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Limitations of Enumerative Search  
1. Limited Scalability

• Explore candidates in order of increasing size

• Good for finding generalizable solutions (Occam’s 
razor) 

• What if desired solutions are large?

• Search space exponentially grows

• Enumerative search wastes computation resources for 
exploring many “unlikely” candidates.



Example: Hacker’s Delight

• Find a program transforming rightmost contiguous 1’s into 0’s (without a 
loop)

• Target : f(x: BitVec) : BitVec 

• Syntactic constr.:  

 

• Semantic constr:  f(00101) = 00100, f(10110) = 10000 …

Top-down search (revisited) 

S ->  0 | 1 | x |
S + S | 
S - S |
S & S | 
S | S     |
S << S    |
S >> S

S

S&Sx

x&(1+(x|x-S))

1

x&S

0 S>>S

x>>S

x&(x+1)

x>>(0-1)

x&(1+(x|x-1))

...

x>>(0-x)

Turn off the rightmost sequence of 1s:

00101 Æ 00100
01010 Æ 01000
10110 Æ 10000

Explores many unlikely programs!

Example: Programming by Examples

• Find a program P for bit-vector transformation such that

• P is constructed from standard bit-vector operations 
( |, &, ~, +, -, <<, >>, 0, 1, … )

• P is consistent with the following input-output examples  
( 00101 → 00100,   
  10111 → 10000,   
  00111 → 00000 )

• Resets rightmost substring of contiguous 1’s to 0’s. 

• Desired solution: x & ( 1 + ( x | (x - 1) ) )



Example: Hacker’s Delight

Many “unlikely” candidates are explored by top-down search!Top-down search (revisited) 

S ->  0 | 1 | x |
S + S | 
S - S |
S & S | 
S | S     |
S << S    |
S >> S

S

S&Sx

x&(1+(x|x-S))

1

x&S

0 S>>S

x>>S

x&(x+1)

x>>(0-1)

x&(1+(x|x-1))

...

x>>(0-x)

Turn off the rightmost sequence of 1s:

00101 Æ 00100
01010 Æ 01000
10110 Æ 10000

Explores many unlikely programs!
Solution !

From https://github.com/nadia-polikarpova/cse291-program-synthesis



Limitations of Enumerative Search  
2. Overfitting

• Despite Occam’s razor, enumerative search does not 
guarantee most “likely” solutions.

• “likely”: generalizable beyond given I/O examples



Statistical Regularities in Programs

• Programs contain repetitive and predictable patterns [Hindle et al. 
ICSE’12]  

  for (i = 0; i < 100; ??) 

• Statistical program models define a probability distribution over programs 

Pr (?? → i++ | for (i = 0; i < 100; ??) )  =  0.80 
Pr (?? → i-- | for (i = 0; i < 100; ??) )  =  0.01 

  - e.g., n-gram, neural network (e.g., LSTM),  
 
             probabilistic context-free grammar (PCFG),  
 
             probabilistic higher-order grammar (PHOG)… 

• Many applications: code completion, deobfuscation, program repair, etc.

Sequence-based

Grammar-based



Applications of Statistical Program Models
SLANG

Input: code snippet 
with holes

Output: holes completed with 
(sequences) of method calls

SLANG

Raychev et al., Code Completion with Statistical Language Models, PLDI’14



Applications of Statistical Program Models

• Fixing syntactic errors 

• Program = sequence of tokens

• Fix syntax errors using a skip-gram model

Pu et al., sk_p: a neural program corrector for MOOCs

characteristics of our domain. First, sk_p constructs models that are
purely syntactic; the model treats a program statement as a list of
tokens and assumes no further program structure or semantics, aside
from a distinction between whether a token is a variable name or not.
This is in contrast to prior approaches to DDS which rely heavily
on features derived from program analysis and which learn from a
more structured representation of programs.

Secondly, we use a modified seq2seq neural network (Cho et al.
2014), which learns the syntactic structures of program statements
and is able to produce valid statements for a candidate program. The
neural networks are trained on a corpus of correct programs, where
the correctness is established via the same test suite used to validate
candidate solutions. The neural-network model is generative, which
implies that we can easily use it to sample from the space of possible
fixes; This is in contrast to the models used by prior repair work
where the model was discriminative, and therefore the synthesis
algorithm had to explicitly enumerate a large space of possible
corrections to find the one with the highest probability (Long et al.
2016).

A third surprising aspect of our solution is that the models are
very local: At each correction site, the model only uses one statement
before and after the site as context to generate a distribution of
corrections, ignoring the rest of the program. This model is called
a skipgram, a popular model used in NLP in the task of word
embedding (Mikolov et al. 2013). In essence, our method learns
short code fragments that appear frequently in correct solutions and
identifies fragments in incorrect submissions that look similar. We
show that this very local model is actually accurate enough that the
synthesis component of DDS can quickly find a correct solution
with a simple enumerate-and-check strategy.

1.2 Results

We evaluate sk_p on 7 different Python programming assignments
from an early version of 6.00x in MITx. The training sets range in
size from 315 to 9078 problems, and resulting models are tested on
a separate set of incorrect programs of which sk_p can correct 29%.
The details of the experiments are explained in 6, but overall, our
empirical evaluation allows us to make the following observations:

sk_p is competitive with Autograder: Of the 7 benchmarks as-
signments, autograder (Rishabh et al. 2013) provides correction
models for 3 assignments which can generate good quality feedback
in real-time (under 5 seconds per submission) at an average accuracy
of 30%. sk_p, which has an average runtime of 5.6 seconds, outper-
forms autograder marginally with an average accuracy of 35% on
these 3 assignments. This is surprising given the fact that our system
does not rely on the instructor to provide a correction model, and its
only knowledge of the python semantics comes from its ability to
run the python interpreter off-the-shelf.

Syntactic errors matter: On average, 18% of sk_p’s corrections
are fixing syntactic errors; On certain benchmarks, syntactic errors
account for 40% of the fixes. These experiments highlight the
importance of handling programs with syntactic errors which do not
parse.

Efficacy of Neural Network: We evaluate our neural network
model on the task of fragment learning by considering an alternative,
exhaustive model that explicitly memorizes all the program frag-
ments during training. We find that the neural network out-performs
the exhaustive model when there is a sufficient number of training
programs relative to the total number of fragments that needs to be
learned. The neural network’s average accuracy of 29% comes close
to the average accuracy of 35% of the exhaustive model.

1.3 Contributions

The paper makes the following contributions:

• Correction by Fragment Completion: We validate a hypothe-
sis that using fragment completion as a mechanism for correction,
recalling similar fragments from correct programs, works well
in the context of MOOCs.

• Purely Syntactic Learning: The fragment completion model
using neural networks is purely syntactic: it treats a program
statement as a sequence of tokens, with the candidate missing
statement generated verbatim one token at a time. A direct con-
sequence of this syntactic learning is the ability to fix syntactic
errors, without requiring the seed program to parse.

• Learned Correction Model: Compared to prior work where a
different, manual correction model is required for each assign-
ment, the specifics of how to complete a fragment are learned
from data.

• Simple Synthesis Procedure: The fragment completion model
using neural networks generates program statements that parse
with high probability; these statements are used directly to form
a candidate program without further constraint solving. As a
result our synthesis procedure does not need to perform analysis
on the candidate programs, and is a simple enumerate and check
framework using the test suite.

The rest of the paper elaborates on the details of our technique.

