of variable bias is replaced with a
symbolic value X and the execution continues symbolically.
On executing the branch at line 7, the execution is faced
with two choices and both paths are executed as shown in
the symbolic execution tree. As we know the expected return
value for input h1, 11, 110i should be 1, only the path through
line 8 should be followed to make the program pass. To
follow this path, the path condition, X > 110, should be
satisfied. Given that the program state at line 4 is {inhibit
== 1, up_sep == 11, down_sep == 110}, we know that
f has to satisfy f(1, 11, 110) > 110. Similarly, we get

773

Passed / Failed Test Cases

for component-based synthesis that is based on constraint
solving. We also apply two other important performance
optimizations. First, instead of creating a constraint over the
entire test suite, we create it using a subset of tests, adding tests
incrementally to the mix. Second, among the set of possible
expressions that can be synthesized, we explore in order of
increasing complexity, so the tool can find simple fixes quicker.

We have experimentally evaluated our method as well as
genetic programming on SIR subjects with seeded bugs, as
well as fragments of GNU Coreutils with real bugs. The
use of state-of-the-art SMT solvers and program synthesis
engines allow our repair timings to be less than that of genetic
programming based repair, on these subjects. For the programs
with seeded bugs, our repair method can repair three times as
many buggy versions as compared to genetic programming.
For the Coreutils programs with real bugs, our repair method
took an average of 3.8 minutes while genetic programming
took an average of 6 minutes.

II. OVERVIEW

Given a buggy program P and a test suite T containing
at least one failing test case, our program repair technique
works as follows. First, we employ statistical fault localization
to generate a list L of program statements ranked by their
suspiciousness of being the bug. Our core program repair
method then scans through the statement list from the most
suspicious one to the least suspicious one until a successful
repair is generated. For each scanned statement s, our core
program repair method tries to repair the program by altering
statement s. Assuming that statement s is the root-cause of the
failure, our core repair method consists of two major steps: i)
we first generate the repair constraint that has to be satisfied
by a successful repair on s and ii) we try to solve the repair
constraint using program synthesis.

1 int is_upward_preferred(int inhibit, int up_sep,

int down_sep) {

2 int bias;

3 if(inhibit)
4 bias = down_sep; //fix: bias=up_sep+100
5 else
6 bias = up_sep;

7 if (bias > down_sep)

8 return 1;

9 else
10 return 0;

11 }

Fig. 1. Code excerpt from Tcas

We illustrate our technique using the sample program in
Fig. 1. It is a code excerpt taken from Tcas, traffic col-
lision avoidance system [12]. Suppose inhibit has only
two allowable values ({0,1}). The intended behavior of this
program is described as follows: is_upward_preferred =

(inhibit*100 + up_sep > down_sep). A test suite for
checking the correctness of the program is presented in Table I.
The testing result shows that the implementation is buggy as
two tests are failed. To repair this program, we first employ

TABLE I
A TEST SUITE FOR THE PROGRAM IN FIG. 1

Test Inputs Expected Observed Statusinhibit up sep down sep output output
1 1 0 100 0 0 pass
2 1 11 110 1 0 fail
3 0 100 50 1 1 pass
4 1 -20 60 1 0 fail
5 0 0 10 0 0 pass

TABLE II
TARANTULA FAULT LOCALIZATION RESULT ON THE PROGRAM IN FIG. 1

Line Score Rank
4 0.75 1

10 0.6 2
3 0.5 3
7 0.5 3
6 0 5
8 0 5

Tarantula fault localization [13] for the buggy program using
the given test suite. Tarantula is a statistical fault localization
technique that is explained in details in Section III-A. Basi-
cally, it ranks program statements in a descending order of
their suspiciousness. A statement exercised by more failing
tests and fewer passing tests will have a higher suspiciousness
score. The result of Tarantula shown in Table II is a list of
statements ranked by their suspiciousness score. Since line 4 is
ranked at the top, we start investigating whether the program
can be repaired by changing line 4.

Suppose we want to replace line 4 with bias = f(. . .),
where f(. . .) is to be figured out by our method. There are four
accessible variables at line 4: inhibit, up_sep, down_sep
and bias. Since variable bias is not initialized, we assume
that it cannot be used by f(. . .). Let us now assume the
signature of function f to be:
int f(int inhibit, int up_sep, int down_sep)

We then find the constraint that has to be satisfied by f(. . .)
to pass all the test cases in the test suite. This is achieved
through symbolic execution.

For each test exercising line 4, we generate one constraint
on f(. . .) whose satisfaction guarantees that the fixed pro-
gram produces the expected output. We use the second test
in Table I to explain how such a constraint is generated.
Fig. 2 presents the symbolic execution tree for test 2, with
input vector h1, 11, 110i. Note that our symbolic execution
does not start with program input. Instead, the program is
executed concretely with input h1, 11, 110i until it reaches
line 4. Then the value of variable bias is replaced with a
symbolic value X and the execution continues symbolically.
On executing the branch at line 7, the execution is faced
with two choices and both paths are executed as shown in
the symbolic execution tree. As we know the expected return
value for input h1, 11, 110i should be 1, only the path through
line 8 should be followed to make the program pass. To
follow this path, the path condition, X > 110, should be
satisfied. Given that the program state at line 4 is {inhibit
== 1, up_sep == 11, down_sep == 110}, we know that
f has to satisfy f(1, 11, 110) > 110. Similarly, we get

773

Statistical Fault Localization

for component-based synthesis that is based on constraint
solving. We also apply two other important performance
optimizations. First, instead of creating a constraint over the
entire test suite, we create it using a subset of tests, adding tests
incrementally to the mix. Second, among the set of possible
expressions that can be synthesized, we explore in order of
increasing complexity, so the tool can find simple fixes quicker.

We have experimentally evaluated our method as well as
genetic programming on SIR subjects with seeded bugs, as
well as fragments of GNU Coreutils with real bugs. The
use of state-of-the-art SMT solvers and program synthesis
engines allow our repair timings to be less than that of genetic
programming based repair, on these subjects. For the programs
with seeded bugs, our repair method can repair three times as
many buggy versions as compared to genetic programming.
For the Coreutils programs with real bugs, our repair method
took an average of 3.8 minutes while genetic programming
took an average of 6 minutes.

II. OVERVIEW

Given a buggy program P and a test suite T containing
at least one failing test case, our program repair technique
works as follows. First, we employ statistical fault localization
to generate a list L of program statements ranked by their
suspiciousness of being the bug. Our core program repair
method then scans through the statement list from the most
suspicious one to the least suspicious one until a successful
repair is generated. For each scanned statement s, our core
program repair method tries to repair the program by altering
statement s. Assuming that statement s is the root-cause of the
failure, our core repair method consists of two major steps: i)
we first generate the repair constraint that has to be satisfied
by a successful repair on s and ii) we try to solve the repair
constraint using program synthesis.

1 int is_upward_preferred(int inhibit, int up_sep,

int down_sep) {

2 int bias;

3 if(inhibit)
4 bias = down_sep; //fix: bias=up_sep+100
5 else
6 bias = up_sep;

7 if (bias > down_sep)

8 return 1;

9 else
10 return 0;

11 }

Fig. 1. Code excerpt from Tcas

We illustrate our technique using the sample program in
Fig. 1. It is a code excerpt taken from Tcas, traffic col-
lision avoidance system [12]. Suppose inhibit has only
two allowable values ({0,1}). The intended behavior of this
program is described as follows: is_upward_preferred =

(inhibit*100 + up_sep > down_sep). A test suite for
checking the correctness of the program is presented in Table I.
The testing result shows that the implementation is buggy as
two tests are failed. To repair this program, we first employ

TABLE I
A TEST SUITE FOR THE PROGRAM IN FIG. 1

Test Inputs Expected Observed Statusinhibit up sep down sep output output
1 1 0 100 0 0 pass
2 1 11 110 1 0 fail
3 0 100 50 1 1 pass
4 1 -20 60 1 0 fail
5 0 0 10 0 0 pass

TABLE II
TARANTULA FAULT LOCALIZATION RESULT ON THE PROGRAM IN FIG. 1

Line Score Rank
4 0.75 1

10 0.6 2
3 0.5 3
7 0.5 3
6 0 5
8 0 5

Tarantula fault localization [13] for the buggy program using
the given test suite. Tarantula is a statistical fault localization
technique that is explained in details in Section III-A. Basi-
cally, it ranks program statements in a descending order of
their suspiciousness. A statement exercised by more failing
tests and fewer passing tests will have a higher suspiciousness
score. The result of Tarantula shown in Table II is a list of
statements ranked by their suspiciousness score. Since line 4 is
ranked at the top, we start investigating whether the program
can be repaired by changing line 4.

Suppose we want to replace line 4 with bias = f(. . .),
where f(. . .) is to be figured out by our method. There are four
accessible variables at line 4: inhibit, up_sep, down_sep
and bias. Since variable bias is not initialized, we assume
that it cannot be used by f(. . .). Let us now assume the
signature of function f to be:
int f(int inhibit, int up_sep, int down_sep)

We then find the constraint that has to be satisfied by f(. . .)
to pass all the test cases in the test suite. This is achieved
through symbolic execution.

For each test exercising line 4, we generate one constraint
on f(. . .) whose satisfaction guarantees that the fixed pro-
gram produces the expected output. We use the second test
in Table I to explain how such a constraint is generated.
Fig. 2 presents the symbolic execution tree for test 2, with
input vector h1, 11, 110i. Note that our symbolic execution
does not start with program input. Instead, the program is
executed concretely with input h1, 11, 110i until it reaches
line 4. Then the value of variable bias is replaced with a
symbolic value X and the execution continues symbolically.
On executing the branch at line 7, the execution is faced
with two choices and both paths are executed as shown in
the symbolic execution tree. As we know the expected return
value for input h1, 11, 110i should be 1, only the path through
line 8 should be followed to make the program pass. To
follow this path, the path condition, X > 110, should be
satisfied. Given that the program state at line 4 is {inhibit
== 1, up_sep == 11, down_sep == 110}, we know that
f has to satisfy f(1, 11, 110) > 110. Similarly, we get

773

Suspicious score for each statement s:

inhibit: 1
up_sep: 11
down_sep: 110
bias: X
PC: true

inhibit: 1
up_sep: 11
down_sep: 110
bias: X
PC: X>110
return 1

inhibit: 1
up_sep: 11
down_sep: 110
bias: X
PC: X�110
return 0

failpass

4

8 10

Fig. 2. Symbolic execution tree for test case 2 in Table I when trying to fix
line 4 of the program in Fig. 1. Each box denotes a program state at the line
annotated in the superscript. The program state includes all values of program
variables as well as the path condition PC.

f(1, 0, 100) 100 from test 1 and f(1,�20, 60) > 60 from
test 4. Therefore, the constraint that f needs to satisfy is
f(1, 11, 110) > 110^f(1, 0, 100) 100^f(1,�20, 60) > 60.
We employ program synthesis to solve the constraint for f in
order to get a concrete function. Program synthesis requires
basic components (e.g. constants, “+”, “�”) as ingredients to
construct the function f . In our technique, these components
are incrementally provided to program synthesis. In the first
trial, only a constant is allowed. However, no constant function
can satisfy the above constraint. We then allow function f to
use one “+”, i.e. f can take either the form of var1 + c or
var1+var2, where var1 and var2 are in {inhibit, up_sep,
down_sep} and c is an integer constant. The synthesis pro-
cedure can find a solution f(inhibit, up sep, down sep) =
up sep + 100 which is a successful repair to the program in
Fig. 1. Note that if “�” is used instead of “+”, we will get
f(inhibit, up sep, down sep) = up sep� (�100) as repair.

III. BACKGROUND

A. Statistical Fault Localization

Statistical fault localization [9], [13] aims to localize the
root-cause of a program failure by exploiting the correlation
between execution of the faulty statements and program fail-
ure. A suspiciousness score is computed for each program
statement based on its frequency of occurrence in passing and
failing executions. Based on the suspiciousness score, a ranked
list of statements is given to users. Users can then examine
the ranked list from the most suspicious statement to the least
suspicious statement until the failure root-cause is found.

In this paper, we adopt the suspiciousness score from
Tarantula technique [13]. For a statement s, its suspiciousness
score susp(s) is computed as

susp(s) =
failed(s)/totalfailed

passed(s)/totalpassed + failed(s)/totalfailed

where failed(s) denotes the number of failing executions in
which s occurs and passed(s) denotes the number of passing

executions in which s occurs. The variable totalfailed de-
notes the total number of failing executions and totalpassed

denotes the total number of passing executions.

B. Component-Based Program Synthesis

We briefly introduce the recent advance in component-based
program synthesis [11]. Given a set of input-output pairs,
component-based program synthesis generates a program that
satisfies all the given input-output pairs. More specifically, if
h↵,�i is one of the input-output pairs, then the synthesized
program must produce output � when its input is ↵. In
component based program synthesis, we provide a set of basic
components that the to-be-synthesized function f is allowed
to use. For example, to synthesize a program with linear
expressions, {constant, minus, plus} are given as the basic
components. A set of location variables are defined for each
component and the synthesis process is reduced to finding
values for these location variables. The constraint over the
location variables is in first-order logic and solved by an SMT
solver. If it has a solution, a unique program can be constructed
based on the values of location variables. We now explain the
encoding method.

Suppose we provide N components {f1, . . . , fN} to syn-
thesize function f . Without losing generality, we assume each
component only has one output. For the i

th component, we
denote its input as �!� i and its output as ri. We use Q to denote
the set of all input variables from all components and R to
denote the set of output variables from all components.

Q := [N
i=1

�!
� i R := [N

i=1{ri}
We use �!� to denote the input variables for function f and
use r to denote the output variable of f . The set of location
variables is defined as

L := {lx|x 2 Q [R [�!� [{r}}
A location variable lx denotes where variable x is defined.

Given a valuation of L, a program can be constructed using the
following procedure Lval2Prog(L). Here the i

th line of the
constructed program is rj = fj(r�(1), . . . , r�(⌘)) when lrj ==
i and ^⌘

k=1(l�k
j

== lr�(k)), where ⌘ is the number of inputs
for component fj and �

k
j denotes the k

th input parameter of
component fj . The program output is produced in line lr.

We use one example below to explain the meaning of
location variable. Suppose we only provide one component +,
whose inputs are �

1
+, �

2
+. Since there is only one component

+, we use + instead of its component number as the subscript
for clarity. The output variable for + is r+. Suppose there is
only one input for the synthesized program. Let the value of
location variables be {lr+ == 1, l�1

+
== 0, l�2

+
== 0, lr ==

1, l�1 == 0}. Given that lr+ == 1, r+ is defined in line 1 and
thus component + is placed in line 1. If the location variables
l�1

+
== l�2

+
== 0, then both �

1
+ and �

2
+ are the same as the

variable defined in line 0, which means that they are the same
as the output of line 0. Since lr equals 1, the value defined at
line 1, r+, is the output of the program. From the valuation of
the location variables, we can construct the following program

774

Patch Constraint Generation via
Symbolic Execution

for component-based synthesis that is based on constraint
solving. We also apply two other important performance
optimizations. First, instead of creating a constraint over the
entire test suite, we create it using a subset of tests, adding tests
incrementally to the mix. Second, among the set of possible
expressions that can be synthesized, we explore in order of
increasing complexity, so the tool can find simple fixes quicker.

We have experimentally evaluated our method as well as
genetic programming on SIR subjects with seeded bugs, as
well as fragments of GNU Coreutils with real bugs. The
use of state-of-the-art SMT solvers and program synthesis
engines allow our repair timings to be less than that of genetic
programming based repair, on these subjects. For the programs
with seeded bugs, our repair method can repair three times as
many buggy versions as compared to genetic programming.
For the Coreutils programs with real bugs, our repair method
took an average of 3.8 minutes while genetic programming
took an average of 6 minutes.

II. OVERVIEW

Given a buggy program P and a test suite T containing
at least one failing test case, our program repair technique
works as follows. First, we employ statistical fault localization
to generate a list L of program statements ranked by their
suspiciousness of being the bug. Our core program repair
method then scans through the statement list from the most
suspicious one to the least suspicious one until a successful
repair is generated. For each scanned statement s, our core
program repair method tries to repair the program by altering
statement s. Assuming that statement s is the root-cause of the
failure, our core repair method consists of two major steps: i)
we first generate the repair constraint that has to be satisfied
by a successful repair on s and ii) we try to solve the repair
constraint using program synthesis.

