Stochastic Search-Based
Synthesis

VWoosuk Lee
CSE91 16 SPRING 2024

Hanyang University

HANYANG UNIVERSITY

Three Search Strategies

e Enumerative: enumeration + optimization
e Stochastic: probabilistic walk

o Constraint-based: encoding a synthesis problem as a
SAT/SMT instance

Searched Regions

PCFG /
CFG PHOG P77

Made from
likely rules

Enumerative search Weighted Local search
enumerative search

e Enumerative: smaller candidates first + probabilistic guidance

e Stochastic: variants of an initial random candidate

Application — Superoptimization (STOKE)

gcc -03
STOKE
movq rsi, r9

movl ecx, ecx

shrq 32, rsi

andl Oxffffffff, rod
movqg rcx, rax

movl edx, edx

9 imulg r9, rax

10 imulqg rdx, r9

11 imulqg rsi, rdx

12 imulqg rsi, rcx

13 addqg rdx, rax

shlq 32, rcx
movl edx, edx
Xorq rdx, rcx
movqg rcx, rax
mulqg rsi
addq r8, rdi
9 adeq 0, rdx
10 addq rdi, rax

0 Jo b WN
O Joy b WD

14 jae .LO 11 adeq 0, rdx
15 movabsqg 0x100000000, rdx 12 movq rdx, r8
16 addq rdx, rcx 13 movqg rax, rdi
17 .LO:

18 movqg rax, rsi
19 movqg rax, rdx
20 shrg 32, rsi
21 salq 32, rdx
22 addq rsi, rcx

23 addq r9, rdx

24 adeq 0, rcx

25 addq r8, rdx

26 adeq 0, rex 1.6Xx speed-up
27 addq rdi, rdx

28 adeq 0, rcx

29 movqg rcx, r8

30 movqg rdx, rdi

Montgomery multiplication kernel from the OpenSSL RSA library. Compilations shown for
gcc —03 (left) and a stochastic optimizer (right).

http://stoke.stanford.edu

e Given a source program s and test inputs Tests,

® Finding another program of better performance and
semantically equivalent to s

Requirement |: Cost Function

e Compares program output to reference test cases and
measures candidates’ performance

e | ower the better (0: best)

costs(p) = eq,(p) + perf(p)

/ \

enalty for enalty for bein
source program P Y P y 5
wrong results slow

eqs(P)=Dterests Te8s(p, t) + memg(p, t) + err(p, t)
“— N 4

of different bits in # of segfaults etc
registers/memory

Requirement 2: Move Function

e Makes a small syntactic change to a current program
e Examples
e Generate a random instruction

e Remove a randomly chosen instruction

® Replace opcode (e.g., ADD — MUL) of a randomly chosen
instruction with another

Initial Stochastic Synthesis Algorithm

p := random/()
while cost(p) > O:
p’ := propose move (p);

1f (cost(p’) < cost(p)):

Local Minima

global optimum

Better program
Program brog

local optimum

Any program candidates can be
visited by the move function (ergodicity)

Stochastic Synthesis Algorithm (improved)

p := random ()
while cost (p) > O:
p’ := propose move (pP);

i1f (random (A(p->p’)):

p := p’

A(p -> p’) : prob. of changing the current best candidate

from p to p’
e |f cost(p’) < cost(p) then 1
e Otherwise, proportional to cost(p) / cost(p’)

Possible to Reach the Global Optimum

.LO: .LO:

movq rsi, r9 shlqg 32, rcx
movl ecx, ecx movl edx, edx
shrq 32, rsi xorq rdx, rcx
andl oxffffffff, rod movq rcx, rax
movq rcx, rax mulq rsi

movl edx, edx ' addq r8, rdi
imulq r9, rax adcq 0, rdx
imulq rdx, r9 addq rdi, rax
imulg rsi, rdx adcq 0, rdx
imulg rsi, rcx movq rdx, r8
addg rdx, rax movq rax, rdi
jae .L2

movabsq 0x100000000, rdx
addq rdx, rcx
.L2:

movqg rax, rsi
movq rax, rdx
shrq 32, rsi
salg 32, rdx
addg rsi, rcx
addg r9, rdx
adcqg 9, rcx
addq r8, rdx
adcq 9, rcx
addq rdi, rdx
adcq 0, rcx
movq rcx, r8
movq rdx, rdi

Guaranteed Property

® For any two candidates pl, p2, if each is reachable from
the other by repeatedly applying the move function (pl
< p2, called ergodicity)

® a global optimum can be eventually found!