2. Overview

Consider the programming assignment of writing a function to eval-
uate an uni-variate polynomial, represented as a list of coefficients
(poly), at a point x. Below is a student solution which is incorrect:

def evaluatePoly(poly , x):

a = 0

f = 0.0

for a in range(0, len(poly) � 1):

f = poly[a]⇤x⇤⇤a+f

a += 1

return f

This code would have been correct if the for-loop is allowed to
iterate to the full length of the input len(poly). However, sk_p was
able to correct this program differently as follows:

def evaluatePoly(poly , x):

a = 0

f = 0.0

while a < len(poly ):

f = poly[a]⇤x⇤⇤a+f

a += 1

return f

We see sk_p replaced the for-loop with a while-loop. While
removing the �1 at the end of the for loop, a small local modification,
would also produce a semantically correct program, the correction
suggested by sk_p is both semantically correct and more natural. We
now give a high level overview of our correction algorithm, starting
from the incorrect program and ending at the correct program.

Renaming Variables

In sk_p, a program statement is represented syntactically as a
sequence of tokens. A key assumption with this representation is
the existence of a finite sized vocabulary: when modeling a sentence
as a sequence of words in NLP, a dictionary is customarily used to
bound the total number of words. We bound the total number of
tokens by renaming variable names in a primitive manner: keywords
such as “if”, “for”, common function names and method names such
as “len”, “range”, along with the arithmetic operators are specified
to be excluded from renaming. Any unspecified tokens are renamed
from x0 up to xK . For a given assignment, the upper bound for
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on the candidate programs, and is a simple enumerate and check
framework using the test suite.

The rest of the paper elaborates on the details of our technique.

2. Overview

Consider the programming assignment of writing a function to eval-
uate an uni-variate polynomial, represented as a list of coefficients
(poly), at a point x. Below is a student solution which is incorrect:

def evaluatePoly(poly , x):

a = 0

f = 0.0

for a in range(0, len(poly) � 1):

f = poly[a]⇤x⇤⇤a+f

a += 1

return f

This code would have been correct if the for-loop is allowed to
iterate to the full length of the input len(poly). However, sk_p was
able to correct this program differently as follows:

def evaluatePoly(poly , x):

a = 0

f = 0.0

while a < len(poly ):

f = poly[a]⇤x⇤⇤a+f

a += 1

return f

We see sk_p replaced the for-loop with a while-loop. While
removing the �1 at the end of the for loop, a small local modification,
would also produce a semantically correct program, the correction
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Exploiting Statistical Regularities

• Can we leverage statistical program models  
to accelerate program synthesis? 

• Key Challenges

• Guided search: How to guide 1.the search given a 
statistical model?

• Learning models: How to learn a good statistical 
model? 



Euphony for Guiding Top-Down 
Enumerative Search

• Woosuk Lee, Kihong Heo, Rajeev Alur, Mayur Naik, Accelerating Search-
Based Synthesis Using Learned Probabilistic Moels, PLDI’18 

• Guided search: A general approach to accelerate CEGIS-based 
program synthesis

• by using a probabilistic model to guide the search towards likely 
programs 

• supports a wide range of models (e.g., n-gram, PCFG, PHOG, neural 
nets, …)

• Learning models: Transfer learning-based method to mitigate 
overfi tting

• https://github.com/wslee/euphony

https://github.com/wslee/euphony


Example SyGuS Problem

• Goal: a function      that replaces a hyphen (-) by a dot (.) in a given 
string  

•          Specification 

   Syntactic specification:  

    Semantic specification: 

•           Solution
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The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
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The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
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The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
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• and an incomplete program:  (i.e., sentential form),

• provides a probability for each production rule  
applicable next (usually on the leftmost nonterminal)

• Pr( production rule | sentential form )
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The context, comprising symbols at the left sibling and par-
ent of S in the AST of the transformed sentential form, is
[constI , Rep]. Now the probability of the production rule
S ! “-” is assigned the probability of S[constI , Rep] !
constO since “-” appears in the output examples. Now that
the assigned probability is higher than that of the other pro-
duction rules, the search is guided toward the solution.
The rest of the paper is organized as follows. Section 3

presents our weighted search algorithm. Section 4 describes
how a PHOG is learned from training data. Section 5 presents
our experimental results. Section 6 discusses related work
and Section 7 concludes.

3 Weighted Search Algorithm
In this section, we describe our weighted search algorithm
based on A* search. We �rst formulate our problem of guid-
ing search-based synthesis using the CEGIS procedure with
a probabilistic program model. We then present a basic algo-
rithm that prioritizes likely solution candidates. Lastly, we
extend it with two orthogonal optimizations that are widely
used by existing search strategies.

3.1 Preliminaries
Context-free Grammar. A context-free grammar G is a
quadruple hN , �,R, Si where N is a �nite set of nonterminal
symbols, � is a �nite set of terminal symbols, R is a �nite
subset of N ⇥ (N [ �)⇤ where each member (A, �) is called a
production and is written asA ! � , and S is the start symbol
in N . A sequence of non-terminal and terminal symbols in
(N [ �)⇤ is called a sentential form. Throughout the paper,
for brevity, we only consider leftmost derivations, that is,
derivations in which productions are always applied to the
leftmost non-terminal symbol. Furthermore, we assume the
grammar is unambiguous in the sense that for all sentences,
there exists a unique leftmost derivation.

Syntax-Guided Synthesis. The syntax-guided synthesis
problem [3] is to �nd a program P that implements a de-
sired speci�cation �. Programs are written in a language P
described by a context-free grammarG , and speci�cation in a
decidable theory T . We assign a deterministic semantics JPK
to each program P 2 P = L(G). A speci�cation is a formula
�(x , JPK (x)) in theory T that relates program inputs to out-
puts. Given a speci�cation�, the program synthesis task is to
�nd a program P 2 P such that the formula 8x .�(x , JPK (x))
is valid modulo T .

3.2 CEGIS with Guided Search
Our synthesis problem is the same as the syntax-guided
synthesis problem except that a statistical program model is
given instead of a CFG, which is de�ned as follows.

Statistical Program Model. A statistical program model
Gq = hG,C,p,qi of a context-free grammarG is a probability
distribution over programs in a language generated by G

Algorithm 1 CEGIS with Guided Search
Function �����(Gq ,�)
1: pts := ;
2: repeat
3: P := ��������_������(Gq ,pts,�)
4: cex := ������(P ,�)
5: if cex = ? then
6: return P
7: end if
8: pts := pts [ {cex}
9: until false

where C is a �nite conditioning set, p is a function of type
(N [ �)⇤ ! C , and q : R ⇥ C ! R+ scores rules such
that they form a probability distribution, i.e., 8A 2 N , c 2
C .

Õ
A!� 2R q(A ! � | c) = 1. In other words, the context

can be computed by applying the function p on a current
sentential form, and it allows conditioning the expansion of
a next production rule associated with a probability.