1 int is_upward_preferred(int inhibit, int up_sep,

int down_sep) {

2 int bias;

3 if(inhibit)
4 bias = down_sep; //fix: bias=up_sep+100
5 else
6 bias = up_sep;

7 if (bias > down_sep)

8 return 1;

9 else
10 return 0;

11 }

Fig. 1. Code excerpt from Tcas

We illustrate our technique using the sample program in
Fig. 1. It is a code excerpt taken from Tcas, traffic col-
lision avoidance system [12]. Suppose inhibit has only
two allowable values ({0,1}). The intended behavior of this
program is described as follows: is_upward_preferred =

(inhibit*100 + up_sep > down_sep). A test suite for
checking the correctness of the program is presented in Table I.
The testing result shows that the implementation is buggy as
two tests are failed. To repair this program, we first employ

TABLE I
A TEST SUITE FOR THE PROGRAM IN FIG. 1

Test Inputs Expected Observed Statusinhibit up sep down sep output output
1 1 0 100 0 0 pass
2 1 11 110 1 0 fail
3 0 100 50 1 1 pass
4 1 -20 60 1 0 fail
5 0 0 10 0 0 pass

TABLE II
TARANTULA FAULT LOCALIZATION RESULT ON THE PROGRAM IN FIG. 1

Line Score Rank
4 0.75 1

10 0.6 2
3 0.5 3
7 0.5 3
6 0 5
8 0 5

Tarantula fault localization [13] for the buggy program using
the given test suite. Tarantula is a statistical fault localization
technique that is explained in details in Section III-A. Basi-
cally, it ranks program statements in a descending order of
their suspiciousness. A statement exercised by more failing
tests and fewer passing tests will have a higher suspiciousness
score. The result of Tarantula shown in Table II is a list of
statements ranked by their suspiciousness score. Since line 4 is
ranked at the top, we start investigating whether the program
can be repaired by changing line 4.

Suppose we want to replace line 4 with bias = f(. . .),
where f(. . .) is to be figured out by our method. There are four
accessible variables at line 4: inhibit, up_sep, down_sep
and bias. Since variable bias is not initialized, we assume
that it cannot be used by f(. . .). Let us now assume the
signature of function f to be:
int f(int inhibit, int up_sep, int down_sep)

We then find the constraint that has to be satisfied by f(. . .)
to pass all the test cases in the test suite. This is achieved
through symbolic execution.

For each test exercising line 4, we generate one constraint
on f(. . .) whose satisfaction guarantees that the fixed pro-
gram produces the expected output. We use the second test
in Table I to explain how such a constraint is generated.
Fig. 2 presents the symbolic execution tree for test 2, with
input vector h1, 11, 110i. Note that our symbolic execution
does not start with program input. Instead, the program is
executed concretely with input h1, 11, 110i until it reaches
line 4. Then the value of variable bias is replaced with a
symbolic value X and the execution continues symbolically.
On executing the branch at line 7, the execution is faced
with two choices and both paths are executed as shown in
the symbolic execution tree. As we know the expected return
value for input h1, 11, 110i should be 1, only the path through
line 8 should be followed to make the program pass. To
follow this path, the path condition, X > 110, should be
satisfied. Given that the program state at line 4 is {inhibit
== 1, up_sep == 11, down_sep == 110}, we know that
f has to satisfy f(1, 11, 110) > 110. Similarly, we get

773

<latexit sha1_base64="IjPlPZSRnh6DSbk9Lhp2WYaBGVY=">AAACEHicbZDLSgMxFIYzXmu9jbp0EyxihVJmRNRl0Y3LCvYCnVIyaaYNzWSG5Ixahj6CG1/FjQtF3Lp059uYTrvQ1h8CH/85J8n5/VhwDY7zbS0sLi2vrObW8usbm1vb9s5uXUeJoqxGIxGppk80E1yyGnAQrBkrRkJfsIY/uBrXG3dMaR7JWxjGrB2SnuQBpwSM1bGPPGAPoMI0KHLZ5z6HEk5ir6NZXMLd6F5meDzq2AWn7GTC8+BOoYCmqnbsL68b0SRkEqggWrdcJ4Z2ShRwKtgo7yXmXkIHpMdaBiUJmW6n2UIjfGicLg4iZY4EnLm/J1ISaj0MfdMZEujr2drY/K/WSiC4aKdcxgkwSScPBYnAEOFxOrjLFaMghgYIVdz8FdM+UYSCyTBvQnBnV56H+knZPSu7N6eFyuU0jhzaRweoiFx0jiroGlVRDVH0iJ7RK3qznqwX6936mLQuWNOZPfRH1ucPwgadCA==</latexit>

f(inhibit, up sep, down sep)

for component-based synthesis that is based on constraint
solving. We also apply two other important performance
optimizations. First, instead of creating a constraint over the
entire test suite, we create it using a subset of tests, adding tests
incrementally to the mix. Second, among the set of possible
expressions that can be synthesized, we explore in order of
increasing complexity, so the tool can find simple fixes quicker.

We have experimentally evaluated our method as well as
genetic programming on SIR subjects with seeded bugs, as
well as fragments of GNU Coreutils with real bugs. The
use of state-of-the-art SMT solvers and program synthesis
engines allow our repair timings to be less than that of genetic
programming based repair, on these subjects. For the programs
with seeded bugs, our repair method can repair three times as
many buggy versions as compared to genetic programming.
For the Coreutils programs with real bugs, our repair method
took an average of 3.8 minutes while genetic programming
took an average of 6 minutes.

II. OVERVIEW

Given a buggy program P and a test suite T containing
at least one failing test case, our program repair technique
works as follows. First, we employ statistical fault localization
to generate a list L of program statements ranked by their
suspiciousness of being the bug. Our core program repair
method then scans through the statement list from the most
suspicious one to the least suspicious one until a successful
repair is generated. For each scanned statement s, our core
program repair method tries to repair the program by altering
statement s. Assuming that statement s is the root-cause of the
failure, our core repair method consists of two major steps: i)
we first generate the repair constraint that has to be satisfied
by a successful repair on s and ii) we try to solve the repair
constraint using program synthesis.

1 int is_upward_preferred(int inhibit, int up_sep,

int down_sep) {

2 int bias;

3 if(inhibit)
4 bias = down_sep; //fix: bias=up_sep+100
5 else
6 bias = up_sep;

7 if (bias > down_sep)

8 return 1;

9 else
10 return 0;

11 }

Fig. 1. Code excerpt from Tcas

We illustrate our technique using the sample program in
Fig. 1. It is a code excerpt taken from Tcas, traffic col-
lision avoidance system [12]. Suppose inhibit has only
two allowable values ({0,1}). The intended behavior of this
program is described as follows: is_upward_preferred =

(inhibit*100 + up_sep > down_sep). A test suite for
checking the correctness of the program is presented in Table I.
The testing result shows that the implementation is buggy as
two tests are failed. To repair this program, we first employ

TABLE I
A TEST SUITE FOR THE PROGRAM IN FIG. 1

Test Inputs Expected Observed Statusinhibit up sep down sep output output
1 1 0 100 0 0 pass
2 1 11 110 1 0 fail
3 0 100 50 1 1 pass
4 1 -20 60 1 0 fail
5 0 0 10 0 0 pass

TABLE II
TARANTULA FAULT LOCALIZATION RESULT ON THE PROGRAM IN FIG. 1

Line Score Rank
4 0.75 1

10 0.6 2
3 0.5 3
7 0.5 3
6 0 5
8 0 5

Tarantula fault localization [13] for the buggy program using
the given test suite. Tarantula is a statistical fault localization
technique that is explained in details in Section III-A. Basi-
cally, it ranks program statements in a descending order of
their suspiciousness. A statement exercised by more failing
tests and fewer passing tests will have a higher suspiciousness
score. The result of Tarantula shown in Table II is a list of
statements ranked by their suspiciousness score. Since line 4 is
ranked at the top, we start investigating whether the program
can be repaired by changing line 4.

Suppose we want to replace line 4 with bias = f(. . .),
where f(. . .) is to be figured out by our method. There are four
accessible variables at line 4: inhibit, up_sep, down_sep
and bias. Since variable bias is not initialized, we assume
that it cannot be used by f(. . .). Let us now assume the
signature of function f to be:
int f(int inhibit, int up_sep, int down_sep)

We then find the constraint that has to be satisfied by f(. . .)
to pass all the test cases in the test suite. This is achieved
through symbolic execution.

For each test exercising line 4, we generate one constraint
on f(. . .) whose satisfaction guarantees that the fixed pro-
gram produces the expected output. We use the second test
in Table I to explain how such a constraint is generated.
Fig. 2 presents the symbolic execution tree for test 2, with
input vector h1, 11, 110i. Note that our symbolic execution
does not start with program input. Instead, the program is
executed concretely with input h1, 11, 110i until it reaches
line 4. Then the value of variable bias is replaced with a
symbolic value X and the execution continues symbolically.
On executing the branch at line 7, the execution is faced
with two choices and both paths are executed as shown in
the symbolic execution tree. As we know the expected return
value for input h1, 11, 110i should be 1, only the path through
line 8 should be followed to make the program pass. To
follow this path, the path condition, X > 110, should be
satisfied. Given that the program state at line 4 is {inhibit
== 1, up_sep == 11, down_sep == 110}, we know that
f has to satisfy f(1, 11, 110) > 110. Similarly, we get

773

Concrete execution

Symbolic execution with
bias replaced with
a symbolic variable

Two Possible Execution Flows

inhibit: 1
up_sep: 11
down_sep: 110
bias: X
PC: true

inhibit: 1
up_sep: 11
down_sep: 110
bias: X
PC: X>110
return 1

inhibit: 1
up_sep: 11
down_sep: 110
bias: X
PC: X�110
return 0

failpass

4

8 10

Fig. 2. Symbolic execution tree for test case 2 in Table I when trying to fix
line 4 of the program in Fig. 1. Each box denotes a program state at the line
annotated in the superscript. The program state includes all values of program
variables as well as the path condition PC.

f(1, 0, 100) 100 from test 1 and f(1,�20, 60) > 60 from
test 4. Therefore, the constraint that f needs to satisfy is
f(1, 11, 110) > 110^f(1, 0, 100) 100^f(1,�20, 60) > 60.
We employ program synthesis to solve the constraint for f in
order to get a concrete function. Program synthesis requires
basic components (e.g. constants, “+”, “�”) as ingredients to
construct the function f . In our technique, these components
are incrementally provided to program synthesis. In the first
trial, only a constant is allowed. However, no constant function
can satisfy the above constraint. We then allow function f to
use one “+”, i.e. f can take either the form of var1 + c or
var1+var2, where var1 and var2 are in {inhibit, up_sep,
down_sep} and c is an integer constant. The synthesis pro-
cedure can find a solution f(inhibit, up sep, down sep) =
up sep + 100 which is a successful repair to the program in
Fig. 1. Note that if “�” is used instead of “+”, we will get
f(inhibit, up sep, down sep) = up sep� (�100) as repair.

III. BACKGROUND

A. Statistical Fault Localization

Statistical fault localization [9], [13] aims to localize the
root-cause of a program failure by exploiting the correlation
between execution of the faulty statements and program fail-
ure. A suspiciousness score is computed for each program
statement based on its frequency of occurrence in passing and
failing executions. Based on the suspiciousness score, a ranked
list of statements is given to users. Users can then examine
the ranked list from the most suspicious statement to the least
suspicious statement until the failure root-cause is found.

In this paper, we adopt the suspiciousness score from
Tarantula technique [13]. For a statement s, its suspiciousness
score susp(s) is computed as

susp(s) =
failed(s)/totalfailed

passed(s)/totalpassed + failed(s)/totalfailed

where failed(s) denotes the number of failing executions in
which s occurs and passed(s) denotes the number of passing

executions in which s occurs. The variable totalfailed de-
notes the total number of failing executions and totalpassed

denotes the total number of passing executions.

B. Component-Based Program Synthesis

We briefly introduce the recent advance in component-based
program synthesis [11]. Given a set of input-output pairs,
component-based program synthesis generates a program that
satisfies all the given input-output pairs. More specifically, if
h↵,�i is one of the input-output pairs, then the synthesized
program must produce output � when its input is ↵. In
component based program synthesis, we provide a set of basic
components that the to-be-synthesized function f is allowed
to use. For example, to synthesize a program with linear
expressions, {constant, minus, plus} are given as the basic
components. A set of location variables are defined for each
component and the synthesis process is reduced to finding
values for these location variables. The constraint over the
location variables is in first-order logic and solved by an SMT
solver. If it has a solution, a unique program can be constructed
based on the values of location variables. We now explain the
encoding method.

Suppose we provide N components {f1, . . . , fN} to syn-
thesize function f . Without losing generality, we assume each
component only has one output. For the i

th component, we
denote its input as �!� i and its output as ri. We use Q to denote
the set of all input variables from all components and R to
denote the set of output variables from all components.

Q := [N
i=1

�!
� i R := [N

i=1{ri}
We use �!� to denote the input variables for function f and
use r to denote the output variable of f . The set of location
variables is defined as

L := {lx|x 2 Q [R [�!� [{r}}
A location variable lx denotes where variable x is defined.

Given a valuation of L, a program can be constructed using the
following procedure Lval2Prog(L). Here the i

th line of the
constructed program is rj = fj(r�(1), . . . , r�(⌘)) when lrj ==
i and ^⌘

k=1(l�k
j

== lr�(k)), where ⌘ is the number of inputs
for component fj and �

k
j denotes the k

th input parameter of
component fj . The program output is produced in line lr.

We use one example below to explain the meaning of
location variable. Suppose we only provide one component +,
whose inputs are �

1
+, �

2
+. Since there is only one component

+, we use + instead of its component number as the subscript
for clarity. The output variable for + is r+. Suppose there is
only one input for the synthesized program. Let the value of
location variables be {lr+ == 1, l�1

+
== 0, l�2

+
== 0, lr ==

1, l�1 == 0}. Given that lr+ == 1, r+ is defined in line 1 and
thus component + is placed in line 1. If the location variables
l�1

+
== l�2

+
== 0, then both �

1
+ and �

2
+ are the same as the

variable defined in line 0, which means that they are the same
as the output of line 0. Since lr equals 1, the value defined at
line 1, r+, is the output of the program. From the valuation of
the location variables, we can construct the following program

774

Patch Constraint Generation via
Symbolic Execution

Valuations
Constraint over f

Test inhibit up_sep down_sep

1 1 0 100 bias ≤ down_sep

⇔ f(1,0,100) ≤ 100

2 1 11 110 bias > down_sep

⇔ f(1,11,110) > 110

4 1 -20 60 bias > down_sep

⇔ f(1,-20,60) > 60

Patch Generation as Synthesis

• Target: f (inhibit: int, up_sep: int, down_sep: int) : int

• Syntactic constraint 

• Semantic constraint 

• Solving with component-based synthesis:  
 f(inhibit, up_sep, down_sep) = up_sep + 100

<latexit sha1_base64="PP0v3oj1n+CFkFwxI9U69rPAUZY=">AAACnXicbVFbixMxFM6Mt3W8VX1zHzxYLIJYZ/ZBfSyK4IrISu12oRlKJpO2YXMZkjNKGfqv/CW++W9MO6PUXQ8czpfvXPLlpKiU9Jimv6L4ytVr128c3Exu3b5z917v/oNTb2vHxYRbZd1ZwbxQ0ogJSlTirHKC6UKJaXH+bpuffhPOS2u+4roSuWZLIxeSMwzUvPeDzhJaiKU0DXOOrTeN42qTjGFA0cIAGuo0SLOShcQNUC3LlqorOvei2qdK+93sk2kbsjZQXlr0QCkkEIZvqQGMn4/b7PjFHwAUpRYe/p5fBk+oMGUnMKH5vNdPh+nO4DLIOtAnnZ3Mez9paXmthUGumPezLK0wDwNRciXCyDrIZvycLcUsQMOCgrzZbXcDTwNTwsK64AZhx+53NEx7v9ZFqNQMV/5ibkv+LzercfEmb6SpahSGtxctagVh8duvglI6wVGtA2DcyaAV+Io5xjF8aBKWkF188mVwejTMXg2zL0f90dtuHQfkkDwhz0hGXpMR+UBOyITw6FE0io6jj/Hj+H38Kf7clsZR1/OQ/GPx9DdNxcaf</latexit>

S ! inhibit | up sep | down sep | 0 | 1 | · · ·
| S + S | S � S | S ⇥ S | S/S

inhibit: 1
up_sep: 11
down_sep: 110
bias: X
PC: true

inhibit: 1
up_sep: 11
down_sep: 110
bias: X
PC: X>110
return 1

inhibit: 1
up_sep: 11
down_sep: 110
bias: X
PC: X�110
return 0

failpass

4

8 10

Fig. 2. Symbolic execution tree for test case 2 in Table I when trying to fix
line 4 of the program in Fig. 1. Each box denotes a program state at the line
annotated in the superscript. The program state includes all values of program
variables as well as the path condition PC.

f(1, 0, 100) 100 from test 1 and f(1,�20, 60) > 60 from
test 4. Therefore, the constraint that f needs to satisfy is
f(1, 11, 110) > 110^f(1, 0, 100) 100^f(1,�20, 60) > 60.
We employ program synthesis to solve the constraint for f in
order to get a concrete function. Program synthesis requires
basic components (e.g. constants, “+”, “�”) as ingredients to
construct the function f . In our technique, these components
are incrementally provided to program synthesis. In the first
trial, only a constant is allowed. However, no constant function
can satisfy the above constraint. We then allow function f to
use one “+”, i.e. f can take either the form of var1 + c or
var1+var2, where var1 and var2 are in {inhibit, up_sep,
down_sep} and c is an integer constant. The synthesis pro-
cedure can find a solution f(inhibit, up sep, down sep) =
up sep + 100 which is a successful repair to the program in
Fig. 1. Note that if “�” is used instead of “+”, we will get
f(inhibit, up sep, down sep) = up sep� (�100) as repair.