® Through Metropolis-Hastings algorithm

Successful Results

Ray tracing library

V delta (V&
// vl =

vl,

// ret =

V& v2,
[(rdi),
// v2 = [(rsi),
[xmm

float r1l,

4 (rdi),

4 (rsi),
0[63:32], xmmO[31:0],

float r2)

{
8 (rdi)
8 (rsi)

xmml [31

]

]
:0]]

assert (0.0 <= rl <= 1.0 && 0.0 <= r2 <= 1.0);

// gcc —03:

return V (99« (v
99« (v1
99« (v1

// STOKE:

return V (99« (vl
99« (v1
99x (V2.

1.x%*

X% (rl1l-0
.yx (rl1l-0

zx (r2-0

.9))
.9))
-9))

4

) .

14

(r1-0.5))+99% (v2.x* (r2-0.
Yyx (r1=0.5))+99% (v2.y* (
* (r1—.05))+99%x (v2.z* (r2-0.

r2-0.

O J o O WD

W w DD ™S™S S P AP RERPEPRARERARE,RPRARRERERBRE
R O W o J o Ul d WNE O WOWwWJOo) Ul i WDNDE OV

gcc -03

movl 0.5, eax

movd eax, xmm2
subss xmm2, xmmO
movss 8 (rdi), xmm3
subss xmm2, xmml
movss 4 (rdi), xmmb
movss 8 (rsi), xmm2
movss 4 (rsi), xmmb
mulss xmmO, xmm3
movl 99.0, eax
movd eax, xmmé
mulss xmml, xmm2
mulss xmmO, xmmb
mulss xmml, xmmo6
mulss (rdi), xmmO
mulss (rsi), xmml
mulss xmm4, xmmb
mulss xmm4, xmmo6
mulss xmm4, xmm3
mulss xmm4d, xmm2
mulss xmm4, xmmO
mulss xmm4, xmml
addss xmm6, xmmb
addss xmml, xmmO
movss xmmbS, —-20(rsp)
movaps xmm3, xmml
addss xmmZ, xmml
movss xmmO, —-24(rsp)
movqg —24 (rsp), xmmO

O J oy O W DN

11
12
13
14
15
16

STOKE

movl 0.5 eax

movd eax, xXmm2
subps xmm2, xmmO
movl 99.0, eax
subps xmm2, xmml
movd eax, xmmé
mulss 8 (rsi), xmml
movss 4 (rdi), xmmb
mulss xmmO, xmmb
mulss (rdi), =xmmO
mulss xmm4, xmmO
mulps xmm4, xmmb
punpckldg xmmb,
mulss xmm4, xmml

xmmO

> 5Xx speed-up

Successful Results

BLAS (Linear algebra)

library

O J o U Wb

NN NCRN NN N NI O R e i e e e e B e
O LN O WO JoUl WD E O W

void SAXPY (int* x,

X[1] = g *
x[1+1] a *
X[1+2] = a *
X[1+3] = a *
}

gcc -03

movslg ecx, rcx

leaq (rsi,rcx,4),r8

leaq 1 (rcx),r9

movl (r8),eax

imull edi, eax

addl (rdx,rcx,4),eax

movl eax, (r8)

leaq (rsi1,r9,4),r8
movl (r8),eax
imull edi, eax

addl (rdx,r9,4),eax
leaq 2 (rcx),r9

addg 3, rcx

movl eax, (r8)

leaq (rsi1i,r9,4),r8
movl (r8),eax
imull edi, eax

addl (rdx,r9,4),eax
movl eax, (r8)

leaq (rsi,rcx,4),rax
imull (rax),edi

addl (rdx,rcx,4),edi
movl edi, (rax)

x[

x[
x[
x[

O 00 J o U WN -

int+* vy,
1] +
i+1] +
i+2] +
1+3] +

STOKE

movd edi, xmmO

shufps 0, xmm0, xmmO
movups (rsi,rcx,4),xmml
pmullw xmml, xmmO

movups (rdx,rcx,4),xmml
paddw xmml, xmmO

movups xmm0O, (rsi,rcx,4)

1.4x speed-up

Markov Chains

Probability of transitioning from state x to state y

/ States
K (X }’) /
— i ~
o ©

¢ i‘\\a
\/' ‘
¢y

/

Markov Chains

A matrix < such that x-th row, y-th col |

o Vx,y. K(x,y) >0

V. ZK(x,y) =1

K(x, y) . K(y, Z) : probability of

transitioning from x to y and to z

Z K(x,y) - K(y, z): probability of
Y

transition from x to z in two steps (denoted

K?(z, 2)) ~_

K™ (x,y) : probability of transitioning from

X to y in exactly n steps

Fundamental Theorem of Markov Chains

e |f a Markov chain is connected (every state is reachable

from every other state) and not periodic, << periodic example:

h

1 always moves to 2,

2 always moves to 1

o Then,vx- lim Kn(ﬂ%y) — w(y)

n— 00
/\

Stationary distribution
T=K- 7

o |ntuitively, if a process has been running for a long time,
where | started is not important.