The function q allows assessing the probability of a given
program. Suppose G is unambiguous and S(= s0) ) s1 )
· · · ) P(= sn) is a unique derivation of a program P where
r0, · · · , rn�1 are the rules applied at each step. Then, the
probability of a program P under a statistical program model
Gq is de�ned to be Pr (Gq , P) =

Œn�1
i=0 q(ri | p(si )). This form

of probabilistic models is general enough to capture various
statistical program models such as n-grams [2], PCFG [19],
PHOG [6], and a neural network-based model [5].
Algorithm 1 depicts the CEGIS procedure with a slight

di�erence. Instead of a CFG, the algorithm takes a statistical
program model Gq , which is used to guide the search. In
each iteration, the algorithm calls the ��������_������
procedure which returns the next element correct on pts
from P (line 3). Then the result expression P is veri�ed by
the ������ procedure (line 4). If the expression P satis�es the
speci�cation �, it is returned (line 6). Otherwise, a counterex-
ample input point cex (i.e., an input on which P is incorrect)
is picked and added to the set of points pts (line 8), and the
process is repeated.
Let � be a (possibly in�nite) sequence of candidate solu-

tions generated by��������_������ at each iteration, and
ptsi the set of inputs in the i-th iteration.��������_������
should satisfy three criteria:
• Prioritization : 8i  j . Pr (Gq ,�i ) � Pr (Gq ,�j ).
• Correctness : 8i . 8x 2 ptsi . �(x , J�i K (x))
• Completeness : 9P 2 P. 8x . �(x , JPK (x)) =) 8x . �(x , J�aK (x)).
where �a denotes the last element of � . In other words, a
desirable procedure should generate candidates in order of
likelihood and eventually �nd a solution if one exists.

3.3 Weighted Enumerative Search
In this section, we present an instance of the abstract pro-
cedure ��������_������ used in Algorithm 1. We call the
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The context, comprising symbols at the left sibling and par-
ent of S in the AST of the transformed sentential form, is
[constI , Rep]. Now the probability of the production rule
S ! “-” is assigned the probability of S[constI , Rep] !
constO since “-” appears in the output examples. Now that
the assigned probability is higher than that of the other pro-
duction rules, the search is guided toward the solution.
The rest of the paper is organized as follows. Section 3

presents our weighted search algorithm. Section 4 describes
how a PHOG is learned from training data. Section 5 presents
our experimental results. Section 6 discusses related work
and Section 7 concludes.

3 Weighted Search Algorithm
In this section, we describe our weighted search algorithm
based on A* search. We �rst formulate our problem of guid-
ing search-based synthesis using the CEGIS procedure with
a probabilistic program model. We then present a basic algo-
rithm that prioritizes likely solution candidates. Lastly, we
extend it with two orthogonal optimizations that are widely
used by existing search strategies.

3.1 Preliminaries
Context-free Grammar. A context-free grammar G is a
quadruple hN , �,R, Si where N is a �nite set of nonterminal
symbols, � is a �nite set of terminal symbols, R is a �nite
subset of N ⇥ (N [ �)⇤ where each member (A, �) is called a
production and is written asA ! � , and S is the start symbol
in N . A sequence of non-terminal and terminal symbols in
(N [ �)⇤ is called a sentential form. Throughout the paper,
for brevity, we only consider leftmost derivations, that is,
derivations in which productions are always applied to the
leftmost non-terminal symbol. Furthermore, we assume the
grammar is unambiguous in the sense that for all sentences,
there exists a unique leftmost derivation.

Syntax-Guided Synthesis. The syntax-guided synthesis
problem [3] is to �nd a program P that implements a de-
sired speci�cation �. Programs are written in a language P
described by a context-free grammarG , and speci�cation in a
decidable theory T . We assign a deterministic semantics JPK
to each program P 2 P = L(G). A speci�cation is a formula
�(x , JPK (x)) in theory T that relates program inputs to out-
puts. Given a speci�cation�, the program synthesis task is to
�nd a program P 2 P such that the formula 8x .�(x , JPK (x))
is valid modulo T .

3.2 CEGIS with Guided Search
Our synthesis problem is the same as the syntax-guided
synthesis problem except that a statistical program model is
given instead of a CFG, which is de�ned as follows.

Statistical Program Model. A statistical program model
Gq = hG,C,p,qi of a context-free grammarG is a probability
distribution over programs in a language generated by G

Algorithm 1 CEGIS with Guided Search
Function �����(Gq ,�)
1: pts := ;
2: repeat
3: P := ��������_������(Gq ,pts,�)
4: cex := ������(P ,�)
5: if cex = ? then
6: return P
7: end if
8: pts := pts [ {cex}
9: until false

where C is a �nite conditioning set, p is a function of type
(N [ �)⇤ ! C , and q : R ⇥ C ! R+ scores rules such
that they form a probability distribution, i.e., 8A 2 N , c 2
C .

Õ
A!� 2R q(A ! � | c) = 1. In other words, the context

can be computed by applying the function p on a current
sentential form, and it allows conditioning the expansion of
a next production rule associated with a probability.

The function q allows assessing the probability of a given
program. Suppose G is unambiguous and S(= s0) ) s1 )
· · · ) P(= sn) is a unique derivation of a program P where
r0, · · · , rn�1 are the rules applied at each step. Then, the
probability of a program P under a statistical program model
Gq is de�ned to be Pr (Gq , P) =

Œn�1
i=0 q(ri | p(si )). This form

of probabilistic models is general enough to capture various
statistical program models such as n-grams [2], PCFG [19],
PHOG [6], and a neural network-based model [5].
Algorithm 1 depicts the CEGIS procedure with a slight

di�erence. Instead of a CFG, the algorithm takes a statistical
program model Gq , which is used to guide the search. In
each iteration, the algorithm calls the ��������_������
procedure which returns the next element correct on pts
from P (line 3). Then the result expression P is veri�ed by
the ������ procedure (line 4). If the expression P satis�es the
speci�cation �, it is returned (line 6). Otherwise, a counterex-
ample input point cex (i.e., an input on which P is incorrect)
is picked and added to the set of points pts (line 8), and the
process is repeated.
Let � be a (possibly in�nite) sequence of candidate solu-

tions generated by��������_������ at each iteration, and
ptsi the set of inputs in the i-th iteration.��������_������
should satisfy three criteria:
• Prioritization : 8i  j . Pr (Gq ,�i ) � Pr (Gq ,�j ).
• Correctness : 8i . 8x 2 ptsi . �(x , J�i K (x))
• Completeness : 9P 2 P. 8x . �(x , JPK (x)) =) 8x . �(x , J�aK (x)).
where �a denotes the last element of � . In other words, a
desirable procedure should generate candidates in order of
likelihood and eventually �nd a solution if one exists.

3.3 Weighted Enumerative Search
In this section, we present an instance of the abstract pro-
cedure ��������_������ used in Algorithm 1. We call the
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x|   {z   }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                 {z                                 }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Pr(S ! S + S | S)
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Pr(S ! x | S + S)
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Pr(S ! “.” | x+ S)
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Example

• Probabilistic context-free grammar (PCFG)

P
S ! “.” 0.2
S ! “-” 0.2
S ! x 0.1
S ! S + S 0.1
S ! Rep(S, S, S) 0.4

A ! �
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• Limitation: context around the place where a rule is 
applied is not considered → imprecise



A Uniform Interface to 
Statistical Program Models

• A statistical program model is  for a given 

CFG 

•    —  set of contexts

•    — Given a sentential form, for 
extracting contextual information around the next hole 
(i.e., nonterminal) to be filled

•   — Considering contextual information, 
for determining a probability for production rule
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The context, comprising symbols at the left sibling and par-
ent of S in the AST of the transformed sentential form, is
[constI , Rep]. Now the probability of the production rule
S ! “-” is assigned the probability of S[constI , Rep] !
constO since “-” appears in the output examples. Now that
the assigned probability is higher than that of the other pro-
duction rules, the search is guided toward the solution.
The rest of the paper is organized as follows. Section 3

presents our weighted search algorithm. Section 4 describes
how a PHOG is learned from training data. Section 5 presents
our experimental results. Section 6 discusses related work
and Section 7 concludes.