III. BACKGROUND

A. Statistical Fault Localization

Statistical fault localization [9], [13] aims to localize the
root-cause of a program failure by exploiting the correlation
between execution of the faulty statements and program fail-
ure. A suspiciousness score is computed for each program
statement based on its frequency of occurrence in passing and
failing executions. Based on the suspiciousness score, a ranked
list of statements is given to users. Users can then examine
the ranked list from the most suspicious statement to the least
suspicious statement until the failure root-cause is found.

In this paper, we adopt the suspiciousness score from
Tarantula technique [13]. For a statement s, its suspiciousness
score susp(s) is computed as

susp(s) =
failed(s)/totalfailed

passed(s)/totalpassed + failed(s)/totalfailed

where failed(s) denotes the number of failing executions in
which s occurs and passed(s) denotes the number of passing

executions in which s occurs. The variable totalfailed de-
notes the total number of failing executions and totalpassed

denotes the total number of passing executions.

B. Component-Based Program Synthesis

We briefly introduce the recent advance in component-based
program synthesis [11]. Given a set of input-output pairs,
component-based program synthesis generates a program that
satisfies all the given input-output pairs. More specifically, if
h↵,�i is one of the input-output pairs, then the synthesized
program must produce output � when its input is ↵. In
component based program synthesis, we provide a set of basic
components that the to-be-synthesized function f is allowed
to use. For example, to synthesize a program with linear
expressions, {constant, minus, plus} are given as the basic
components. A set of location variables are defined for each
component and the synthesis process is reduced to finding
values for these location variables. The constraint over the
location variables is in first-order logic and solved by an SMT
solver. If it has a solution, a unique program can be constructed
based on the values of location variables. We now explain the
encoding method.

Suppose we provide N components {f1, . . . , fN} to syn-
thesize function f . Without losing generality, we assume each
component only has one output. For the i

th component, we
denote its input as �!� i and its output as ri. We use Q to denote
the set of all input variables from all components and R to
denote the set of output variables from all components.

Q := [N
i=1

�!
� i R := [N

i=1{ri}
We use �!� to denote the input variables for function f and
use r to denote the output variable of f . The set of location
variables is defined as

L := {lx|x 2 Q [R [�!� [{r}}
A location variable lx denotes where variable x is defined.

Given a valuation of L, a program can be constructed using the
following procedure Lval2Prog(L). Here the i

th line of the
constructed program is rj = fj(r�(1), . . . , r�(⌘)) when lrj ==
i and ^⌘

k=1(l�k
j

== lr�(k)), where ⌘ is the number of inputs
for component fj and �

k
j denotes the k

th input parameter of
component fj . The program output is produced in line lr.

We use one example below to explain the meaning of
location variable. Suppose we only provide one component +,
whose inputs are �

1
+, �

2
+. Since there is only one component

+, we use + instead of its component number as the subscript
for clarity. The output variable for + is r+. Suppose there is
only one input for the synthesized program. Let the value of
location variables be {lr+ == 1, l�1

+
== 0, l�2

+
== 0, lr ==

1, l�1 == 0}. Given that lr+ == 1, r+ is defined in line 1 and
thus component + is placed in line 1. If the location variables
l�1

+
== l�2

+
== 0, then both �

1
+ and �

2
+ are the same as the

variable defined in line 0, which means that they are the same
as the output of line 0. Since lr equals 1, the value defined at
line 1, r+, is the output of the program. From the valuation of
the location variables, we can construct the following program

774

How to Encode?
• Brahma:

• Oracle-guided Component-Based Program Synthesis, ICSE’10 (ACM/
IEEE 2020 Most Influential Paper Award)

• https://github.com/fitzgen/synth-loop-free-prog

• SyPet:

• Component-Based Synthesis for Complex APIs, POPL’17

• https://github.com/utopia-group/sypet

• Sketch:

• https://people.csail.mit.edu/asolar/

https://github.com/fitzgen/synth-loop-free-prog
https://github.com/utopia-group/sypet
https://people.csail.mit.edu/asolar/

API Synthesis

• Input: (1) Usable API functions,
 (2) Problem: Signature of target function + unit test cases

• Output: straight line code that consists of API functionsSyPet: example

Area rotate(Area obj, Point2D pt, double angle)
{ ?? }

public void test1() {
Area a1 = new Area(new Rectangle(0, 0, 10, 2));
Area a2 = new Area(new Rectangle(-2, 0, 2, 10));
Point2D p = new Point2D.Double(0, 0);
assertTrue(a2.equals(rotate(a1, p, Math.PI/2)));

}

Signature

Test

java.awt.geom

Components

Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Output

Too many usable API functions
Naive enumeration won’t work!

Key Idea

• Step 1: Construct a graph

• Node: Type

• Edge: single invocation of API function

• Step 2: Find a path from parameter types to return type

• Using SAT or ILP (integer linear programming)

• Step 3: Decode the path into a program

SyPet
SyPet: workflow

Petri Nets

Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Figure 3: Implementation synthesized by SYPET

Second, even when we restrict ourselves to code snippets of length
3 (measured in terms of the number of API calls), there are already
over 3.1 million implementations of rotate that type check. Be-
cause the search space is so large, finding the right implementation
of rotate is akin to finding a needle in the proverbial hay stack.

3. Primer on Petri Nets
Because the remainder of this paper relies on basic knowledge
about Petri nets, we first provide some background on this topic.

3.1 Petri Net Definition
A Petri net is a bipartite graph with two types of nodes: places,
which are drawn as circles, and transitions, represented as solid
bars (see Figure 4). Each place in a Petri net can contain a num-
ber of tokens, which are drawn as dots and typically represent re-
sources. A marking (or configuration) of a Petri net is a mapping
from each place p to the number of tokens at p. Transitions in the
Petri net correspond to events that change the marking. In particu-
lar, incoming edges of a transition t represent necessary conditions
for t to fire, and outgoing edges represent the outcome. For exam-
ple, consider transition T1 from Figure 4. A necessary condition
for T1 to fire is that there must be at least one token present at P1,
because the incoming edge to T1 has weight 1. Because the pre-
condition of this transition is met, we say that T1 is enabled. If we
fire transition T1, we consume one token from place P1 and pro-
duce one token at place P2, because the outgoing edge of T1 is also
labeled with 1. Figure 5 shows the result of firing T1 at the config-
uration shown in Figure 4. Observe that transition T2 is disabled in
both Figure 4 and Figure 5 because there are fewer than two tokens
at place P2.

Definition 1. (Petri net) A Petri net N is a 5-tuple (P, T,E,W,M0)
where P is a set of places, T is a set of transitions, and E ✓
(P ⇥ T) [(T ⇥ P) is the set of edges (arcs). Finally, W is a
mapping from each edge e 2 E to a weight, and M0 is the initial
marking of N .

Example 1. Consider the Petri net shown in Figure 4. Here, we
have P = {P1, P2, P3} and T = {T1, T2, T3}. Let e⇤ be the edge
P2 ! T2. We have W (e⇤) = 2, and W (e) = 1 for all other edges
e in E (e.g., P1 ! T1). The initial marking M0 assigns P1 to 2,
and all other places to 0.

A run (or trace) of a Petri net N is a sequence of transitions that
are fired. For instance, some feasible runs of the Petri net shown
in Figure 4 include T1, T1, T2 and T1, T1, T2, T3. However, T1, T2

and T1, T2, T3 are not feasible.

3.2 Reachability and k-safety in Petri Nets
A key decision problem about Petri nets is reachability: Given
Petri net N with initial marking M0 and target marking M⇤, is
it possible to reach M⇤ by starting at M0 and firing a sequence
of transitions? For instance, consider Figure 4 and target marking

P1 P2 P3T1

T2

T3

1 1
2 1

11

Figure 4: A simple Petri net

Figure 5: Result of firing T1 in Figure 4

M⇤ = [P1 7! 0, P2 7! 0, P3 7! 1]. This marking is reachable
because we can get to marking M⇤ by firing the sequence of
transitions T1, T1, T2. The reachable state space of a Petri net N ,
denoted R(N), is the set of all markings that are reachable from
the initial state. Given Petri net N and target marking M⇤, a run of
N is accepting if it ends in M⇤.

Another important concept about Petri nets is k-safety: A Petri
net N is said to be k-safe if no place contains more than k tokens
for any marking in R(N). For example, the Petri net of Figure 4
is 2-safe, because no place can contain more than 2 tokens in any
configuration. However, if we modify this Petri net by adding a
back edge from T1 to P1 (with an arc weight of 1), then the
resulting Petri net is not k-safe for any k. As we will see later,
the notion of k-safety plays an important role in the reachability
analysis of Petri nets because the reachable state space R(N) is
bounded iff N is k-safe.

4. Algorithm Overview
We now give an overview of SYPET’s synthesis algorithm and il-
lustrate how it works on the example from Section 2. As shown in
Algorithm 1, the SYNTHESIZE procedure takes a method signature
S, a set of components ⇤, and test cases E . Its output is either ?,
meaning that the specification cannot be synthesized using compo-
nents ⇤, or a well-typed program that passes all test cases E .

Petri-net construction. The first step of our synthesis algorithm
is to construct a Petri net using signatures of components in ⇤.
In particular, the procedure CONSTRUCTPETRI in Algorithm 1
constructs a Petri net N where each transition is a component
f 2 ⇤ and each place correspond to a type. If there is an edge
in the Petri net from ⌧ to f with weight w, component f takes w
arguments of type ⌧ . Similarly, an edge from f to ⌧ 0 indicates that
f ’s return value has type ⌧ 0.

Example 2. Figure 6 shows (a small part of) the Petri net gen-
erated by CONSTRUCTPETRI for the example from Section 2. The
transition labeled getX has one incoming edge of weight 1 from
Point2D because it takes a single argument of this type. There is
also an edge from getX to double because getX’s return value is
double. As another example, the weight of the edge from double to
setToRotation is 3 because this method requires three arguments
of type double. Note that Figure 6 also contains special clone tran-
sitions labeled : Intuitively, these transitions allow us to dupli-
cate tokens. As we will see in Section 5, the clone transitions allow
us to reuse program variables in the synthesis context.

Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Figure 3: Implementation synthesized by SYPET

Second, even when we restrict ourselves to code snippets of length
3 (measured in terms of the number of API calls), there are already
over 3.1 million implementations of rotate that type check. Be-
cause the search space is so large, finding the right implementation
of rotate is akin to finding a needle in the proverbial hay stack.

3. Primer on Petri Nets
Because the remainder of this paper relies on basic knowledge
about Petri nets, we first provide some background on this topic.

3.1 Petri Net Definition
A Petri net is a bipartite graph with two types of nodes: places,
which are drawn as circles, and transitions, represented as solid
bars (see Figure 4). Each place in a Petri net can contain a num-
ber of tokens, which are drawn as dots and typically represent re-
sources. A marking (or configuration) of a Petri net is a mapping
from each place p to the number of tokens at p. Transitions in the
Petri net correspond to events that change the marking. In particu-
lar, incoming edges of a transition t represent necessary conditions
for t to fire, and outgoing edges represent the outcome. For exam-
ple, consider transition T1 from Figure 4. A necessary condition
for T1 to fire is that there must be at least one token present at P1,
because the incoming edge to T1 has weight 1. Because the pre-
condition of this transition is met, we say that T1 is enabled. If we
fire transition T1, we consume one token from place P1 and pro-
duce one token at place P2, because the outgoing edge of T1 is also
labeled with 1. Figure 5 shows the result of firing T1 at the config-
uration shown in Figure 4. Observe that transition T2 is disabled in
both Figure 4 and Figure 5 because there are fewer than two tokens
at place P2.

Definition 1. (Petri net) A Petri net N is a 5-tuple (P, T,E,W,M0)
where P is a set of places, T is a set of transitions, and E ✓
(P ⇥ T) [(T ⇥ P) is the set of edges (arcs). Finally, W is a
mapping from each edge e 2 E to a weight, and M0 is the initial
marking of N .

Example 1. Consider the Petri net shown in Figure 4. Here, we
have P = {P1, P2, P3} and T = {T1, T2, T3}. Let e⇤ be the edge
P2 ! T2. We have W (e⇤) = 2, and W (e) = 1 for all other edges
e in E (e.g., P1 ! T1). The initial marking M0 assigns P1 to 2,
and all other places to 0.

A run (or trace) of a Petri net N is a sequence of transitions that
are fired. For instance, some feasible runs of the Petri net shown
in Figure 4 include T1, T1, T2 and T1, T1, T2, T3. However, T1, T2

and T1, T2, T3 are not feasible.

3.2 Reachability and k-safety in Petri Nets
A key decision problem about Petri nets is reachability: Given
Petri net N with initial marking M0 and target marking M⇤, is
it possible to reach M⇤ by starting at M0 and firing a sequence
of transitions? For instance, consider Figure 4 and target marking

Figure 4: A simple Petri net

P1 P2 P3T1

T2

T3

1 1
2 1

11

Figure 5: Result of firing T1 in Figure 4

M⇤ = [P1 7! 0, P2 7! 0, P3 7! 1]. This marking is reachable
because we can get to marking M⇤ by firing the sequence of
transitions T1, T1, T2. The reachable state space of a Petri net N ,
denoted R(N), is the set of all markings that are reachable from
the initial state. Given Petri net N and target marking M⇤, a run of
N is accepting if it ends in M⇤.

Another important concept about Petri nets is k-safety: A Petri
net N is said to be k-safe if no place contains more than k tokens
for any marking in R(N). For example, the Petri net of Figure 4
is 2-safe, because no place can contain more than 2 tokens in any
configuration. However, if we modify this Petri net by adding a
back edge from T1 to P1 (with an arc weight of 1), then the
resulting Petri net is not k-safe for any k. As we will see later,
the notion of k-safety plays an important role in the reachability
analysis of Petri nets because the reachable state space R(N) is
bounded iff N is k-safe.

4. Algorithm Overview
We now give an overview of SYPET’s synthesis algorithm and il-
lustrate how it works on the example from Section 2. As shown in
Algorithm 1, the SYNTHESIZE procedure takes a method signature
S, a set of components ⇤, and test cases E . Its output is either ?,
meaning that the specification cannot be synthesized using compo-
nents ⇤, or a well-typed program that passes all test cases E .

Petri-net construction. The first step of our synthesis algorithm
is to construct a Petri net using signatures of components in ⇤.
In particular, the procedure CONSTRUCTPETRI in Algorithm 1
constructs a Petri net N where each transition is a component
f 2 ⇤ and each place correspond to a type. If there is an edge
in the Petri net from ⌧ to f with weight w, component f takes w
arguments of type ⌧ . Similarly, an edge from f to ⌧ 0 indicates that
f ’s return value has type ⌧ 0.

Example 2. Figure 6 shows (a small part of) the Petri net gen-
erated by CONSTRUCTPETRI for the example from Section 2. The
transition labeled getX has one incoming edge of weight 1 from
Point2D because it takes a single argument of this type. There is
also an edge from getX to double because getX’s return value is
double. As another example, the weight of the edge from double to
setToRotation is 3 because this method requires three arguments
of type double. Note that Figure 6 also contains special clone tran-
sitions labeled : Intuitively, these transitions allow us to dupli-
cate tokens. As we will see in Section 5, the clone transitions allow
us to reuse program variables in the synthesis context.

Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Figure 3: Implementation synthesized by SYPET

Second, even when we restrict ourselves to code snippets of length
3 (measured in terms of the number of API calls), there are already
over 3.1 million implementations of rotate that type check. Be-
cause the search space is so large, finding the right implementation
of rotate is akin to finding a needle in the proverbial hay stack.