In Program Synthesis

® State = program

* We hope to find a K such that
* |fa program x is “good” — () s high

* |fa program is “bad” — () is low
/\

e Then A score of each program candidate
(0: worst, 1: best)

e Starting from any random program, keep doing a transition
according to K

® Then we will reach a good program.

How to Find such a K?t1

K(xay) —

[S—
o
j%
<
'\

el

T(y)

; where A(x,y) = —

| A(z,y) (Az,y) < 1

m(x)

Why? — because m = KA.

Proof) =

z) x K(z,y) = n(y) » K(y,z),

(@) x K(z,y) = _7(y) * K(y,z) = n(y) Y K(y,z) = 7(y)

Therefore = = K.

TAssuming transition from an arbitrary program to every other program has the same probability

Program Synthesis with
Metropolis-Hastings

e By the Fundamental Theorem, V2. lim K"(z,y) = m(y)

n— oo

e Starting from a random program, if we repeatedly do the
following steps for a "long enough” time

¢ |f a next candidate (obtainable by the move function) is better,

MOVeE.

¢ Otherwise, move with a probability proportional to the ratio
between the scores of current and new programs

e Eventually we will reach the best program p such that 7(p) = L

Property of the Algorithm

® No search bias
® enumerative search: small programs first
® But a finite program space is often used (e.g., by bounding size)

™(y)
o IN practice,A(m’ y) = exp(—0 7T($)) is often used

e Using a proper B is important
3T :pure random search, B | :greedy search

e 77 should tell us whether a program is getting closer to being
correct (e.g., if 7 returns O or |, it won’t work)

Almost Disjoint Clusters

<

. S o I MY
R yores . 2?0 o
. 9 s "“ @
o o °. e -« ®

e @ .Q< 1 o

e Strongly connected components: many candidates have (nearly)
equal score due to many semantically equivalent programs

e Starting in one cluster; the prob. of transitioning to the other is
extremely low.

Getting Stuck in a Long Search

4750 —

Plateaus

Cost

0 | | | | | “ T |

] 10 100 1K 10K 100K M 10M 100M
[terations

® Because it is hard to escape from a strongly connected
component, it is often beneficial to abandon a search and
begin a fresh one.

What is a Good Restart Strategy?

e Let A be a randomized algorithm that always produces the

correct solution when it stops.

e Minimizing the expected time required to obtain a solution
from A

e Run A for a fixed amount of time tl (e.g., 10000

iterations)

e |f a solution isn’t found, run A for another fixed amount

of time t2, etc

Luby et al., Optimal Speedup of Las Vegas Algorithms, 1993

What is a Good Restart Strategy?

o Let S = (t1,%2," ") be a restart strategy.

— minT'(A
* Let fa TS (4, 5) where T'(A,5) is the expected

running time of A under strategy S

® |.e., the expected running time of the optimal strategy

What is a Good Restart Strategy?

o LetS>l< — (171727171727471717271717274787171727°”)

e called Luby sequence Lo where Lo = land Li = Li—1, Li—1, 2!
e 57 leads to the best performance that can be achieved

o T(A,S%) = O(¢4logl4)

®* No strategy can do better under black-box assumption (no
information other than when the algorithm stops is available)

o A better strategy may exist if we relax black-box assumption

Improving Stochastic Synthesis
with Restart Strategies

o Koenig et al.,Adaptive Restarts for Stochastic Synthesis,
PLDI 2021.

e Key idea: prioritize low cost searches

»

Adaptive Restart Algorithm

215

2
181

swap with parent

1
215

» if cost is smaller

1
215

N\

1
332

335

(S

=1 1
185 332
= 181
1 =]
215 332

»

1
185

1

N

215

1
332

332

335

215

335

From Jason Koenig’s presentation slides at PLDI’21

Adaptive Restart Algorithm

181

2
181

.

2
c = 215 c =177
t=1 t=1 t =1 t=1
335 330 332 335
2
177

I

\

1
335

1
332

1
335

»

»

181

1 1 1 1
335 330 332 335
t =4
c =92
(=23
c =219 c= 181
=] t= 1 1 =]
c =335 330 332 335

From Jason Koenig’s presentation slides at PLDI’21

Adaptive Restart Algorithm

® Most time spent on lowest cost searches

® Best when cost accurately predicts time to finish

Good Bad

e |Ox faster than the previous algorithm without restarts
and 5.5x faster than the Luby restart strategy

From Jason Koenig’s presentation slides at PLDI’21