3 Weighted Search Algorithm
In this section, we describe our weighted search algorithm
based on A* search. We �rst formulate our problem of guid-
ing search-based synthesis using the CEGIS procedure with
a probabilistic program model. We then present a basic algo-
rithm that prioritizes likely solution candidates. Lastly, we
extend it with two orthogonal optimizations that are widely
used by existing search strategies.

3.1 Preliminaries
Context-free Grammar. A context-free grammar G is a
quadruple hN , �,R, Si where N is a �nite set of nonterminal
symbols, � is a �nite set of terminal symbols, R is a �nite
subset of N ⇥ (N [ �)⇤ where each member (A, �) is called a
production and is written asA ! � , and S is the start symbol
in N . A sequence of non-terminal and terminal symbols in
(N [ �)⇤ is called a sentential form. Throughout the paper,
for brevity, we only consider leftmost derivations, that is,
derivations in which productions are always applied to the
leftmost non-terminal symbol. Furthermore, we assume the
grammar is unambiguous in the sense that for all sentences,
there exists a unique leftmost derivation.

Syntax-Guided Synthesis. The syntax-guided synthesis
problem [3] is to �nd a program P that implements a de-
sired speci�cation �. Programs are written in a language P
described by a context-free grammarG , and speci�cation in a
decidable theory T . We assign a deterministic semantics JPK
to each program P 2 P = L(G). A speci�cation is a formula
�(x , JPK (x)) in theory T that relates program inputs to out-
puts. Given a speci�cation�, the program synthesis task is to
�nd a program P 2 P such that the formula 8x .�(x , JPK (x))
is valid modulo T .

3.2 CEGIS with Guided Search
Our synthesis problem is the same as the syntax-guided
synthesis problem except that a statistical program model is
given instead of a CFG, which is de�ned as follows.

Statistical Program Model. A statistical program model
Gq = hG,C,p,qi of a context-free grammarG is a probability
distribution over programs in a language generated by G

Algorithm 1 CEGIS with Guided Search
Function �����(Gq ,�)
1: pts := ;
2: repeat
3: P := ��������_������(Gq ,pts,�)
4: cex := ������(P ,�)
5: if cex = ? then
6: return P
7: end if
8: pts := pts [ {cex}
9: until false

where C is a �nite conditioning set, p is a function of type
(N [ �)⇤ ! C , and q : R ⇥ C ! R+ scores rules such
that they form a probability distribution, i.e., 8A 2 N , c 2
C .

Õ
A!� 2R q(A ! � | c) = 1. In other words, the context

can be computed by applying the function p on a current
sentential form, and it allows conditioning the expansion of
a next production rule associated with a probability.

The function q allows assessing the probability of a given
program. Suppose G is unambiguous and S(= s0) ) s1 )
· · · ) P(= sn) is a unique derivation of a program P where
r0, · · · , rn�1 are the rules applied at each step. Then, the
probability of a program P under a statistical program model
Gq is de�ned to be Pr (Gq , P) =

Œn�1
i=0 q(ri | p(si )). This form

of probabilistic models is general enough to capture various
statistical program models such as n-grams [2], PCFG [19],
PHOG [6], and a neural network-based model [5].
Algorithm 1 depicts the CEGIS procedure with a slight

di�erence. Instead of a CFG, the algorithm takes a statistical
program model Gq , which is used to guide the search. In
each iteration, the algorithm calls the ��������_������
procedure which returns the next element correct on pts
from P (line 3). Then the result expression P is veri�ed by
the ������ procedure (line 4). If the expression P satis�es the
speci�cation �, it is returned (line 6). Otherwise, a counterex-
ample input point cex (i.e., an input on which P is incorrect)
is picked and added to the set of points pts (line 8), and the
process is repeated.
Let � be a (possibly in�nite) sequence of candidate solu-

tions generated by��������_������ at each iteration, and
ptsi the set of inputs in the i-th iteration.��������_������
should satisfy three criteria:
• Prioritization : 8i  j . Pr (Gq ,�i ) � Pr (Gq ,�j ).
• Correctness : 8i . 8x 2 ptsi . �(x , J�i K (x))
• Completeness : 9P 2 P. 8x . �(x , JPK (x)) =) 8x . �(x , J�aK (x)).
where �a denotes the last element of � . In other words, a
desirable procedure should generate candidates in order of
likelihood and eventually �nd a solution if one exists.

3.3 Weighted Enumerative Search
In this section, we present an instance of the abstract pro-
cedure ��������_������ used in Algorithm 1. We call the
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G = hN,⌃, R, Si
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p : (N [ ⌃)⇤ ! C
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The context, comprising symbols at the left sibling and par-
ent of S in the AST of the transformed sentential form, is
[constI , Rep]. Now the probability of the production rule
S ! “-” is assigned the probability of S[constI , Rep] !
constO since “-” appears in the output examples. Now that
the assigned probability is higher than that of the other pro-
duction rules, the search is guided toward the solution.
The rest of the paper is organized as follows. Section 3

presents our weighted search algorithm. Section 4 describes
how a PHOG is learned from training data. Section 5 presents
our experimental results. Section 6 discusses related work
and Section 7 concludes.

3 Weighted Search Algorithm
In this section, we describe our weighted search algorithm
based on A* search. We �rst formulate our problem of guid-
ing search-based synthesis using the CEGIS procedure with
a probabilistic program model. We then present a basic algo-
rithm that prioritizes likely solution candidates. Lastly, we
extend it with two orthogonal optimizations that are widely
used by existing search strategies.

3.1 Preliminaries
Context-free Grammar. A context-free grammar G is a
quadruple hN , �,R, Si where N is a �nite set of nonterminal
symbols, � is a �nite set of terminal symbols, R is a �nite
subset of N ⇥ (N [ �)⇤ where each member (A, �) is called a
production and is written asA ! � , and S is the start symbol
in N . A sequence of non-terminal and terminal symbols in
(N [ �)⇤ is called a sentential form. Throughout the paper,
for brevity, we only consider leftmost derivations, that is,
derivations in which productions are always applied to the
leftmost non-terminal symbol. Furthermore, we assume the
grammar is unambiguous in the sense that for all sentences,
there exists a unique leftmost derivation.

Syntax-Guided Synthesis. The syntax-guided synthesis
problem [3] is to �nd a program P that implements a de-
sired speci�cation �. Programs are written in a language P
described by a context-free grammarG , and speci�cation in a
decidable theory T . We assign a deterministic semantics JPK
to each program P 2 P = L(G). A speci�cation is a formula
�(x , JPK (x)) in theory T that relates program inputs to out-
puts. Given a speci�cation�, the program synthesis task is to
�nd a program P 2 P such that the formula 8x .�(x , JPK (x))
is valid modulo T .

3.2 CEGIS with Guided Search
Our synthesis problem is the same as the syntax-guided
synthesis problem except that a statistical program model is
given instead of a CFG, which is de�ned as follows.