3. Primer on Petri Nets
Because the remainder of this paper relies on basic knowledge
about Petri nets, we first provide some background on this topic.

3.1 Petri Net Definition
A Petri net is a bipartite graph with two types of nodes: places,
which are drawn as circles, and transitions, represented as solid
bars (see Figure 4). Each place in a Petri net can contain a num-
ber of tokens, which are drawn as dots and typically represent re-
sources. A marking (or configuration) of a Petri net is a mapping
from each place p to the number of tokens at p. Transitions in the
Petri net correspond to events that change the marking. In particu-
lar, incoming edges of a transition t represent necessary conditions
for t to fire, and outgoing edges represent the outcome. For exam-
ple, consider transition T1 from Figure 4. A necessary condition
for T1 to fire is that there must be at least one token present at P1,
because the incoming edge to T1 has weight 1. Because the pre-
condition of this transition is met, we say that T1 is enabled. If we
fire transition T1, we consume one token from place P1 and pro-
duce one token at place P2, because the outgoing edge of T1 is also
labeled with 1. Figure 5 shows the result of firing T1 at the config-
uration shown in Figure 4. Observe that transition T2 is disabled in
both Figure 4 and Figure 5 because there are fewer than two tokens
at place P2.

Definition 1. (Petri net) A Petri net N is a 5-tuple (P, T,E,W,M0)
where P is a set of places, T is a set of transitions, and E ✓
(P ⇥ T) [(T ⇥ P) is the set of edges (arcs). Finally, W is a
mapping from each edge e 2 E to a weight, and M0 is the initial
marking of N .

Example 1. Consider the Petri net shown in Figure 4. Here, we
have P = {P1, P2, P3} and T = {T1, T2, T3}. Let e⇤ be the edge
P2 ! T2. We have W (e⇤) = 2, and W (e) = 1 for all other edges
e in E (e.g., P1 ! T1). The initial marking M0 assigns P1 to 2,
and all other places to 0.

A run (or trace) of a Petri net N is a sequence of transitions that
are fired. For instance, some feasible runs of the Petri net shown
in Figure 4 include T1, T1, T2 and T1, T1, T2, T3. However, T1, T2

and T1, T2, T3 are not feasible.

3.2 Reachability and k-safety in Petri Nets
A key decision problem about Petri nets is reachability: Given
Petri net N with initial marking M0 and target marking M⇤, is
it possible to reach M⇤ by starting at M0 and firing a sequence
of transitions? For instance, consider Figure 4 and target marking

Figure 4: A simple Petri net

P1 P2 P3T1

T2

T3

1 1
2 1

11

Figure 5: Result of firing T1 in Figure 4

M⇤ = [P1 7! 0, P2 7! 0, P3 7! 1]. This marking is reachable
because we can get to marking M⇤ by firing the sequence of
transitions T1, T1, T2. The reachable state space of a Petri net N ,
denoted R(N), is the set of all markings that are reachable from
the initial state. Given Petri net N and target marking M⇤, a run of
N is accepting if it ends in M⇤.

Another important concept about Petri nets is k-safety: A Petri
net N is said to be k-safe if no place contains more than k tokens
for any marking in R(N). For example, the Petri net of Figure 4
is 2-safe, because no place can contain more than 2 tokens in any
configuration. However, if we modify this Petri net by adding a
back edge from T1 to P1 (with an arc weight of 1), then the
resulting Petri net is not k-safe for any k. As we will see later,
the notion of k-safety plays an important role in the reachability
analysis of Petri nets because the reachable state space R(N) is
bounded iff N is k-safe.

4. Algorithm Overview
We now give an overview of SYPET’s synthesis algorithm and il-
lustrate how it works on the example from Section 2. As shown in
Algorithm 1, the SYNTHESIZE procedure takes a method signature
S, a set of components ⇤, and test cases E . Its output is either ?,
meaning that the specification cannot be synthesized using compo-
nents ⇤, or a well-typed program that passes all test cases E .

Petri-net construction. The first step of our synthesis algorithm
is to construct a Petri net using signatures of components in ⇤.
In particular, the procedure CONSTRUCTPETRI in Algorithm 1
constructs a Petri net N where each transition is a component
f 2 ⇤ and each place correspond to a type. If there is an edge
in the Petri net from ⌧ to f with weight w, component f takes w
arguments of type ⌧ . Similarly, an edge from f to ⌧ 0 indicates that
f ’s return value has type ⌧ 0.

Example 2. Figure 6 shows (a small part of) the Petri net gen-
erated by CONSTRUCTPETRI for the example from Section 2. The
transition labeled getX has one incoming edge of weight 1 from
Point2D because it takes a single argument of this type. There is
also an edge from getX to double because getX’s return value is
double. As another example, the weight of the edge from double to
setToRotation is 3 because this method requires three arguments
of type double. Note that Figure 6 also contains special clone tran-
sitions labeled : Intuitively, these transitions allow us to dupli-
cate tokens. As we will see in Section 5, the clone transitions allow
us to reuse program variables in the synthesis context.

Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Figure 3: Implementation synthesized by SYPET

Second, even when we restrict ourselves to code snippets of length
3 (measured in terms of the number of API calls), there are already
over 3.1 million implementations of rotate that type check. Be-
cause the search space is so large, finding the right implementation
of rotate is akin to finding a needle in the proverbial hay stack.

3. Primer on Petri Nets
Because the remainder of this paper relies on basic knowledge
about Petri nets, we first provide some background on this topic.

3.1 Petri Net Definition
A Petri net is a bipartite graph with two types of nodes: places,
which are drawn as circles, and transitions, represented as solid
bars (see Figure 4). Each place in a Petri net can contain a num-
ber of tokens, which are drawn as dots and typically represent re-
sources. A marking (or configuration) of a Petri net is a mapping
from each place p to the number of tokens at p. Transitions in the
Petri net correspond to events that change the marking. In particu-
lar, incoming edges of a transition t represent necessary conditions
for t to fire, and outgoing edges represent the outcome. For exam-
ple, consider transition T1 from Figure 4. A necessary condition
for T1 to fire is that there must be at least one token present at P1,
because the incoming edge to T1 has weight 1. Because the pre-
condition of this transition is met, we say that T1 is enabled. If we
fire transition T1, we consume one token from place P1 and pro-
duce one token at place P2, because the outgoing edge of T1 is also
labeled with 1. Figure 5 shows the result of firing T1 at the config-
uration shown in Figure 4. Observe that transition T2 is disabled in
both Figure 4 and Figure 5 because there are fewer than two tokens
at place P2.

Definition 1. (Petri net) A Petri net N is a 5-tuple (P, T,E,W,M0)
where P is a set of places, T is a set of transitions, and E ✓
(P ⇥ T) [(T ⇥ P) is the set of edges (arcs). Finally, W is a
mapping from each edge e 2 E to a weight, and M0 is the initial
marking of N .

Example 1. Consider the Petri net shown in Figure 4. Here, we
have P = {P1, P2, P3} and T = {T1, T2, T3}. Let e⇤ be the edge
P2 ! T2. We have W (e⇤) = 2, and W (e) = 1 for all other edges
e in E (e.g., P1 ! T1). The initial marking M0 assigns P1 to 2,
and all other places to 0.

A run (or trace) of a Petri net N is a sequence of transitions that
are fired. For instance, some feasible runs of the Petri net shown
in Figure 4 include T1, T1, T2 and T1, T1, T2, T3. However, T1, T2

and T1, T2, T3 are not feasible.

3.2 Reachability and k-safety in Petri Nets
A key decision problem about Petri nets is reachability: Given
Petri net N with initial marking M0 and target marking M⇤, is
it possible to reach M⇤ by starting at M0 and firing a sequence
of transitions? For instance, consider Figure 4 and target marking

Figure 4: A simple Petri net

P1 P2 P3T1

T2

T3

1 1
2 1

11

Figure 5: Result of firing T1 in Figure 4

M⇤ = [P1 7! 0, P2 7! 0, P3 7! 1]. This marking is reachable
because we can get to marking M⇤ by firing the sequence of
transitions T1, T1, T2. The reachable state space of a Petri net N ,
denoted R(N), is the set of all markings that are reachable from
the initial state. Given Petri net N and target marking M⇤, a run of
N is accepting if it ends in M⇤.

Another important concept about Petri nets is k-safety: A Petri
net N is said to be k-safe if no place contains more than k tokens
for any marking in R(N). For example, the Petri net of Figure 4
is 2-safe, because no place can contain more than 2 tokens in any
configuration. However, if we modify this Petri net by adding a
back edge from T1 to P1 (with an arc weight of 1), then the
resulting Petri net is not k-safe for any k. As we will see later,
the notion of k-safety plays an important role in the reachability
analysis of Petri nets because the reachable state space R(N) is
bounded iff N is k-safe.

4. Algorithm Overview
We now give an overview of SYPET’s synthesis algorithm and il-
lustrate how it works on the example from Section 2. As shown in
Algorithm 1, the SYNTHESIZE procedure takes a method signature
S, a set of components ⇤, and test cases E . Its output is either ?,
meaning that the specification cannot be synthesized using compo-
nents ⇤, or a well-typed program that passes all test cases E .

Petri-net construction. The first step of our synthesis algorithm
is to construct a Petri net using signatures of components in ⇤.
In particular, the procedure CONSTRUCTPETRI in Algorithm 1
constructs a Petri net N where each transition is a component
f 2 ⇤ and each place correspond to a type. If there is an edge
in the Petri net from ⌧ to f with weight w, component f takes w
arguments of type ⌧ . Similarly, an edge from f to ⌧ 0 indicates that
f ’s return value has type ⌧ 0.

Example 2. Figure 6 shows (a small part of) the Petri net gen-
erated by CONSTRUCTPETRI for the example from Section 2. The
transition labeled getX has one incoming edge of weight 1 from
Point2D because it takes a single argument of this type. There is
also an edge from getX to double because getX’s return value is
double. As another example, the weight of the edge from double to
setToRotation is 3 because this method requires three arguments
of type double. Note that Figure 6 also contains special clone tran-
sitions labeled : Intuitively, these transitions allow us to dupli-
cate tokens. As we will see in Section 5, the clone transitions allow
us to reuse program variables in the synthesis context.

Start

End

Petri Net Path = Well-Typed Program

11

1

2

1

2

1

2

11

1

1

2

1Shape createTransShape

A�ne
Transform

Area

create
TransArea

toString

invert

A�neTrans()

setToRotation

double

getX

getY

Point2D

String void

Figure 6: Petri net for motivating example

Algorithm 1 Synthesis Algorithm

1: procedure SYNTHESIZE(S, ⇤, E)
2: Input: Signature S of method to synthesize,
3: components ⇤, and tests E
4: Output: Synthesized program or ? for failure
5: (N ,M⇤) := CONSTRUCTPETRI(S,⇤)
6: while true do
7: ⇡ := GETNEXTPATH(N ,M⇤)
8: (⌃,�) := SKETCHGEN(⇡)
9: for all � 2 MODELS(�) do

10: if RUNTESTS(⌃[�], E) then
11: return ⌃[�]

12: return ?

The initial and final markings on the Petri net are determined
by the signature S provided by the user. For instance, the tokens on
the Petri net N from Figure 6 indicate the initial marking M0 of N .
In particular, because the desired rotate method takes arguments
of type Area, Point2D, and double, the initial marking assigns one
token to each of these types. In addition, M0 also assigns a single
token to the special type void. In contrast, M0[Shape] = 0 because
rotate does not take any arguments of type Shape.

The target marking M⇤ of the Petri net is determined by the
return type of S. In our example, M⇤[Area] = 1 because the return
value of rotate is of type Area. However, for all other types ⌧
(except for void), we require M⇤[⌧] to be 0, because this value
effectively enforces that the synthesized implementation should not
generate unused values. For instance, the target marking for the
rotate example assigns Point2D to 0, thereby enforcing that the
implementation uses argument pt and does not generate any other
unused variables of type Point2D.

Reachability analysis. After constructing a Petri net N that mod-
els the relationships between components in ⇤, we next perform
reachability analysis to lazily find N ’s accepting runs (line 7 in Al-
gorithm 1). For instance, an accepting run r for Figure 6 consists
of the following sequence of transitions:

D, getX, getY, new AffineTransform,
T , setToRotation, createTransformedArea

Another accepting run r0 can be obtained by replacing the transition
createTransformedArea by invert. Observe that D , getX, getY
is not an accepting run because the marking obtained after this run
assigns 3 tokens to double.

Sketch generation. Each accepting run of the Petri net N corre-
sponds to a possible sequence of method calls with unknown ar-
guments. Hence, the SKETCHGEN procedure used in line 8 of Al-
gorithm 1 converts each reachable path ⇡ to a program sketch ⌃
which is then used to resolve unknown arguments. For example,
consider the accepting run r of N that we considered earlier. This
run r corresponds to the following code sketch:

x = #1.getX(); y = #2.getY();
t = new AffineTransform();
#3.setToRotation(#4, #5, #6);
a = #7.createTransformedArea(#8);
return #9;

In other words, we can convert an accepting run r to a program
sketch ⌃ by ignoring the transitions and passing unknown argu-
ments (denoted as #i) to each component. Furthermore, our con-
struction guarantees that it is always possible to complete sketch
⌃ in a way that type-checks and satisfies certain well-formedness
requirements. However, there may be multiple ways to instantiate
the holes in ⌃. For instance, we must assign #1 and #2 to pt, but we
can assign #4 to either angle, x, or y, because the only requirement
is that #4 is of type double.

Sketch completion. Similar to other sketching-based techniques
(e.g., [40]), our technique uses a SAT solver to find possible
completions of the generated program sketch. For this purpose,
the SKETCHGEN procedure generates a propositional formula �
that encodes various semantic requirements on the generated pro-
gram, including being well-typed, not containing unused variables,
and having all holes filled. Specifically, our encoding introduces
Boolean variables of the form h#i

v , which encode that hole #i is
filled with program variable v. For example, for hole #4, our en-
coding generates the following constraint:

h#4
angle

+ h#4
x + h#4

y = 1.

This formula stipulates that hole #4 must be filled with exactly one
of angle, x, or y because those are the only program variables of
type double. In addition, our encoding stipulates that each program
variable must be used at least once. For instance, for variable

clone transition

Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Figure 3: Implementation synthesized by SYPET

Second, even when we restrict ourselves to code snippets of length
3 (measured in terms of the number of API calls), there are already
over 3.1 million implementations of rotate that type check. Be-
cause the search space is so large, finding the right implementation
of rotate is akin to finding a needle in the proverbial hay stack.

3. Primer on Petri Nets
Because the remainder of this paper relies on basic knowledge
about Petri nets, we first provide some background on this topic.

3.1 Petri Net Definition
A Petri net is a bipartite graph with two types of nodes: places,
which are drawn as circles, and transitions, represented as solid
bars (see Figure 4). Each place in a Petri net can contain a num-
ber of tokens, which are drawn as dots and typically represent re-
sources. A marking (or configuration) of a Petri net is a mapping
from each place p to the number of tokens at p. Transitions in the
Petri net correspond to events that change the marking. In particu-
lar, incoming edges of a transition t represent necessary conditions
for t to fire, and outgoing edges represent the outcome. For exam-
ple, consider transition T1 from Figure 4. A necessary condition
for T1 to fire is that there must be at least one token present at P1,
because the incoming edge to T1 has weight 1. Because the pre-
condition of this transition is met, we say that T1 is enabled. If we
fire transition T1, we consume one token from place P1 and pro-
duce one token at place P2, because the outgoing edge of T1 is also
labeled with 1. Figure 5 shows the result of firing T1 at the config-
uration shown in Figure 4. Observe that transition T2 is disabled in
both Figure 4 and Figure 5 because there are fewer than two tokens
at place P2.

Definition 1. (Petri net) A Petri net N is a 5-tuple (P, T,E,W,M0)
where P is a set of places, T is a set of transitions, and E ✓
(P ⇥ T) [(T ⇥ P) is the set of edges (arcs). Finally, W is a
mapping from each edge e 2 E to a weight, and M0 is the initial
marking of N .

Example 1. Consider the Petri net shown in Figure 4. Here, we
have P = {P1, P2, P3} and T = {T1, T2, T3}. Let e⇤ be the edge
P2 ! T2. We have W (e⇤) = 2, and W (e) = 1 for all other edges
e in E (e.g., P1 ! T1). The initial marking M0 assigns P1 to 2,
and all other places to 0.

A run (or trace) of a Petri net N is a sequence of transitions that
are fired. For instance, some feasible runs of the Petri net shown
in Figure 4 include T1, T1, T2 and T1, T1, T2, T3. However, T1, T2

and T1, T2, T3 are not feasible.