Statistical Program Model. A statistical program model
Gq = hG,C,p,qi of a context-free grammarG is a probability
distribution over programs in a language generated by G

Algorithm 1 CEGIS with Guided Search
Function �����(Gq ,�)
1: pts := ;
2: repeat
3: P := ��������_������(Gq ,pts,�)
4: cex := ������(P ,�)
5: if cex = ? then
6: return P
7: end if
8: pts := pts [ {cex}
9: until false

where C is a �nite conditioning set, p is a function of type
(N [ �)⇤ ! C , and q : R ⇥ C ! R+ scores rules such
that they form a probability distribution, i.e., 8A 2 N , c 2
C .

Õ
A!� 2R q(A ! � | c) = 1. In other words, the context

can be computed by applying the function p on a current
sentential form, and it allows conditioning the expansion of
a next production rule associated with a probability.

The function q allows assessing the probability of a given
program. Suppose G is unambiguous and S(= s0) ) s1 )
· · · ) P(= sn) is a unique derivation of a program P where
r0, · · · , rn�1 are the rules applied at each step. Then, the
probability of a program P under a statistical program model
Gq is de�ned to be Pr (Gq , P) =

Œn�1
i=0 q(ri | p(si )). This form

of probabilistic models is general enough to capture various
statistical program models such as n-grams [2], PCFG [19],
PHOG [6], and a neural network-based model [5].
Algorithm 1 depicts the CEGIS procedure with a slight

di�erence. Instead of a CFG, the algorithm takes a statistical
program model Gq , which is used to guide the search. In
each iteration, the algorithm calls the ��������_������
procedure which returns the next element correct on pts
from P (line 3). Then the result expression P is veri�ed by
the ������ procedure (line 4). If the expression P satis�es the
speci�cation �, it is returned (line 6). Otherwise, a counterex-
ample input point cex (i.e., an input on which P is incorrect)
is picked and added to the set of points pts (line 8), and the
process is repeated.
Let � be a (possibly in�nite) sequence of candidate solu-

tions generated by��������_������ at each iteration, and
ptsi the set of inputs in the i-th iteration.��������_������
should satisfy three criteria:
• Prioritization : 8i  j . Pr (Gq ,�i ) � Pr (Gq ,�j ).
• Correctness : 8i . 8x 2 ptsi . �(x , J�i K (x))
• Completeness : 9P 2 P. 8x . �(x , JPK (x)) =) 8x . �(x , J�aK (x)).
where �a denotes the last element of � . In other words, a
desirable procedure should generate candidates in order of
likelihood and eventually �nd a solution if one exists.

3.3 Weighted Enumerative Search
In this section, we present an instance of the abstract pro-
cedure ��������_������ used in Algorithm 1. We call the



Contexts

• Sequence of terminal/nonterminal symbols

• E.g., 2-gram 
 

         

• E.g., Sibling and parent nodes 
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p(x+S) = [+, x]
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p(Rep(x, “-”, S)) = [“-”, Rep]
x

Rep

"-" S



Example

Probabilistic Higher-order Grammar (PHOG) — the model used by Euphony

A[context] ! �
P

S[“-”, Rep] ! “.” 0.72
S[“-”, Rep] ! “-” 0.001
S[“-”, Rep] ! x 0.12
S[“-”, Rep] ! S + S 0.02
S[“-”, Rep] ! Rep(S, S, S) 0.139

. . .

x

Rep

"-" S

Pr(S ! “.” | Rep(“x”, “-”, S))
= 0.72
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PHOG when                is  symbols at 

left sibling and parent

context

Bielik et al., Probabilistic Higher-Order Grammar, ICML’16



Learning a PHOG

• From derivation sequences of training programs, count occurrences 
of each rule application under certain contexts

• E.g., From derivation sequence x & S ⟹ x & 1 ,  x | S ⟹ x | 1, 

production rule S → 1 is counted twice when sibling is x

• Prob. of  under context  :
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↵ ! �
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PHOG: Probabilistic Model for Code

TCOND functions operate on a state defined as ht, n, ctxi 2
PartialTree ⇥ X ⇥ C where t is a partial tree, n is the
current position in the tree and ctx accumulates the context
� used to parameterize PHOG production rules. The accu-
mulated context � 2 C = (N [⌃[N)⇤ by a TCOND func-
tion is a sequence of observations on the partial tree where
each observation can be a non-terminal from N , a terminal
from ⌃ or a natural number from N. Initially, execution
starts with the empty observation list [] 2 C and instruc-
tions from the function are executed and each WriteOp

instruction appends to the observation list.

Example: Consider the following TCOND function pobj :

PrevDFS PrevNodeContext NextDFS WriteValue

executed on the example in Fig. 1(b). The arrows in Fig. 1
(b) trace the execution of this function. Execution starts at
the position where JavaScript object property is to be pre-
dicted. The first instruction moves to the receiver object
defer, the second instruction moves to the previous loca-
tion where the same receiver is used in a return statement,
the third instruction moves to the property used at this state-
ment and finally, the name of the property (promise) is
recorded in the context used by the PHOG rules.

Note that pobj is good for predicting object properties, but
a different TCOND function may be good for predicting in-
teger constants. Thus, the overall learned function p upon
which a PHOG is parameterized is simply a switch state-
ment on the type of ↵ used in the rules, where each case
in the switch is a function from the TCOND language. As
a result, each rule ↵[�] ! � in the grammar uses a different
case of the switch statement of p depending on ↵.

4.2. From TCOND Function and Data to PHOG

Finally, once a function p 2 TCOND is given, we can build
a PHOG from p and data that consists of parsed AST trees.
For every production rule ↵ ! � at node xk in tree T
of the training data, we compute ↵[�] where � is obtained
as the result of applying p on T0..k starting at position k.
Subsequently we train a PHOG (G, q) by counting as:

q(↵[�] ! �) =
Count(↵[�] ! �)

Count(↵[�])

Smoothing A common issue inherent to learning prob-
abilistic language models is adjusting the maximum like-
lihood estimation by taking into account data sparseness.
This is critical in improving the overall precision of the sys-
tem as otherwise the model becomes overconfident in pre-
dictions based on rarely seen conditioning sets (by assign-
ing them high probability) and conversely can completely
reject unseen contexts (by assigning them zero probabil-
ity). To deal with data sparseness we use both modified
Kneser-Ney smoothing (Chen & Goodman, 1998) as well

as Witten-Bell interpolation smoothing (Witten & Bell,
1991). In both cases the backoff order is the order in which
features were added to the context when executing p.

4.3. Learning of TCOND Functions

To obtain the best PHOG grammar, we learn the respec-
tive TCOND function by solving the following optimization
problem:

pbest = argmin
p2TCOND

cost(D, p)

where cost(D, p) = �logprob(D, p) + � · ⌦(p). Here
logprob(D, p) is the log-probability of the trained models
on a subset D of the training dataset used for learning the
function and ⌦(p) is a regularization that penalizes overly
complex functions in order to avoid over-fitting to the data.
We instantiate ⌦(p) to return the number of instructions.

We use a combination of two techniques to solve this op-
timization problem and find p⇡

best
– an exact enumeration

and approximate genetic programming search. Since the
number of functions in enumerative search is exponential
we use it only on short functions with up to 5 instructions.
The resulting functions serve as a starting population for
a follow-up genetic programming search. The genetic pro-
gramming search proceeds in several epochs, where in each
epoch we mutate random instructions in the functions from
the population in order to obtain a new set of candidate
functions added to the population. Candidate functions are
scored and the worst of them are discarded. We do not ap-
ply a cross-over operation in the genetic search procedure.
Overall, this search procedure explores ⇡ 20, 000 functions
out of which the best one is selected.