3.2 Reachability and k-safety in Petri Nets
A key decision problem about Petri nets is reachability: Given
Petri net N with initial marking M0 and target marking M⇤, is
it possible to reach M⇤ by starting at M0 and firing a sequence
of transitions? For instance, consider Figure 4 and target marking

Figure 4: A simple Petri net

Figure 5: Result of firing T1 in Figure 4

M⇤ = [P1 7! 0, P2 7! 0, P3 7! 1]. This marking is reachable
because we can get to marking M⇤ by firing the sequence of
transitions T1, T1, T2. The reachable state space of a Petri net N ,
denoted R(N), is the set of all markings that are reachable from
the initial state. Given Petri net N and target marking M⇤, a run of
N is accepting if it ends in M⇤.

Another important concept about Petri nets is k-safety: A Petri
net N is said to be k-safe if no place contains more than k tokens
for any marking in R(N). For example, the Petri net of Figure 4
is 2-safe, because no place can contain more than 2 tokens in any
configuration. However, if we modify this Petri net by adding a
back edge from T1 to P1 (with an arc weight of 1), then the
resulting Petri net is not k-safe for any k. As we will see later,
the notion of k-safety plays an important role in the reachability
analysis of Petri nets because the reachable state space R(N) is
bounded iff N is k-safe.

4. Algorithm Overview
We now give an overview of SYPET’s synthesis algorithm and il-
lustrate how it works on the example from Section 2. As shown in
Algorithm 1, the SYNTHESIZE procedure takes a method signature
S, a set of components ⇤, and test cases E . Its output is either ?,
meaning that the specification cannot be synthesized using compo-
nents ⇤, or a well-typed program that passes all test cases E .

Petri-net construction. The first step of our synthesis algorithm
is to construct a Petri net using signatures of components in ⇤.
In particular, the procedure CONSTRUCTPETRI in Algorithm 1
constructs a Petri net N where each transition is a component
f 2 ⇤ and each place correspond to a type. If there is an edge
in the Petri net from ⌧ to f with weight w, component f takes w
arguments of type ⌧ . Similarly, an edge from f to ⌧ 0 indicates that
f ’s return value has type ⌧ 0.

Example 2. Figure 6 shows (a small part of) the Petri net gen-
erated by CONSTRUCTPETRI for the example from Section 2. The
transition labeled getX has one incoming edge of weight 1 from
Point2D because it takes a single argument of this type. There is
also an edge from getX to double because getX’s return value is
double. As another example, the weight of the edge from double to
setToRotation is 3 because this method requires three arguments
of type double. Note that Figure 6 also contains special clone tran-
sitions labeled : Intuitively, these transitions allow us to dupli-
cate tokens. As we will see in Section 5, the clone transitions allow
us to reuse program variables in the synthesis context.

Petri Net Path = Well-Typed Program

11

1

2

1

2

1

2

11

1

1

2

1Shape createTransShape

A�ne
Transform

Area

create
TransArea

toString

invert

A�neTrans()

setToRotation

double

getX

getY

Point2D

String void

Figure 6: Petri net for motivating example

Algorithm 1 Synthesis Algorithm

1: procedure SYNTHESIZE(S, ⇤, E)
2: Input: Signature S of method to synthesize,
3: components ⇤, and tests E
4: Output: Synthesized program or ? for failure
5: (N ,M⇤) := CONSTRUCTPETRI(S,⇤)
6: while true do
7: ⇡ := GETNEXTPATH(N ,M⇤)
8: (⌃,�) := SKETCHGEN(⇡)
9: for all � 2 MODELS(�) do

10: if RUNTESTS(⌃[�], E) then
11: return ⌃[�]

12: return ?

The initial and final markings on the Petri net are determined
by the signature S provided by the user. For instance, the tokens on
the Petri net N from Figure 6 indicate the initial marking M0 of N .
In particular, because the desired rotate method takes arguments
of type Area, Point2D, and double, the initial marking assigns one
token to each of these types. In addition, M0 also assigns a single
token to the special type void. In contrast, M0[Shape] = 0 because
rotate does not take any arguments of type Shape.

The target marking M⇤ of the Petri net is determined by the
return type of S. In our example, M⇤[Area] = 1 because the return
value of rotate is of type Area. However, for all other types ⌧
(except for void), we require M⇤[⌧] to be 0, because this value
effectively enforces that the synthesized implementation should not
generate unused values. For instance, the target marking for the
rotate example assigns Point2D to 0, thereby enforcing that the
implementation uses argument pt and does not generate any other
unused variables of type Point2D.

Reachability analysis. After constructing a Petri net N that mod-
els the relationships between components in ⇤, we next perform
reachability analysis to lazily find N ’s accepting runs (line 7 in Al-
gorithm 1). For instance, an accepting run r for Figure 6 consists
of the following sequence of transitions:

D, getX, getY, new AffineTransform,
T , setToRotation, createTransformedArea

Another accepting run r0 can be obtained by replacing the transition
createTransformedArea by invert. Observe that D , getX, getY
is not an accepting run because the marking obtained after this run
assigns 3 tokens to double.

Sketch generation. Each accepting run of the Petri net N corre-
sponds to a possible sequence of method calls with unknown ar-
guments. Hence, the SKETCHGEN procedure used in line 8 of Al-
gorithm 1 converts each reachable path ⇡ to a program sketch ⌃
which is then used to resolve unknown arguments. For example,
consider the accepting run r of N that we considered earlier. This
run r corresponds to the following code sketch:

x = #1.getX(); y = #2.getY();
t = new AffineTransform();
#3.setToRotation(#4, #5, #6);
a = #7.createTransformedArea(#8);
return #9;

In other words, we can convert an accepting run r to a program
sketch ⌃ by ignoring the transitions and passing unknown argu-
ments (denoted as #i) to each component. Furthermore, our con-
struction guarantees that it is always possible to complete sketch
⌃ in a way that type-checks and satisfies certain well-formedness
requirements. However, there may be multiple ways to instantiate
the holes in ⌃. For instance, we must assign #1 and #2 to pt, but we
can assign #4 to either angle, x, or y, because the only requirement
is that #4 is of type double.

Sketch completion. Similar to other sketching-based techniques
(e.g., [40]), our technique uses a SAT solver to find possible
completions of the generated program sketch. For this purpose,
the SKETCHGEN procedure generates a propositional formula �
that encodes various semantic requirements on the generated pro-
gram, including being well-typed, not containing unused variables,
and having all holes filled. Specifically, our encoding introduces
Boolean variables of the form h#i

v , which encode that hole #i is
filled with program variable v. For example, for hole #4, our en-
coding generates the following constraint:

h#4
angle

+ h#4
x + h#4

y = 1.

This formula stipulates that hole #4 must be filled with exactly one
of angle, x, or y because those are the only program variables of
type double. In addition, our encoding stipulates that each program
variable must be used at least once. For instance, for variable

Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Figure 3: Implementation synthesized by SYPET

Second, even when we restrict ourselves to code snippets of length
3 (measured in terms of the number of API calls), there are already
over 3.1 million implementations of rotate that type check. Be-
cause the search space is so large, finding the right implementation
of rotate is akin to finding a needle in the proverbial hay stack.

3. Primer on Petri Nets
Because the remainder of this paper relies on basic knowledge
about Petri nets, we first provide some background on this topic.

3.1 Petri Net Definition
A Petri net is a bipartite graph with two types of nodes: places,
which are drawn as circles, and transitions, represented as solid
bars (see Figure 4). Each place in a Petri net can contain a num-
ber of tokens, which are drawn as dots and typically represent re-
sources. A marking (or configuration) of a Petri net is a mapping
from each place p to the number of tokens at p. Transitions in the
Petri net correspond to events that change the marking. In particu-
lar, incoming edges of a transition t represent necessary conditions
for t to fire, and outgoing edges represent the outcome. For exam-
ple, consider transition T1 from Figure 4. A necessary condition
for T1 to fire is that there must be at least one token present at P1,
because the incoming edge to T1 has weight 1. Because the pre-
condition of this transition is met, we say that T1 is enabled. If we
fire transition T1, we consume one token from place P1 and pro-
duce one token at place P2, because the outgoing edge of T1 is also
labeled with 1. Figure 5 shows the result of firing T1 at the config-
uration shown in Figure 4. Observe that transition T2 is disabled in
both Figure 4 and Figure 5 because there are fewer than two tokens
at place P2.

Definition 1. (Petri net) A Petri net N is a 5-tuple (P, T,E,W,M0)
where P is a set of places, T is a set of transitions, and E ✓
(P ⇥ T) [(T ⇥ P) is the set of edges (arcs). Finally, W is a
mapping from each edge e 2 E to a weight, and M0 is the initial
marking of N .

Example 1. Consider the Petri net shown in Figure 4. Here, we
have P = {P1, P2, P3} and T = {T1, T2, T3}. Let e⇤ be the edge
P2 ! T2. We have W (e⇤) = 2, and W (e) = 1 for all other edges
e in E (e.g., P1 ! T1). The initial marking M0 assigns P1 to 2,
and all other places to 0.

A run (or trace) of a Petri net N is a sequence of transitions that
are fired. For instance, some feasible runs of the Petri net shown
in Figure 4 include T1, T1, T2 and T1, T1, T2, T3. However, T1, T2

and T1, T2, T3 are not feasible.

3.2 Reachability and k-safety in Petri Nets
A key decision problem about Petri nets is reachability: Given
Petri net N with initial marking M0 and target marking M⇤, is
it possible to reach M⇤ by starting at M0 and firing a sequence
of transitions? For instance, consider Figure 4 and target marking

Figure 4: A simple Petri net

Figure 5: Result of firing T1 in Figure 4

M⇤ = [P1 7! 0, P2 7! 0, P3 7! 1]. This marking is reachable
because we can get to marking M⇤ by firing the sequence of
transitions T1, T1, T2. The reachable state space of a Petri net N ,
denoted R(N), is the set of all markings that are reachable from
the initial state. Given Petri net N and target marking M⇤, a run of
N is accepting if it ends in M⇤.

Another important concept about Petri nets is k-safety: A Petri
net N is said to be k-safe if no place contains more than k tokens
for any marking in R(N). For example, the Petri net of Figure 4
is 2-safe, because no place can contain more than 2 tokens in any
configuration. However, if we modify this Petri net by adding a
back edge from T1 to P1 (with an arc weight of 1), then the
resulting Petri net is not k-safe for any k. As we will see later,
the notion of k-safety plays an important role in the reachability
analysis of Petri nets because the reachable state space R(N) is
bounded iff N is k-safe.

4. Algorithm Overview
We now give an overview of SYPET’s synthesis algorithm and il-
lustrate how it works on the example from Section 2. As shown in
Algorithm 1, the SYNTHESIZE procedure takes a method signature
S, a set of components ⇤, and test cases E . Its output is either ?,
meaning that the specification cannot be synthesized using compo-
nents ⇤, or a well-typed program that passes all test cases E .

Petri-net construction. The first step of our synthesis algorithm
is to construct a Petri net using signatures of components in ⇤.
In particular, the procedure CONSTRUCTPETRI in Algorithm 1
constructs a Petri net N where each transition is a component
f 2 ⇤ and each place correspond to a type. If there is an edge
in the Petri net from ⌧ to f with weight w, component f takes w
arguments of type ⌧ . Similarly, an edge from f to ⌧ 0 indicates that
f ’s return value has type ⌧ 0.

Example 2. Figure 6 shows (a small part of) the Petri net gen-
erated by CONSTRUCTPETRI for the example from Section 2. The
transition labeled getX has one incoming edge of weight 1 from
Point2D because it takes a single argument of this type. There is
also an edge from getX to double because getX’s return value is
double. As another example, the weight of the edge from double to
setToRotation is 3 because this method requires three arguments
of type double. Note that Figure 6 also contains special clone tran-
sitions labeled : Intuitively, these transitions allow us to dupli-
cate tokens. As we will see in Section 5, the clone transitions allow
us to reuse program variables in the synthesis context.

Petri Net Path = Well-Typed Program

11

1

2

1

2

1

2

11

1

1

2

1Shape createTransShape

A�ne
Transform

Area

create
TransArea

toString

invert

A�neTrans()

setToRotation

double

getX

getY

Point2D

String void

Figure 6: Petri net for motivating example

Algorithm 1 Synthesis Algorithm

1: procedure SYNTHESIZE(S, ⇤, E)
2: Input: Signature S of method to synthesize,
3: components ⇤, and tests E
4: Output: Synthesized program or ? for failure
5: (N ,M⇤) := CONSTRUCTPETRI(S,⇤)
6: while true do
7: ⇡ := GETNEXTPATH(N ,M⇤)
8: (⌃,�) := SKETCHGEN(⇡)
9: for all � 2 MODELS(�) do

10: if RUNTESTS(⌃[�], E) then
11: return ⌃[�]

12: return ?

The initial and final markings on the Petri net are determined
by the signature S provided by the user. For instance, the tokens on
the Petri net N from Figure 6 indicate the initial marking M0 of N .
In particular, because the desired rotate method takes arguments
of type Area, Point2D, and double, the initial marking assigns one
token to each of these types. In addition, M0 also assigns a single
token to the special type void. In contrast, M0[Shape] = 0 because
rotate does not take any arguments of type Shape.

The target marking M⇤ of the Petri net is determined by the
return type of S. In our example, M⇤[Area] = 1 because the return
value of rotate is of type Area. However, for all other types ⌧
(except for void), we require M⇤[⌧] to be 0, because this value
effectively enforces that the synthesized implementation should not
generate unused values. For instance, the target marking for the
rotate example assigns Point2D to 0, thereby enforcing that the
implementation uses argument pt and does not generate any other
unused variables of type Point2D.

Reachability analysis. After constructing a Petri net N that mod-
els the relationships between components in ⇤, we next perform
reachability analysis to lazily find N ’s accepting runs (line 7 in Al-
gorithm 1). For instance, an accepting run r for Figure 6 consists
of the following sequence of transitions:

D, getX, getY, new AffineTransform,
T , setToRotation, createTransformedArea

Another accepting run r0 can be obtained by replacing the transition
createTransformedArea by invert. Observe that D , getX, getY
is not an accepting run because the marking obtained after this run
assigns 3 tokens to double.

Sketch generation. Each accepting run of the Petri net N corre-
sponds to a possible sequence of method calls with unknown ar-
guments. Hence, the SKETCHGEN procedure used in line 8 of Al-
gorithm 1 converts each reachable path ⇡ to a program sketch ⌃
which is then used to resolve unknown arguments. For example,
consider the accepting run r of N that we considered earlier. This
run r corresponds to the following code sketch:

x = #1.getX(); y = #2.getY();
t = new AffineTransform();
#3.setToRotation(#4, #5, #6);
a = #7.createTransformedArea(#8);
return #9;

In other words, we can convert an accepting run r to a program
sketch ⌃ by ignoring the transitions and passing unknown argu-
ments (denoted as #i) to each component. Furthermore, our con-
struction guarantees that it is always possible to complete sketch
⌃ in a way that type-checks and satisfies certain well-formedness
requirements. However, there may be multiple ways to instantiate
the holes in ⌃. For instance, we must assign #1 and #2 to pt, but we
can assign #4 to either angle, x, or y, because the only requirement
is that #4 is of type double.

Sketch completion. Similar to other sketching-based techniques
(e.g., [40]), our technique uses a SAT solver to find possible
completions of the generated program sketch. For this purpose,
the SKETCHGEN procedure generates a propositional formula �
that encodes various semantic requirements on the generated pro-
gram, including being well-typed, not containing unused variables,
and having all holes filled. Specifically, our encoding introduces
Boolean variables of the form h#i

v , which encode that hole #i is
filled with program variable v. For example, for hole #4, our en-
coding generates the following constraint:

h#4
angle

+ h#4
x + h#4

y = 1.

This formula stipulates that hole #4 must be filled with exactly one
of angle, x, or y because those are the only program variables of
type double. In addition, our encoding stipulates that each program
variable must be used at least once. For instance, for variable

Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Figure 3: Implementation synthesized by SYPET

Second, even when we restrict ourselves to code snippets of length
3 (measured in terms of the number of API calls), there are already
over 3.1 million implementations of rotate that type check. Be-
cause the search space is so large, finding the right implementation
of rotate is akin to finding a needle in the proverbial hay stack.

3. Primer on Petri Nets
Because the remainder of this paper relies on basic knowledge
about Petri nets, we first provide some background on this topic.