Scaling to Large Datasets In order for the learning pro-
cedure to explore large number of candidate programs in
a reasonable time it is important the algorithm scales to
large datasets (in our experiments |D| = 108) without
the need to restrict how much data can be used for learn-
ing. To mitigate this problem, we use the representative
dataset sampling technique (Raychev et al., 2016). The
main idea is to select a small sample |d| ⌧ |D| such that
|cost(D, pi) � cost(d, pi)|  ✏ for all previously gener-
ated programs pi. That is, evaluating programs on a small
dataset d approximates evaluation on the full dataset D
within error ✏ that is as small as possible.

5. Evaluation
This section provides an experimental evaluation of our
approach. We compare the ability of a PHOG to score
JavaScript programs and to predict program elements in
unseen code. We also evaluate the speed of a PHOG. Ex-
periments were done on a 32-core 2.13 GHz Xeon E7-4830
server with 256GB RAM and running Ubuntu 14.04.
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J�K (t, u, �) = �

JUp · cK (t, u, �) =
⇢

JcK (t, u, �) (u = � )
JcK (t, u1 · · ·u |u |�1, �) (o .w )

JDownFirst · cK (t, u, �) =
⇢

JcK (t, u, �) (ö� 2 Dt . u < �)
JcK (t, u · 1, �) (o .w )

JDownLast · cK (t, u, �) =
8>><
>>:

JcK (t, u, �) (ö� 2 Dt . u < �)
JcK (t, u · i, �) (o .w )
where u · i 2 Dt , u · (i + 1) < Dt

JLeft · cK (t, u, �) =
8>><
>>:

JcK (t, u, �) (u |u | = 1)
JcK (t, u0, �) (o .w )
where u0 = u1 · · ·u |u |�1 · (u |u | � 1)

JRight · cK (t, u, �) =
8>><
>>:

JcK (t, u, �) (u0 < Dt )
JcK (t, u0, �) (o .w )
where u0 = u1 · · ·u |u |�1 · (u |u | + 1)

JPrevDFS · cK (t, u, �) =
8>><
>>:

JcK (t, u, �) (u = � (t )1)
JcK (t, � (t )i�1, �) (o .w )
where u = � (t )i

JWrite · cK (t, u, �) = JcK (t, u, � · t (u))

Figure 9. Semantics of TC��� .
Lastly, we will denote a depth-�rst left-to-right traversal

order of t as � (t).
Subtree. Let t 2 �V and u 2 Dt . Then, t/u is called the
subtree at u, which is de�ned as follows: t/u def

= {(�,�) | (u ·
�,�) 2 t ,� 2 N⇤}.
Yield. The yield Y is a function from �V into V ⇤ de�ned as
follows.
Y (t ) = t (� ) (Dt = {� })
Y (t ) = Y (t/1)Y (t/2) · · ·Y (t/j) (1, 2, · · · , j 2 Dt ^ j + 1 < Dt )

Y (t) is the string of the labels of the terminal nodes of t .
Using the function Y , let us assume we have a function

� : V ⇤ ! �V that takes a sentential form and returns a
tree that yield the sentential form assuming the grammar is
unambiguous. For a sentential form s 2 (N [ � )⇤, � (s) = t
such that Y (t) = s .

A.1.2 Learning Steps
Recall that a PHOG is a tuple hĜ,qi and Ĝ is a HOG is a tuple
hN , �, S,C, R̂,pi. The function p : (N [ �)⇤ ! C extracts a
context from a given sentential form. The extracted context is
used to condition the production rules. The function q : R̂ !
R+ scores production rules. We �rst synthesize p written in
a domain-speci�c language (DSL) and obtain q. We de�ne
the conditioning set C ✓ (N [ �)⇤ to be a set of sequences
of terminal/nonterminal symbols.

We learn a PHOG by doing the following steps.

Step 1: Synthesis of a DSL Program Conditioning the
Production. We use training data that consists of training
programs and their derivations. Let G = hN , �, S,Ri be a
context free grammar and D = hS,Qi be training data
which is a pair of a set S ✓ �⇤ of programs and a set Q of
tree completion queries. A tree completion query is a triple
ht ,u, r i 2 �V ⇥N⇤ ⇥R where t is a parse tree, u is the address
of the leftmost nonterminal, and r is a production rule that

TCond ! � | Write TCond | MoveOp TCond

MoveOp ! Up | Left | Right | DownFirst | DownLast | PrevDFS

Figure 10. De�nition of TC��� .

applied to the leftmost nonterminal. Using D, we synthesize
a program pbest written in a domain-speci�c language called
TC��� described in Fig. 10. The semantics of a TC��� func-
tion is of type �V ⇥N⇤ ! C . For a given tree and an address
of the leftmost nonterminal, a TC��� function returns the
context that will condition the production. With pbest and a
given sentential form � , p(�) is de�ned as follows:

p(�) = Jpbest K (� (�),u)
whereu is the address of the leftmost nonterminal in � (�). In
Section A.1.3, we will describe the domain-speci�c language
and how to synthesize pbest .

Step 2: Derive a HOG. Once pbest is synthesized, we can
derive aHOG Ĝ which is hN , �, S, R̂,C,piwhere R̂ = {A[� ] !
� | A ! � 2 R,� 2 C}.

Step 3: Learn a PHOG. Using the set Q of tree comple-
tion queries, we next apply pbest to every production in the
training data, obtaining a new multiset:

H (Q,pbest ) = {(c, r ) | c = Jpbest K (t ,u, �), ht ,u, r i 2 Q}
The derived data set consists of a number of pairs where
each pair {(c, r )} indicates that the rule r is triggered by the
context c 2 C . Based on this set, we can obtain the function
q using maximum likelihood estimation (MLE) training. For
each rule A ! � 2 R and all possible context � 2 C , we
de�ne q(A[� ] ! �) as follows:

q(A[� ] ! �) = |{(c, r ) 2 H (Q,pbest ) | c = � , r = A ! �}|
|{(c, r ) 2 H (Q,pbest ) | c = � }|

.

Finally, Ĝq = hĜ,qi is the resulting PHOG.

A.1.3 TC��� Language
The function p is represented as a sequence of a simple vari-
ant of the domain-speci�c language called TC��� [6]. The
de�nition of the variant of TC��� is given in Fig. 10. The
semantics of the language is de�ned in Fig. 9.
TC��� consists of two kinds of instructions MoveOp and

WriteOp. Move instructions are for moving the current po-
sition in the tree to the parent node (Up), left sibling (Left),
right sibling (Right), �rst and last child (DownFirst and
DownLast), and the previous node in depth-�rst left-to-right
traversal order (PrevDFS). The write instruction Write ap-
pend a symbol at the currently visited node into the context
accumulated so far. TC��� functions operate on a state of
type �V ⇥N⇤ ⇥C meaning triples of a tree, a current address
of the production, and a context accumulated so far, and
�nally returns a resulting context in C .

Learning a PHOG
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Example A.1. The function we used in Fig. 2(c) is repre-
sented as Left · Write · Up · Write that collects symbols at
the left sibling and parent. Let t be the parse tree in Fig. 2
(c). The followings are evaluation steps of the TC��� func-
tion to get context ; JLeft · Write · Up · WriteK (t , [3], �) =
JWrite · Up · WriteK (t , [2], �) = JUp · WriteK (t , [2], [“-”]) =
JWriteK (t , [], [“-”]) = J�K (t , [], [“-” · Rep]) = [“-” · Rep].

A.1.4 Learning pbest
Given D = hS,Qi, to obtain the best PHOG grammar, we
learn the respective TC��� function by solving the following
optimization problem:

pbest = arg min
p0 2TC���

cost(D,p 0).

The cost function cost is de�ned as follows:

cost(D,p 0) = � 1
|S|

’
s 2S

log2 Pr (Ĝq , s) + �(p 0).

where Ĝq is the PHOG obtained by following the steps 2 and
3 described in Section A.1.2 with p 0.
We use the average log probability of the training pro-

grams because we want to learn a PHOG that makes the
probabilities of potential solutions as large as possible, so
that they can be quickly found by our search algorithms.
�(p) is a regularization term that penalizes too complex
TC��� programs in order to avoid over�tting to the data.
We instantiate �(p) to be the number of TC��� instructions.

Genetic Programming Search. To �nd pbest , we adopt a
genetic-programming like procedure as in [6]. We initially
randomly generate L TC��� programs. At each iteration
of the genetic algorithm, we apply either one of the follow-
ing mutations: (i) randomly replacing one instruction with
another random instruction, (ii) removing a randomly cho-
sen instruction, and (iii) inserting a random instruction at
a random location. Also, after each iteration, we randomly
removes from the set some of the programs that score worse
than another candidate program to keep the list of candidate
programs L small. After a �xed number of iterations, we
output the best scoring program from the list.

Smoothing. To handle a common issue in learning prob-
abilistic language models called data sparseness, we use a
smoothing method called Stupid backo� [7], which is cost-
e�ective in practice.

A.2 Proofs of Theorems

T������ 3.3. 8n 2 (N [ �)⇤. �(n)  �⇤(n)
(Stated in Section 3.3.)

Proof. Note that �⇤(n) = mins 2�⇤,n r
 s

Õ
r 2rw(n r

 s). We
prove the theorem by induction on the number of non-
terminal symbols in n.

Basis (|{ni 2 N }| = 0): Trivially true as �(n) = 0  �⇤(n) =
0.
Induction step: We have the following induction hypothe-
sis: for some k 2 N, |{ni 2 N }| = k =) �(n)  �⇤(n).
Suppose n = �0A0�1A1 · · ·�kAk�k+1 where �i 2 �⇤ and

Ai 2 N . Then, �(n) = �Õk
i=0 log2 h(Ai ).

Let n0 be a sentential form derived from n by expandingA0
to a sentence� 0

0 2 �⇤. In otherwords,n0 = �0� 0
0�1A1 · · ·�kAk�k+1.

Then, �(n0) = �Õk
i=1 log2 h(Ai ).

By the induction hypothesis, �(n0)  �⇤(n0). Note that

�(n) = �(n0) � log2 h(A0) and �⇤(n) = �⇤(n0) +w(n
A0!� 0

0! n0).
Our goal is to show � log2 h(A0)  w(n

A0!� 0
0! n0). By the

de�nition of h in Section 3.3.3, h(A0) � max
c 2C

⇣
q(A0 ! � 00 | c)

⌘
.

Therefore, � log2 h(A0)  � log2 max
c2C

�
q(A0 ! � 0

0 | c)
�
 w (n

A0!� 0
0!

n0). In conclusion, �(n)  �⇤(n).
⌅

T������ 3.7. 8pts. ni ⇡pts nj =) ni ⇠pts nj
(Stated in Section 3.3.)

Proof. Straightforward from Lemma A.4 and Lemma A.6. ⌅

Se�ing. Before we go into the details of the proof, we intro-
duce our setting. We assume reduction semantics [34] (also
known as contextual semantics) of a given program P is de-
�ned as follow.

JPK (x) = P 0 if and only if P[�/x] �!⇤ P 0

where � is the parameter variable and the binary relation
�!✓ P⇥P denotes an atomic reduction step. In other words,
for each program, we assume its semantics to be unique and
deterministic. Throughout this section, we assume all the
programs and sentential forms derived from the start symbol
S contain at most a single parameter variable� , as mentioned
in the de�nition of SyGuS in Section 3. Also, < denotes the
subsequence relation and a program P is called reducible i�
9P 0 2 P. P �! P 0 (denoted P reducible).

De�nition A.2. A rewriting function T rewrites a given
sentential form by replacing all reducible programs in the
sentential form with their evaluation results, and is induc-
tively de�ned as follows:

T (n) =
⇢
T (n[P/JPK]) (9P 2 P. P < n, P reducible)
n (o.w).

Lemma A.3. 8� , � ,� 2 (N [ �)⇤. T (��� ) = T (�T (�)� ).
Proof. Case 1 (öP 2 P. P < �, P reducible):T (�) = � . There-
fore, it is trivial.

Case 2 (9P 2 P. P < � , P reducible): By the de�nition of
T , T (��� ) = T (��� [P 0/JP 0K]) where P 0 < ��� , P 0 reducible.
P can be P 0 since P < � < ��� and P reducible. Therefore,
T (��� ) = T (��� [P/JPK]), which is equivalent to T (�T (�)� ).

⌅

x
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Example A.1. The function we used in Fig. 2(c) is repre-
sented as Left · Write · Up · Write that collects symbols at
the left sibling and parent. Let t be the parse tree in Fig. 2
(c). The followings are evaluation steps of the TC��� func-
tion to get context ; JLeft · Write · Up · WriteK (t , [3], �) =
JWrite · Up · WriteK (t , [2], �) = JUp · WriteK (t , [2], [“-”]) =
JWriteK (t , [], [“-”]) = J�K (t , [], [“-” · Rep]) = [“-” · Rep].

A.1.4 Learning pbest
Given D = hS,Qi, to obtain the best PHOG grammar, we
learn the respective TC��� function by solving the following
optimization problem:

pbest = arg min
p0 2TC���

cost(D,p 0).

The cost function cost is de�ned as follows:

cost(D,p 0) = � 1
|S|

’
s 2S

log2 Pr (Ĝq , s) + �(p 0).

where Ĝq is the PHOG obtained by following the steps 2 and
3 described in Section A.1.2 with p 0.
We use the average log probability of the training pro-

grams because we want to learn a PHOG that makes the
probabilities of potential solutions as large as possible, so
that they can be quickly found by our search algorithms.
�(p) is a regularization term that penalizes too complex
TC��� programs in order to avoid over�tting to the data.
We instantiate �(p) to be the number of TC��� instructions.

Genetic Programming Search. To �nd pbest , we adopt a
genetic-programming like procedure as in [6]. We initially
randomly generate L TC��� programs. At each iteration
of the genetic algorithm, we apply either one of the follow-
ing mutations: (i) randomly replacing one instruction with
another random instruction, (ii) removing a randomly cho-
sen instruction, and (iii) inserting a random instruction at
a random location. Also, after each iteration, we randomly
removes from the set some of the programs that score worse
than another candidate program to keep the list of candidate
programs L small. After a �xed number of iterations, we
output the best scoring program from the list.

Smoothing. To handle a common issue in learning prob-
abilistic language models called data sparseness, we use a
smoothing method called Stupid backo� [7], which is cost-
e�ective in practice.