3.1 Petri Net Definition
A Petri net is a bipartite graph with two types of nodes: places,
which are drawn as circles, and transitions, represented as solid
bars (see Figure 4). Each place in a Petri net can contain a num-
ber of tokens, which are drawn as dots and typically represent re-
sources. A marking (or configuration) of a Petri net is a mapping
from each place p to the number of tokens at p. Transitions in the
Petri net correspond to events that change the marking. In particu-
lar, incoming edges of a transition t represent necessary conditions
for t to fire, and outgoing edges represent the outcome. For exam-
ple, consider transition T1 from Figure 4. A necessary condition
for T1 to fire is that there must be at least one token present at P1,
because the incoming edge to T1 has weight 1. Because the pre-
condition of this transition is met, we say that T1 is enabled. If we
fire transition T1, we consume one token from place P1 and pro-
duce one token at place P2, because the outgoing edge of T1 is also
labeled with 1. Figure 5 shows the result of firing T1 at the config-
uration shown in Figure 4. Observe that transition T2 is disabled in
both Figure 4 and Figure 5 because there are fewer than two tokens
at place P2.

Definition 1. (Petri net) A Petri net N is a 5-tuple (P, T,E,W,M0)
where P is a set of places, T is a set of transitions, and E ✓
(P ⇥ T) [(T ⇥ P) is the set of edges (arcs). Finally, W is a
mapping from each edge e 2 E to a weight, and M0 is the initial
marking of N .

Example 1. Consider the Petri net shown in Figure 4. Here, we
have P = {P1, P2, P3} and T = {T1, T2, T3}. Let e⇤ be the edge
P2 ! T2. We have W (e⇤) = 2, and W (e) = 1 for all other edges
e in E (e.g., P1 ! T1). The initial marking M0 assigns P1 to 2,
and all other places to 0.

A run (or trace) of a Petri net N is a sequence of transitions that
are fired. For instance, some feasible runs of the Petri net shown
in Figure 4 include T1, T1, T2 and T1, T1, T2, T3. However, T1, T2

and T1, T2, T3 are not feasible.

3.2 Reachability and k-safety in Petri Nets
A key decision problem about Petri nets is reachability: Given
Petri net N with initial marking M0 and target marking M⇤, is
it possible to reach M⇤ by starting at M0 and firing a sequence
of transitions? For instance, consider Figure 4 and target marking

Figure 4: A simple Petri net

Figure 5: Result of firing T1 in Figure 4

M⇤ = [P1 7! 0, P2 7! 0, P3 7! 1]. This marking is reachable
because we can get to marking M⇤ by firing the sequence of
transitions T1, T1, T2. The reachable state space of a Petri net N ,
denoted R(N), is the set of all markings that are reachable from
the initial state. Given Petri net N and target marking M⇤, a run of
N is accepting if it ends in M⇤.

Another important concept about Petri nets is k-safety: A Petri
net N is said to be k-safe if no place contains more than k tokens
for any marking in R(N). For example, the Petri net of Figure 4
is 2-safe, because no place can contain more than 2 tokens in any
configuration. However, if we modify this Petri net by adding a
back edge from T1 to P1 (with an arc weight of 1), then the
resulting Petri net is not k-safe for any k. As we will see later,
the notion of k-safety plays an important role in the reachability
analysis of Petri nets because the reachable state space R(N) is
bounded iff N is k-safe.

4. Algorithm Overview
We now give an overview of SYPET’s synthesis algorithm and il-
lustrate how it works on the example from Section 2. As shown in
Algorithm 1, the SYNTHESIZE procedure takes a method signature
S, a set of components ⇤, and test cases E . Its output is either ?,
meaning that the specification cannot be synthesized using compo-
nents ⇤, or a well-typed program that passes all test cases E .

Petri-net construction. The first step of our synthesis algorithm
is to construct a Petri net using signatures of components in ⇤.
In particular, the procedure CONSTRUCTPETRI in Algorithm 1
constructs a Petri net N where each transition is a component
f 2 ⇤ and each place correspond to a type. If there is an edge
in the Petri net from ⌧ to f with weight w, component f takes w
arguments of type ⌧ . Similarly, an edge from f to ⌧ 0 indicates that
f ’s return value has type ⌧ 0.

Example 2. Figure 6 shows (a small part of) the Petri net gen-
erated by CONSTRUCTPETRI for the example from Section 2. The
transition labeled getX has one incoming edge of weight 1 from
Point2D because it takes a single argument of this type. There is
also an edge from getX to double because getX’s return value is
double. As another example, the weight of the edge from double to
setToRotation is 3 because this method requires three arguments
of type double. Note that Figure 6 also contains special clone tran-
sitions labeled : Intuitively, these transitions allow us to dupli-
cate tokens. As we will see in Section 5, the clone transitions allow
us to reuse program variables in the synthesis context.

Petri Net Path = Well-Typed Program

11

1

2

1

2

1

2

11

1

1

2

1Shape createTransShape

A�ne
Transform

Area

create
TransArea

toString

invert

A�neTrans()

setToRotation

double

getX

getY

Point2D

String void

Figure 6: Petri net for motivating example

Algorithm 1 Synthesis Algorithm

1: procedure SYNTHESIZE(S, ⇤, E)
2: Input: Signature S of method to synthesize,
3: components ⇤, and tests E
4: Output: Synthesized program or ? for failure
5: (N ,M⇤) := CONSTRUCTPETRI(S,⇤)
6: while true do
7: ⇡ := GETNEXTPATH(N ,M⇤)
8: (⌃,�) := SKETCHGEN(⇡)
9: for all � 2 MODELS(�) do

10: if RUNTESTS(⌃[�], E) then
11: return ⌃[�]

12: return ?

The initial and final markings on the Petri net are determined
by the signature S provided by the user. For instance, the tokens on
the Petri net N from Figure 6 indicate the initial marking M0 of N .
In particular, because the desired rotate method takes arguments
of type Area, Point2D, and double, the initial marking assigns one
token to each of these types. In addition, M0 also assigns a single
token to the special type void. In contrast, M0[Shape] = 0 because
rotate does not take any arguments of type Shape.

The target marking M⇤ of the Petri net is determined by the
return type of S. In our example, M⇤[Area] = 1 because the return
value of rotate is of type Area. However, for all other types ⌧
(except for void), we require M⇤[⌧] to be 0, because this value
effectively enforces that the synthesized implementation should not
generate unused values. For instance, the target marking for the
rotate example assigns Point2D to 0, thereby enforcing that the
implementation uses argument pt and does not generate any other
unused variables of type Point2D.

Reachability analysis. After constructing a Petri net N that mod-
els the relationships between components in ⇤, we next perform
reachability analysis to lazily find N ’s accepting runs (line 7 in Al-
gorithm 1). For instance, an accepting run r for Figure 6 consists
of the following sequence of transitions:

D, getX, getY, new AffineTransform,
T , setToRotation, createTransformedArea

Another accepting run r0 can be obtained by replacing the transition
createTransformedArea by invert. Observe that D , getX, getY
is not an accepting run because the marking obtained after this run
assigns 3 tokens to double.

Sketch generation. Each accepting run of the Petri net N corre-
sponds to a possible sequence of method calls with unknown ar-
guments. Hence, the SKETCHGEN procedure used in line 8 of Al-
gorithm 1 converts each reachable path ⇡ to a program sketch ⌃
which is then used to resolve unknown arguments. For example,
consider the accepting run r of N that we considered earlier. This
run r corresponds to the following code sketch:

x = #1.getX(); y = #2.getY();
t = new AffineTransform();
#3.setToRotation(#4, #5, #6);
a = #7.createTransformedArea(#8);
return #9;

In other words, we can convert an accepting run r to a program
sketch ⌃ by ignoring the transitions and passing unknown argu-
ments (denoted as #i) to each component. Furthermore, our con-
struction guarantees that it is always possible to complete sketch
⌃ in a way that type-checks and satisfies certain well-formedness
requirements. However, there may be multiple ways to instantiate
the holes in ⌃. For instance, we must assign #1 and #2 to pt, but we
can assign #4 to either angle, x, or y, because the only requirement
is that #4 is of type double.

Sketch completion. Similar to other sketching-based techniques
(e.g., [40]), our technique uses a SAT solver to find possible
completions of the generated program sketch. For this purpose,
the SKETCHGEN procedure generates a propositional formula �
that encodes various semantic requirements on the generated pro-
gram, including being well-typed, not containing unused variables,
and having all holes filled. Specifically, our encoding introduces
Boolean variables of the form h#i

v , which encode that hole #i is
filled with program variable v. For example, for hole #4, our en-
coding generates the following constraint:

h#4
angle

+ h#4
x + h#4

y = 1.

This formula stipulates that hole #4 must be filled with exactly one
of angle, x, or y because those are the only program variables of
type double. In addition, our encoding stipulates that each program
variable must be used at least once. For instance, for variable

Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Figure 3: Implementation synthesized by SYPET

Second, even when we restrict ourselves to code snippets of length
3 (measured in terms of the number of API calls), there are already
over 3.1 million implementations of rotate that type check. Be-
cause the search space is so large, finding the right implementation
of rotate is akin to finding a needle in the proverbial hay stack.

3. Primer on Petri Nets
Because the remainder of this paper relies on basic knowledge
about Petri nets, we first provide some background on this topic.

3.1 Petri Net Definition
A Petri net is a bipartite graph with two types of nodes: places,
which are drawn as circles, and transitions, represented as solid
bars (see Figure 4). Each place in a Petri net can contain a num-
ber of tokens, which are drawn as dots and typically represent re-
sources. A marking (or configuration) of a Petri net is a mapping
from each place p to the number of tokens at p. Transitions in the
Petri net correspond to events that change the marking. In particu-
lar, incoming edges of a transition t represent necessary conditions
for t to fire, and outgoing edges represent the outcome. For exam-
ple, consider transition T1 from Figure 4. A necessary condition
for T1 to fire is that there must be at least one token present at P1,
because the incoming edge to T1 has weight 1. Because the pre-
condition of this transition is met, we say that T1 is enabled. If we
fire transition T1, we consume one token from place P1 and pro-
duce one token at place P2, because the outgoing edge of T1 is also
labeled with 1. Figure 5 shows the result of firing T1 at the config-
uration shown in Figure 4. Observe that transition T2 is disabled in
both Figure 4 and Figure 5 because there are fewer than two tokens
at place P2.

Definition 1. (Petri net) A Petri net N is a 5-tuple (P, T,E,W,M0)
where P is a set of places, T is a set of transitions, and E ✓
(P ⇥ T) [(T ⇥ P) is the set of edges (arcs). Finally, W is a
mapping from each edge e 2 E to a weight, and M0 is the initial
marking of N .

Example 1. Consider the Petri net shown in Figure 4. Here, we
have P = {P1, P2, P3} and T = {T1, T2, T3}. Let e⇤ be the edge
P2 ! T2. We have W (e⇤) = 2, and W (e) = 1 for all other edges
e in E (e.g., P1 ! T1). The initial marking M0 assigns P1 to 2,
and all other places to 0.

A run (or trace) of a Petri net N is a sequence of transitions that
are fired. For instance, some feasible runs of the Petri net shown
in Figure 4 include T1, T1, T2 and T1, T1, T2, T3. However, T1, T2

and T1, T2, T3 are not feasible.

3.2 Reachability and k-safety in Petri Nets
A key decision problem about Petri nets is reachability: Given
Petri net N with initial marking M0 and target marking M⇤, is
it possible to reach M⇤ by starting at M0 and firing a sequence
of transitions? For instance, consider Figure 4 and target marking

Figure 4: A simple Petri net

Figure 5: Result of firing T1 in Figure 4

M⇤ = [P1 7! 0, P2 7! 0, P3 7! 1]. This marking is reachable
because we can get to marking M⇤ by firing the sequence of
transitions T1, T1, T2. The reachable state space of a Petri net N ,
denoted R(N), is the set of all markings that are reachable from
the initial state. Given Petri net N and target marking M⇤, a run of
N is accepting if it ends in M⇤.

Another important concept about Petri nets is k-safety: A Petri
net N is said to be k-safe if no place contains more than k tokens
for any marking in R(N). For example, the Petri net of Figure 4
is 2-safe, because no place can contain more than 2 tokens in any
configuration. However, if we modify this Petri net by adding a
back edge from T1 to P1 (with an arc weight of 1), then the
resulting Petri net is not k-safe for any k. As we will see later,
the notion of k-safety plays an important role in the reachability
analysis of Petri nets because the reachable state space R(N) is
bounded iff N is k-safe.

4. Algorithm Overview
We now give an overview of SYPET’s synthesis algorithm and il-
lustrate how it works on the example from Section 2. As shown in
Algorithm 1, the SYNTHESIZE procedure takes a method signature
S, a set of components ⇤, and test cases E . Its output is either ?,
meaning that the specification cannot be synthesized using compo-
nents ⇤, or a well-typed program that passes all test cases E .

Petri-net construction. The first step of our synthesis algorithm
is to construct a Petri net using signatures of components in ⇤.
In particular, the procedure CONSTRUCTPETRI in Algorithm 1
constructs a Petri net N where each transition is a component
f 2 ⇤ and each place correspond to a type. If there is an edge
in the Petri net from ⌧ to f with weight w, component f takes w
arguments of type ⌧ . Similarly, an edge from f to ⌧ 0 indicates that
f ’s return value has type ⌧ 0.

Example 2. Figure 6 shows (a small part of) the Petri net gen-
erated by CONSTRUCTPETRI for the example from Section 2. The
transition labeled getX has one incoming edge of weight 1 from
Point2D because it takes a single argument of this type. There is
also an edge from getX to double because getX’s return value is
double. As another example, the weight of the edge from double to
setToRotation is 3 because this method requires three arguments
of type double. Note that Figure 6 also contains special clone tran-
sitions labeled : Intuitively, these transitions allow us to dupli-
cate tokens. As we will see in Section 5, the clone transitions allow
us to reuse program variables in the synthesis context.

Petri Net Path = Well-Typed Program

11

1

2

1

2

1

2

11

1

1

2

1Shape createTransShape

A�ne
Transform

Area

create
TransArea

toString

invert

A�neTrans()

setToRotation

double

getX

getY

Point2D

String void

Figure 6: Petri net for motivating example

Algorithm 1 Synthesis Algorithm

1: procedure SYNTHESIZE(S, ⇤, E)
2: Input: Signature S of method to synthesize,
3: components ⇤, and tests E
4: Output: Synthesized program or ? for failure
5: (N ,M⇤) := CONSTRUCTPETRI(S,⇤)
6: while true do
7: ⇡ := GETNEXTPATH(N ,M⇤)
8: (⌃,�) := SKETCHGEN(⇡)
9: for all � 2 MODELS(�) do

10: if RUNTESTS(⌃[�], E) then
11: return ⌃[�]

12: return ?

The initial and final markings on the Petri net are determined
by the signature S provided by the user. For instance, the tokens on
the Petri net N from Figure 6 indicate the initial marking M0 of N .
In particular, because the desired rotate method takes arguments
of type Area, Point2D, and double, the initial marking assigns one
token to each of these types. In addition, M0 also assigns a single
token to the special type void. In contrast, M0[Shape] = 0 because
rotate does not take any arguments of type Shape.

The target marking M⇤ of the Petri net is determined by the
return type of S. In our example, M⇤[Area] = 1 because the return
value of rotate is of type Area. However, for all other types ⌧
(except for void), we require M⇤[⌧] to be 0, because this value
effectively enforces that the synthesized implementation should not
generate unused values. For instance, the target marking for the
rotate example assigns Point2D to 0, thereby enforcing that the
implementation uses argument pt and does not generate any other
unused variables of type Point2D.

Reachability analysis. After constructing a Petri net N that mod-
els the relationships between components in ⇤, we next perform
reachability analysis to lazily find N ’s accepting runs (line 7 in Al-
gorithm 1). For instance, an accepting run r for Figure 6 consists
of the following sequence of transitions:

D, getX, getY, new AffineTransform,
T , setToRotation, createTransformedArea

Another accepting run r0 can be obtained by replacing the transition
createTransformedArea by invert. Observe that D , getX, getY
is not an accepting run because the marking obtained after this run
assigns 3 tokens to double.

Sketch generation. Each accepting run of the Petri net N corre-
sponds to a possible sequence of method calls with unknown ar-
guments. Hence, the SKETCHGEN procedure used in line 8 of Al-
gorithm 1 converts each reachable path ⇡ to a program sketch ⌃
which is then used to resolve unknown arguments. For example,
consider the accepting run r of N that we considered earlier. This
run r corresponds to the following code sketch:

x = #1.getX(); y = #2.getY();
t = new AffineTransform();
#3.setToRotation(#4, #5, #6);
a = #7.createTransformedArea(#8);
return #9;

In other words, we can convert an accepting run r to a program
sketch ⌃ by ignoring the transitions and passing unknown argu-
ments (denoted as #i) to each component. Furthermore, our con-
struction guarantees that it is always possible to complete sketch
⌃ in a way that type-checks and satisfies certain well-formedness
requirements. However, there may be multiple ways to instantiate
the holes in ⌃. For instance, we must assign #1 and #2 to pt, but we
can assign #4 to either angle, x, or y, because the only requirement
is that #4 is of type double.

Sketch completion. Similar to other sketching-based techniques
(e.g., [40]), our technique uses a SAT solver to find possible
completions of the generated program sketch. For this purpose,
the SKETCHGEN procedure generates a propositional formula �
that encodes various semantic requirements on the generated pro-
gram, including being well-typed, not containing unused variables,
and having all holes filled. Specifically, our encoding introduces
Boolean variables of the form h#i

v , which encode that hole #i is
filled with program variable v. For example, for hole #4, our en-
coding generates the following constraint:

h#4
angle

+ h#4
x + h#4

y = 1.

This formula stipulates that hole #4 must be filled with exactly one
of angle, x, or y because those are the only program variables of
type double. In addition, our encoding stipulates that each program
variable must be used at least once. For instance, for variable

Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Figure 3: Implementation synthesized by SYPET

Second, even when we restrict ourselves to code snippets of length
3 (measured in terms of the number of API calls), there are already
over 3.1 million implementations of rotate that type check. Be-
cause the search space is so large, finding the right implementation
of rotate is akin to finding a needle in the proverbial hay stack.

3. Primer on Petri Nets
Because the remainder of this paper relies on basic knowledge
about Petri nets, we first provide some background on this topic.

3.1 Petri Net Definition
A Petri net is a bipartite graph with two types of nodes: places,
which are drawn as circles, and transitions, represented as solid
bars (see Figure 4). Each place in a Petri net can contain a num-
ber of tokens, which are drawn as dots and typically represent re-
sources. A marking (or configuration) of a Petri net is a mapping
from each place p to the number of tokens at p. Transitions in the
Petri net correspond to events that change the marking. In particu-
lar, incoming edges of a transition t represent necessary conditions
for t to fire, and outgoing edges represent the outcome. For exam-
ple, consider transition T1 from Figure 4. A necessary condition
for T1 to fire is that there must be at least one token present at P1,
because the incoming edge to T1 has weight 1. Because the pre-
condition of this transition is met, we say that T1 is enabled. If we
fire transition T1, we consume one token from place P1 and pro-
duce one token at place P2, because the outgoing edge of T1 is also
labeled with 1. Figure 5 shows the result of firing T1 at the config-
uration shown in Figure 4. Observe that transition T2 is disabled in
both Figure 4 and Figure 5 because there are fewer than two tokens
at place P2.

Definition 1. (Petri net) A Petri net N is a 5-tuple (P, T,E,W,M0)
where P is a set of places, T is a set of transitions, and E ✓
(P ⇥ T) [(T ⇥ P) is the set of edges (arcs). Finally, W is a
mapping from each edge e 2 E to a weight, and M0 is the initial
marking of N .

Example 1. Consider the Petri net shown in Figure 4. Here, we
have P = {P1, P2, P3} and T = {T1, T2, T3}. Let e⇤ be the edge
P2 ! T2. We have W (e⇤) = 2, and W (e) = 1 for all other edges
e in E (e.g., P1 ! T1). The initial marking M0 assigns P1 to 2,
and all other places to 0.

A run (or trace) of a Petri net N is a sequence of transitions that
are fired. For instance, some feasible runs of the Petri net shown
in Figure 4 include T1, T1, T2 and T1, T1, T2, T3. However, T1, T2

and T1, T2, T3 are not feasible.

3.2 Reachability and k-safety in Petri Nets
A key decision problem about Petri nets is reachability: Given
Petri net N with initial marking M0 and target marking M⇤, is
it possible to reach M⇤ by starting at M0 and firing a sequence
of transitions? For instance, consider Figure 4 and target marking

Figure 4: A simple Petri net

Figure 5: Result of firing T1 in Figure 4

M⇤ = [P1 7! 0, P2 7! 0, P3 7! 1]. This marking is reachable
because we can get to marking M⇤ by firing the sequence of
transitions T1, T1, T2. The reachable state space of a Petri net N ,
denoted R(N), is the set of all markings that are reachable from
the initial state. Given Petri net N and target marking M⇤, a run of
N is accepting if it ends in M⇤.

Another important concept about Petri nets is k-safety: A Petri
net N is said to be k-safe if no place contains more than k tokens
for any marking in R(N). For example, the Petri net of Figure 4
is 2-safe, because no place can contain more than 2 tokens in any
configuration. However, if we modify this Petri net by adding a
back edge from T1 to P1 (with an arc weight of 1), then the
resulting Petri net is not k-safe for any k. As we will see later,
the notion of k-safety plays an important role in the reachability
analysis of Petri nets because the reachable state space R(N) is
bounded iff N is k-safe.

4. Algorithm Overview
We now give an overview of SYPET’s synthesis algorithm and il-
lustrate how it works on the example from Section 2. As shown in
Algorithm 1, the SYNTHESIZE procedure takes a method signature
S, a set of components ⇤, and test cases E . Its output is either ?,
meaning that the specification cannot be synthesized using compo-
nents ⇤, or a well-typed program that passes all test cases E .

Petri-net construction. The first step of our synthesis algorithm
is to construct a Petri net using signatures of components in ⇤.
In particular, the procedure CONSTRUCTPETRI in Algorithm 1
constructs a Petri net N where each transition is a component
f 2 ⇤ and each place correspond to a type. If there is an edge
in the Petri net from ⌧ to f with weight w, component f takes w
arguments of type ⌧ . Similarly, an edge from f to ⌧ 0 indicates that
f ’s return value has type ⌧ 0.

Example 2. Figure 6 shows (a small part of) the Petri net gen-
erated by CONSTRUCTPETRI for the example from Section 2. The
transition labeled getX has one incoming edge of weight 1 from
Point2D because it takes a single argument of this type. There is
also an edge from getX to double because getX’s return value is
double. As another example, the weight of the edge from double to
setToRotation is 3 because this method requires three arguments
of type double. Note that Figure 6 also contains special clone tran-
sitions labeled : Intuitively, these transitions allow us to dupli-
cate tokens. As we will see in Section 5, the clone transitions allow
us to reuse program variables in the synthesis context.

Petri Net Path = Well-Typed Program

11

1

2

1

2

1

2

11

1

1

2

1Shape createTransShape

A�ne
Transform

Area

create
TransArea

toString

invert

A�neTrans()

setToRotation

double

getX

getY

Point2D

String void

Figure 6: Petri net for motivating example

Algorithm 1 Synthesis Algorithm

1: procedure SYNTHESIZE(S, ⇤, E)
2: Input: Signature S of method to synthesize,
3: components ⇤, and tests E
4: Output: Synthesized program or ? for failure
5: (N ,M⇤) := CONSTRUCTPETRI(S,⇤)
6: while true do
7: ⇡ := GETNEXTPATH(N ,M⇤)
8: (⌃,�) := SKETCHGEN(⇡)
9: for all � 2 MODELS(�) do

10: if RUNTESTS(⌃[�], E) then
11: return ⌃[�]

12: return ?

The initial and final markings on the Petri net are determined
by the signature S provided by the user. For instance, the tokens on
the Petri net N from Figure 6 indicate the initial marking M0 of N .
In particular, because the desired rotate method takes arguments
of type Area, Point2D, and double, the initial marking assigns one
token to each of these types. In addition, M0 also assigns a single
token to the special type void. In contrast, M0[Shape] = 0 because
rotate does not take any arguments of type Shape.

The target marking M⇤ of the Petri net is determined by the
return type of S. In our example, M⇤[Area] = 1 because the return
value of rotate is of type Area. However, for all other types ⌧
(except for void), we require M⇤[⌧] to be 0, because this value
effectively enforces that the synthesized implementation should not
generate unused values. For instance, the target marking for the
rotate example assigns Point2D to 0, thereby enforcing that the
implementation uses argument pt and does not generate any other
unused variables of type Point2D.

Reachability analysis. After constructing a Petri net N that mod-
els the relationships between components in ⇤, we next perform
reachability analysis to lazily find N ’s accepting runs (line 7 in Al-
gorithm 1). For instance, an accepting run r for Figure 6 consists
of the following sequence of transitions:

D, getX, getY, new AffineTransform,
T , setToRotation, createTransformedArea

Another accepting run r0 can be obtained by replacing the transition
createTransformedArea by invert. Observe that D , getX, getY
is not an accepting run because the marking obtained after this run
assigns 3 tokens to double.

Sketch generation. Each accepting run of the Petri net N corre-
sponds to a possible sequence of method calls with unknown ar-
guments. Hence, the SKETCHGEN procedure used in line 8 of Al-
gorithm 1 converts each reachable path ⇡ to a program sketch ⌃
which is then used to resolve unknown arguments. For example,
consider the accepting run r of N that we considered earlier. This
run r corresponds to the following code sketch:

x = #1.getX(); y = #2.getY();
t = new AffineTransform();
#3.setToRotation(#4, #5, #6);
a = #7.createTransformedArea(#8);
return #9;

In other words, we can convert an accepting run r to a program
sketch ⌃ by ignoring the transitions and passing unknown argu-
ments (denoted as #i) to each component. Furthermore, our con-
struction guarantees that it is always possible to complete sketch
⌃ in a way that type-checks and satisfies certain well-formedness
requirements. However, there may be multiple ways to instantiate
the holes in ⌃. For instance, we must assign #1 and #2 to pt, but we
can assign #4 to either angle, x, or y, because the only requirement
is that #4 is of type double.

Sketch completion. Similar to other sketching-based techniques
(e.g., [40]), our technique uses a SAT solver to find possible
completions of the generated program sketch. For this purpose,
the SKETCHGEN procedure generates a propositional formula �
that encodes various semantic requirements on the generated pro-
gram, including being well-typed, not containing unused variables,
and having all holes filled. Specifically, our encoding introduces
Boolean variables of the form h#i

v , which encode that hole #i is
filled with program variable v. For example, for hole #4, our en-
coding generates the following constraint:

h#4
angle

+ h#4
x + h#4

y = 1.

This formula stipulates that hole #4 must be filled with exactly one
of angle, x, or y because those are the only program variables of
type double. In addition, our encoding stipulates that each program
variable must be used at least once. For instance, for variable

Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Figure 3: Implementation synthesized by SYPET

Second, even when we restrict ourselves to code snippets of length
3 (measured in terms of the number of API calls), there are already
over 3.1 million implementations of rotate that type check. Be-
cause the search space is so large, finding the right implementation
of rotate is akin to finding a needle in the proverbial hay stack.

3. Primer on Petri Nets
Because the remainder of this paper relies on basic knowledge
about Petri nets, we first provide some background on this topic.

3.1 Petri Net Definition
A Petri net is a bipartite graph with two types of nodes: places,
which are drawn as circles, and transitions, represented as solid
bars (see Figure 4). Each place in a Petri net can contain a num-
ber of tokens, which are drawn as dots and typically represent re-
sources. A marking (or configuration) of a Petri net is a mapping
from each place p to the number of tokens at p. Transitions in the
Petri net correspond to events that change the marking. In particu-
lar, incoming edges of a transition t represent necessary conditions
for t to fire, and outgoing edges represent the outcome. For exam-
ple, consider transition T1 from Figure 4. A necessary condition
for T1 to fire is that there must be at least one token present at P1,
because the incoming edge to T1 has weight 1. Because the pre-
condition of this transition is met, we say that T1 is enabled. If we
fire transition T1, we consume one token from place P1 and pro-
duce one token at place P2, because the outgoing edge of T1 is also
labeled with 1. Figure 5 shows the result of firing T1 at the config-
uration shown in Figure 4. Observe that transition T2 is disabled in
both Figure 4 and Figure 5 because there are fewer than two tokens
at place P2.

Definition 1. (Petri net) A Petri net N is a 5-tuple (P, T,E,W,M0)
where P is a set of places, T is a set of transitions, and E ✓
(P ⇥ T) [(T ⇥ P) is the set of edges (arcs). Finally, W is a
mapping from each edge e 2 E to a weight, and M0 is the initial
marking of N .

Example 1. Consider the Petri net shown in Figure 4. Here, we
have P = {P1, P2, P3} and T = {T1, T2, T3}. Let e⇤ be the edge
P2 ! T2. We have W (e⇤) = 2, and W (e) = 1 for all other edges
e in E (e.g., P1 ! T1). The initial marking M0 assigns P1 to 2,
and all other places to 0.

A run (or trace) of a Petri net N is a sequence of transitions that
are fired. For instance, some feasible runs of the Petri net shown
in Figure 4 include T1, T1, T2 and T1, T1, T2, T3. However, T1, T2

and T1, T2, T3 are not feasible.

3.2 Reachability and k-safety in Petri Nets
A key decision problem about Petri nets is reachability: Given
Petri net N with initial marking M0 and target marking M⇤, is
it possible to reach M⇤ by starting at M0 and firing a sequence
of transitions? For instance, consider Figure 4 and target marking

Figure 4: A simple Petri net

Figure 5: Result of firing T1 in Figure 4

M⇤ = [P1 7! 0, P2 7! 0, P3 7! 1]. This marking is reachable
because we can get to marking M⇤ by firing the sequence of
transitions T1, T1, T2. The reachable state space of a Petri net N ,
denoted R(N), is the set of all markings that are reachable from
the initial state. Given Petri net N and target marking M⇤, a run of
N is accepting if it ends in M⇤.

Another important concept about Petri nets is k-safety: A Petri
net N is said to be k-safe if no place contains more than k tokens
for any marking in R(N). For example, the Petri net of Figure 4
is 2-safe, because no place can contain more than 2 tokens in any
configuration. However, if we modify this Petri net by adding a
back edge from T1 to P1 (with an arc weight of 1), then the
resulting Petri net is not k-safe for any k. As we will see later,
the notion of k-safety plays an important role in the reachability
analysis of Petri nets because the reachable state space R(N) is
bounded iff N is k-safe.

4. Algorithm Overview
We now give an overview of SYPET’s synthesis algorithm and il-
lustrate how it works on the example from Section 2. As shown in
Algorithm 1, the SYNTHESIZE procedure takes a method signature
S, a set of components ⇤, and test cases E . Its output is either ?,
meaning that the specification cannot be synthesized using compo-
nents ⇤, or a well-typed program that passes all test cases E .

Petri-net construction. The first step of our synthesis algorithm
is to construct a Petri net using signatures of components in ⇤.
In particular, the procedure CONSTRUCTPETRI in Algorithm 1
constructs a Petri net N where each transition is a component
f 2 ⇤ and each place correspond to a type. If there is an edge
in the Petri net from ⌧ to f with weight w, component f takes w
arguments of type ⌧ . Similarly, an edge from f to ⌧ 0 indicates that
f ’s return value has type ⌧ 0.

Example 2. Figure 6 shows (a small part of) the Petri net gen-
erated by CONSTRUCTPETRI for the example from Section 2. The
transition labeled getX has one incoming edge of weight 1 from
Point2D because it takes a single argument of this type. There is
also an edge from getX to double because getX’s return value is
double. As another example, the weight of the edge from double to
setToRotation is 3 because this method requires three arguments
of type double. Note that Figure 6 also contains special clone tran-
sitions labeled : Intuitively, these transitions allow us to dupli-
cate tokens. As we will see in Section 5, the clone transitions allow
us to reuse program variables in the synthesis context.

Petri Net Path = Well-Typed Program

11

1

2

1

2

1

2

11

1

1

2

1Shape createTransShape

A�ne
Transform

Area

create
TransArea

toString

invert

A�neTrans()

setToRotation

double

getX

getY

Point2D

String void

Figure 6: Petri net for motivating example

Algorithm 1 Synthesis Algorithm

1: procedure SYNTHESIZE(S, ⇤, E)
2: Input: Signature S of method to synthesize,
3: components ⇤, and tests E
4: Output: Synthesized program or ? for failure
5: (N ,M⇤) := CONSTRUCTPETRI(S,⇤)
6: while true do
7: ⇡ := GETNEXTPATH(N ,M⇤)
8: (⌃,�) := SKETCHGEN(⇡)
9: for all � 2 MODELS(�) do

10: if RUNTESTS(⌃[�], E) then
11: return ⌃[�]

12: return ?

The initial and final markings on the Petri net are determined
by the signature S provided by the user. For instance, the tokens on
the Petri net N from Figure 6 indicate the initial marking M0 of N .
In particular, because the desired rotate method takes arguments
of type Area, Point2D, and double, the initial marking assigns one
token to each of these types. In addition, M0 also assigns a single
token to the special type void. In contrast, M0[Shape] = 0 because
rotate does not take any arguments of type Shape.

The target marking M⇤ of the Petri net is determined by the
return type of S. In our example, M⇤[Area] = 1 because the return
value of rotate is of type Area. However, for all other types ⌧
(except for void), we require M⇤[⌧] to be 0, because this value
effectively enforces that the synthesized implementation should not
generate unused values. For instance, the target marking for the
rotate example assigns Point2D to 0, thereby enforcing that the
implementation uses argument pt and does not generate any other
unused variables of type Point2D.

Reachability analysis. After constructing a Petri net N that mod-
els the relationships between components in ⇤, we next perform
reachability analysis to lazily find N ’s accepting runs (line 7 in Al-
gorithm 1). For instance, an accepting run r for Figure 6 consists
of the following sequence of transitions:

D, getX, getY, new AffineTransform,
T , setToRotation, createTransformedArea

Another accepting run r0 can be obtained by replacing the transition
createTransformedArea by invert. Observe that D , getX, getY
is not an accepting run because the marking obtained after this run
assigns 3 tokens to double.

Sketch generation. Each accepting run of the Petri net N corre-
sponds to a possible sequence of method calls with unknown ar-
guments. Hence, the SKETCHGEN procedure used in line 8 of Al-
gorithm 1 converts each reachable path ⇡ to a program sketch ⌃
which is then used to resolve unknown arguments. For example,
consider the accepting run r of N that we considered earlier. This
run r corresponds to the following code sketch:

x = #1.getX(); y = #2.getY();
t = new AffineTransform();
#3.setToRotation(#4, #5, #6);
a = #7.createTransformedArea(#8);
return #9;

In other words, we can convert an accepting run r to a program
sketch ⌃ by ignoring the transitions and passing unknown argu-
ments (denoted as #i) to each component. Furthermore, our con-
struction guarantees that it is always possible to complete sketch
⌃ in a way that type-checks and satisfies certain well-formedness
requirements. However, there may be multiple ways to instantiate
the holes in ⌃. For instance, we must assign #1 and #2 to pt, but we
can assign #4 to either angle, x, or y, because the only requirement
is that #4 is of type double.

Sketch completion. Similar to other sketching-based techniques
(e.g., [40]), our technique uses a SAT solver to find possible
completions of the generated program sketch. For this purpose,
the SKETCHGEN procedure generates a propositional formula �
that encodes various semantic requirements on the generated pro-
gram, including being well-typed, not containing unused variables,
and having all holes filled. Specifically, our encoding introduces
Boolean variables of the form h#i

v , which encode that hole #i is
filled with program variable v. For example, for hole #4, our en-
coding generates the following constraint:

h#4
angle

+ h#4
x + h#4

y = 1.

This formula stipulates that hole #4 must be filled with exactly one
of angle, x, or y because those are the only program variables of
type double. In addition, our encoding stipulates that each program
variable must be used at least once. For instance, for variable

Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Figure 3: Implementation synthesized by SYPET

Second, even when we restrict ourselves to code snippets of length
3 (measured in terms of the number of API calls), there are already
over 3.1 million implementations of rotate that type check. Be-
cause the search space is so large, finding the right implementation
of rotate is akin to finding a needle in the proverbial hay stack.

3. Primer on Petri Nets
Because the remainder of this paper relies on basic knowledge
about Petri nets, we first provide some background on this topic.

3.1 Petri Net Definition
A Petri net is a bipartite graph with two types of nodes: places,
which are drawn as circles, and transitions, represented as solid
bars (see Figure 4). Each place in a Petri net can contain a num-
ber of tokens, which are drawn as dots and typically represent re-
sources. A marking (or configuration) of a Petri net is a mapping
from each place p to the number of tokens at p. Transitions in the
Petri net correspond to events that change the marking. In particu-
lar, incoming edges of a transition t represent necessary conditions
for t to fire, and outgoing edges represent the outcome. For exam-
ple, consider transition T1 from Figure 4. A necessary condition
for T1 to fire is that there must be at least one token present at P1,
because the incoming edge to T1 has weight 1. Because the pre-
condition of this transition is met, we say that T1 is enabled. If we
fire transition T1, we consume one token from place P1 and pro-
duce one token at place P2, because the outgoing edge of T1 is also
labeled with 1. Figure 5 shows the result of firing T1 at the config-
uration shown in Figure 4. Observe that transition T2 is disabled in
both Figure 4 and Figure 5 because there are fewer than two tokens
at place P2.

Definition 1. (Petri net) A Petri net N is a 5-tuple (P, T,E,W,M0)
where P is a set of places, T is a set of transitions, and E ✓
(P ⇥ T) [(T ⇥ P) is the set of edges (arcs). Finally, W is a
mapping from each edge e 2 E to a weight, and M0 is the initial
marking of N .

Example 1. Consider the Petri net shown in Figure 4. Here, we
have P = {P1, P2, P3} and T = {T1, T2, T3}. Let e⇤ be the edge
P2 ! T2. We have W (e⇤) = 2, and W (e) = 1 for all other edges
e in E (e.g., P1 ! T1). The initial marking M0 assigns P1 to 2,
and all other places to 0.

A run (or trace) of a Petri net N is a sequence of transitions that
are fired. For instance, some feasible runs of the Petri net shown
in Figure 4 include T1, T1, T2 and T1, T1, T2, T3. However, T1, T2

and T1, T2, T3 are not feasible.

3.2 Reachability and k-safety in Petri Nets
A key decision problem about Petri nets is reachability: Given
Petri net N with initial marking M0 and target marking M⇤, is
it possible to reach M⇤ by starting at M0 and firing a sequence
of transitions? For instance, consider Figure 4 and target marking

Figure 4: A simple Petri net

Figure 5: Result of firing T1 in Figure 4

M⇤ = [P1 7! 0, P2 7! 0, P3 7! 1]. This marking is reachable
because we can get to marking M⇤ by firing the sequence of
transitions T1, T1, T2. The reachable state space of a Petri net N ,
denoted R(N), is the set of all markings that are reachable from
the initial state. Given Petri net N and target marking M⇤, a run of
N is accepting if it ends in M⇤.

Another important concept about Petri nets is k-safety: A Petri
net N is said to be k-safe if no place contains more than k tokens
for any marking in R(N). For example, the Petri net of Figure 4
is 2-safe, because no place can contain more than 2 tokens in any
configuration. However, if we modify this Petri net by adding a
back edge from T1 to P1 (with an arc weight of 1), then the
resulting Petri net is not k-safe for any k. As we will see later,
the notion of k-safety plays an important role in the reachability
analysis of Petri nets because the reachable state space R(N) is
bounded iff N is k-safe.

4. Algorithm Overview
We now give an overview of SYPET’s synthesis algorithm and il-
lustrate how it works on the example from Section 2. As shown in
Algorithm 1, the SYNTHESIZE procedure takes a method signature
S, a set of components ⇤, and test cases E . Its output is either ?,
meaning that the specification cannot be synthesized using compo-
nents ⇤, or a well-typed program that passes all test cases E .

Petri-net construction. The first step of our synthesis algorithm
is to construct a Petri net using signatures of components in ⇤.
In particular, the procedure CONSTRUCTPETRI in Algorithm 1
constructs a Petri net N where each transition is a component
f 2 ⇤ and each place correspond to a type. If there is an edge
in the Petri net from ⌧ to f with weight w, component f takes w
arguments of type ⌧ . Similarly, an edge from f to ⌧ 0 indicates that
f ’s return value has type ⌧ 0.

Example 2. Figure 6 shows (a small part of) the Petri net gen-
erated by CONSTRUCTPETRI for the example from Section 2. The
transition labeled getX has one incoming edge of weight 1 from
Point2D because it takes a single argument of this type. There is
also an edge from getX to double because getX’s return value is
double. As another example, the weight of the edge from double to
setToRotation is 3 because this method requires three arguments
of type double. Note that Figure 6 also contains special clone tran-
sitions labeled : Intuitively, these transitions allow us to dupli-
cate tokens. As we will see in Section 5, the clone transitions allow
us to reuse program variables in the synthesis context.

Path found!
Final state: a token for the return type

(+ tokens for the void type (for supporting side-effects))

Petri Net Path = Well-Typed Incomplete Program

• Generate the following sketch from the path

• Try to fill #1 ~ #9 with all possible variables to find a
correct program wrt test cases

• Search for another petri net path if no program can be
found.

Figure 6: Petri net for motivating example

Algorithm 1 Synthesis Algorithm

1: procedure SYNTHESIZE(S, ⇤, E)
2: Input: Signature S of method to synthesize,
3: components ⇤, and tests E
4: Output: Synthesized program or ? for failure
5: (N ,M⇤) := CONSTRUCTPETRI(S,⇤)
6: while true do
7: ⇡ := GETNEXTPATH(N ,M⇤)
8: (⌃,�) := SKETCHGEN(⇡)
9: for all � 2 MODELS(�) do

10: if RUNTESTS(⌃[�], E) then
11: return ⌃[�]

12: return ?

The initial and final markings on the Petri net are determined
by the signature S provided by the user. For instance, the tokens on
the Petri net N from Figure 6 indicate the initial marking M0 of N .
In particular, because the desired rotate method takes arguments
of type Area, Point2D, and double, the initial marking assigns one
token to each of these types. In addition, M0 also assigns a single
token to the special type void. In contrast, M0[Shape] = 0 because
rotate does not take any arguments of type Shape.

The target marking M⇤ of the Petri net is determined by the
return type of S. In our example, M⇤[Area] = 1 because the return
value of rotate is of type Area. However, for all other types ⌧
(except for void), we require M⇤[⌧] to be 0, because this value
effectively enforces that the synthesized implementation should not
generate unused values. For instance, the target marking for the
rotate example assigns Point2D to 0, thereby enforcing that the
implementation uses argument pt and does not generate any other
unused variables of type Point2D.

Reachability analysis. After constructing a Petri net N that mod-
els the relationships between components in ⇤, we next perform
reachability analysis to lazily find N ’s accepting runs (line 7 in Al-
gorithm 1). For instance, an accepting run r for Figure 6 consists
of the following sequence of transitions:

D, getX, getY, new AffineTransform,
T , setToRotation, createTransformedArea

Another accepting run r0 can be obtained by replacing the transition
createTransformedArea by invert. Observe that D , getX, getY
is not an accepting run because the marking obtained after this run
assigns 3 tokens to double.

Sketch generation. Each accepting run of the Petri net N corre-
sponds to a possible sequence of method calls with unknown ar-
guments. Hence, the SKETCHGEN procedure used in line 8 of Al-
gorithm 1 converts each reachable path ⇡ to a program sketch ⌃
which is then used to resolve unknown arguments. For example,
consider the accepting run r of N that we considered earlier. This
run r corresponds to the following code sketch:

x = #1.getX(); y = #2.getY();
t = new AffineTransform();
#3.setToRotation(#4, #5, #6);
a = #7.createTransformedArea(#8);
return #9;

In other words, we can convert an accepting run r to a program
sketch ⌃ by ignoring the transitions and passing unknown argu-
ments (denoted as #i) to each component. Furthermore, our con-
struction guarantees that it is always possible to complete sketch
⌃ in a way that type-checks and satisfies certain well-formedness
requirements. However, there may be multiple ways to instantiate
the holes in ⌃. For instance, we must assign #1 and #2 to pt, but we
can assign #4 to either angle, x, or y, because the only requirement
is that #4 is of type double.

Sketch completion. Similar to other sketching-based techniques
(e.g., [40]), our technique uses a SAT solver to find possible
completions of the generated program sketch. For this purpose,
the SKETCHGEN procedure generates a propositional formula �
that encodes various semantic requirements on the generated pro-
gram, including being well-typed, not containing unused variables,
and having all holes filled. Specifically, our encoding introduces
Boolean variables of the form h#i

v , which encode that hole #i is
filled with program variable v. For example, for hole #4, our en-
coding generates the following constraint:

h#4
angle

+ h#4
x + h#4

y = 1.

This formula stipulates that hole #4 must be filled with exactly one
of angle, x, or y because those are the only program variables of
type double. In addition, our encoding stipulates that each program
variable must be used at least once. For instance, for variable

Properties

• Pros: scalable wrt #. of API functions supporting side effects

• See: Program synthesis by type-guided abstraction refinement, POPL’20
for an SMT encoding of petri-net reachability

• Cons: cannot support conditionals and loops

• See: FrAngel: Component-Based Synthesis with Control Structures,
POPL’19 for how to support conditionals and loops
https://github.com/kensens/FrAngel

• Affects Hoogle for Haskell API search

• https://hoogleplus.goto.ucsd.edu

https://github.com/kensens/FrAngel
https://hoogleplus.goto.ucsd.edu

How to Encode?
• Brahma:

• Oracle-guided Component-Based Program Synthesis, ICSE’10 (ACM/
IEEE 2020 Most Influential Paper Award)

• https://github.com/fitzgen/synth-loop-free-prog

• SyPet:

• Component-Based Synthesis for Complex APIs, POPL’17

• https://github.com/utopia-group/sypet

• Sketch:

• https://people.csail.mit.edu/asolar/

https://github.com/fitzgen/synth-loop-free-prog
https://github.com/utopia-group/sypet
https://people.csail.mit.edu/asolar/

Example: Swap w/o a Temp Variable

generator int sign() {
 if ?? {return 1;} else {return -1;}
}

void swap (int& x, int& y) {
 x = x + sign() * y;
 y = x + sign() * y;
 x = x + sign() * y;
}

harness void main (int x, int y) {
 int tx = x;
 int ty = y;
 swap (x, y);
 assert (x == ty && y == tx);
}

Example: Swap w/o a Temp Variable

generator int sign() {
 if ?? {return 1;} else {return -1;}
}

void swap (int& x, int& y) {
 x = x + sign() * y;
 y = x + sign() * y;
 x = x + sign() * y;
}

{x ↦ X, y ↦ Y}

{x ↦ X + (ite (??1) 1 -1) * Y, y ↦ Y}

{x ↦ X + (ite (??1) 1 -1) * Y,
 y ↦ X + (ite (??1) 1 -1) * Y +
 (ite (??2) 1 -1) * Y}

{x ↦ X + (ite (??1) 1 -1) * Y +  
 (ite (??3) 1 -1) *  
 (X + (ite (??1) 1 -1) * Y +
 (ite (??2) 1 -1) * Y),
 y ↦ X + (ite (??1) 1 -1) * Y +
 (ite (??2) 1 -1) * Y}

Example: Swap w/o a Temp Variable

…
harness void main (int x, int y) {
 int tx = x;
 int ty = y;
 swap (x, y);
 assert (x == ty && y == tx);
}

∀ X, Y ∈ CEXs.  
 X + (ite (??1) 1 -1) * Y + (ite (??3) 1 -1)  
 * (X + (ite (??1) 1 -1) * Y + (ite (??2) 1 -1) * Y) = Y
 ∧ X + (ite (??1) 1 -1) * Y + (ite (??2) 1 -1) * Y = X

Find holes such that Where does it come from?
Through CEGIS

??1 ↦ true, ??2 ↦ false, ??3 ↦ false

{x ↦ X + (ite (??1) 1 -1) * Y +  
 (ite (??3) 1 -1) *  
 (X + (ite (??1) 1 -1) * Y +
 (ite (??2) 1 -1) * Y),
 y ↦ X + (ite (??1) 1 -1) * Y +
 (ite (??2) 1 -1) * Y}

Other Details

• RegExp for specify usable operators and operands can be used to fill holes

• What about loops and recursive functions?

• They are unrolled finite times (adjustable via options)

• To handle non-linear integer arithmetic beyond the capability of SMT

• integers are bounded

• integer operations are encoded as lookup tables

• and then a SAT solver is used.

Limitations of Sketch

• Loops, integers are bounded.

• Not easy to specify Sketch

• But as search gets better, user input can be simplified

• Cannot guide the search towards more likely programs

Summary

• Encoding: synthesis constraints → SAT/SMT formulas,

Decoding: model → solution

• Can express syntactic constraints beyond the power of
CFGs

• Overall performance heavily relies on the performance
of SAT/SMT solvers.

Efficiency vs. Applicability

Search

Efficiency

General

Applicability

Enumeration +
Domain-specific

optimization
(e.g., Top-down

propagation)

Stochastic search

Enumeration +
General optimization
(e.g., observational

equivalence)

Constraint
solving-based

Efficiency vs. Applicability

Search

Efficiency

General

Applicability

Enumeration +
Domain-specific

optimization
(e.g., Top-down

propagation)

Stochastic search

Enumeration +
General optimization
(e.g., observational

equivalence)

Constraint
solving-based

Only applicable for specific kinds of problems

Only applicable for problems

solvable using SMT operators

Applicable to almost
all kinds of problems
with limited scalability

Able to synthesize
sizable programs in

principle