A.2 Proofs of Theorems

T������ 3.3. 8n 2 (N [ �)⇤. �(n)  �⇤(n)
(Stated in Section 3.3.)

Proof. Note that �⇤(n) = mins 2�⇤,n r
 s

Õ
r 2rw(n r

 s). We
prove the theorem by induction on the number of non-
terminal symbols in n.

Basis (|{ni 2 N }| = 0): Trivially true as �(n) = 0  �⇤(n) =
0.
Induction step: We have the following induction hypothe-
sis: for some k 2 N, |{ni 2 N }| = k =) �(n)  �⇤(n).
Suppose n = �0A0�1A1 · · ·�kAk�k+1 where �i 2 �⇤ and

Ai 2 N . Then, �(n) = �Õk
i=0 log2 h(Ai ).

Let n0 be a sentential form derived from n by expandingA0
to a sentence� 0

0 2 �⇤. In otherwords,n0 = �0� 0
0�1A1 · · ·�kAk�k+1.

Then, �(n0) = �Õk
i=1 log2 h(Ai ).

By the induction hypothesis, �(n0)  �⇤(n0). Note that

�(n) = �(n0) � log2 h(A0) and �⇤(n) = �⇤(n0) +w(n
A0!� 0

0! n0).
Our goal is to show � log2 h(A0)  w(n

A0!� 0
0! n0). By the

de�nition of h in Section 3.3.3, h(A0) � max
c 2C

⇣
q(A0 ! � 00 | c)

⌘
.

Therefore, � log2 h(A0)  � log2 max
c2C

�
q(A0 ! � 0

0 | c)
�
 w (n

A0!� 0
0!

n0). In conclusion, �(n)  �⇤(n).
⌅

T������ 3.7. 8pts. ni ⇡pts nj =) ni ⇠pts nj
(Stated in Section 3.3.)

Proof. Straightforward from Lemma A.4 and Lemma A.6. ⌅

Se�ing. Before we go into the details of the proof, we intro-
duce our setting. We assume reduction semantics [34] (also
known as contextual semantics) of a given program P is de-
�ned as follow.

JPK (x) = P 0 if and only if P[�/x] �!⇤ P 0

where � is the parameter variable and the binary relation
�!✓ P⇥P denotes an atomic reduction step. In other words,
for each program, we assume its semantics to be unique and
deterministic. Throughout this section, we assume all the
programs and sentential forms derived from the start symbol
S contain at most a single parameter variable� , as mentioned
in the de�nition of SyGuS in Section 3. Also, < denotes the
subsequence relation and a program P is called reducible i�
9P 0 2 P. P �! P 0 (denoted P reducible).

De�nition A.2. A rewriting function T rewrites a given
sentential form by replacing all reducible programs in the
sentential form with their evaluation results, and is induc-
tively de�ned as follows:

T (n) =
⇢
T (n[P/JPK]) (9P 2 P. P < n, P reducible)
n (o.w).

Lemma A.3. 8� , � ,� 2 (N [ �)⇤. T (��� ) = T (�T (�)� ).
Proof. Case 1 (öP 2 P. P < �, P reducible):T (�) = � . There-
fore, it is trivial.

Case 2 (9P 2 P. P < � , P reducible): By the de�nition of
T , T (��� ) = T (��� [P 0/JP 0K]) where P 0 < ��� , P 0 reducible.
P can be P 0 since P < � < ��� and P reducible. Therefore,
T (��� ) = T (��� [P/JPK]), which is equivalent to T (�T (�)� ).

⌅

sum of negative log 
probabilities of training 

programs using   for extracting 
contexts
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Guided Search

• Model Learning

• Guided enumerative search



Guided Search as Path Finding

Contruct a directed weighted graph from a given CFG

• Nodes: sentential forms  

• Edges: derivations between 
sentential forms 

• Terminal nodes: sentences

S
x

Repl(S,S,S)
S+S

Rep(x,"-",".")

. . .

Rep(x,”-“,S)

. . . . . .

Rep(x,"-","-")



Guided Search as Path Finding

Contruct a directed weighted graph from a given CFG

• Weights:  

• w(s1 → s2) = - log ( Pr (r | s1) )

S
x

Repl(S,S,S)
S+S

Rep(x,"-",".")

. . .

Rep(x,”-“,S)

. . . . . .

Rep(x,"-","-")



Guided Search as Path Finding

Contruct a directed weighted graph from a given CFG

• Goal: explore candidates of higher 
probabilities first  

• = enumerating programs in order of 
decreasing probability  

• = enumerating paths in order of 
increasing distance

S
x

Repl(S,S,S)
S+S

Rep(x,"-",".")

. . .

Rep(x,”-“,S)

. . . . . .

Rep(x,"-","-")



Unguided Top-Down Search

TopDown (grammar , spec ɸ): 

Q := {S} 

while Q != ∅: 
  remove p from Q 

  if ɸ(p): return p 
  P’ := Unroll(G, p) 

  forall p’∊ P’:  
    Q := Q.Enqueue(p’)
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G = hN,⌃, R, Si

Unroll (grammar G, spec ɸ): 

P’ := ∅ 
forall A ∊ p: 
  forall A → B ∊ R: 
    p’ := p[B/A] 

    P’ := P’ ∪ {p’} 
return P’ 



Guided Top-Down Search

TopDown (grammar , spec ɸ): 

Q := {(S,0)} 

while Q != ∅: 
  remove (p, d) whose d is minimal from Q  

  if ɸ(p): return p 
  P’ := Unroll(G, p, d) 

  forall p’∊ P’:  
    Q := Q.Enqueue(p’)
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G = hN,⌃, R, Si

Unroll (grammar G, program p, distance d): 

P’ := ∅ 
forall A ∊ p: 
  forall A → B ∊ R: 
    p’ := p[B/A] 

    P’ := P’ ∪ {(p’, d + w(p,p’)} 
return P’ 

Candidates are with their distances from the root (S)

Pick one closest to S

Add new candidates to the queue 

with their distances from S



Better Guided Top-Down Search

• The previous algorithm is based on Dijkstra algorithm

• We can use A*, which is better.

Dijkstra A*
Red: start node

Blue: goal node


GreenYellow: explored nodes



A* Search

• Dijkstra: picks one closest to the root

• A*: picks one of the estimated shortest path (= distance from 
the root + guessed future distance to the closest goal node)

• Often infeasible to compute the exact future distance — an 
under-approximation is used.

• Heuristic function g : Node → Guessed Future distance

• A* finds the shortest paths if the heuristic function always 
underestimates future distances.



Guided Top-Down Search (improved)

TopDown (grammar , spec ɸ): 

Q := {(S,0,g(S))} 

while Q != ∅: 
  remove (p, d, h) whose d + h is minimal from Q 

  if ɸ(p): return p 
  P’ := Unroll(G, p, d) 

  forall p’∊ P’:  
    Q := Q.Enqueue(p’)
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G = hN,⌃, R, Si

Unroll (grammar G, program p, distance d): 

P’ := ∅ 
forall A ∊ p: 
  forall A → B ∊ R: 
    p’ := p[B/A] 

    P’ := P’ ∪ {(p’, d + w(p,p’), g(p’)} 
return P’ 

Guessed future distance
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g : (N [ ⌃)⇤ ! R+

Pick one of the estimated shortest path 

(distance so far + future distance)

Add new candidates to the queue

with their gussed future distances



How to compute g?

•  : path from n to s

•  : distance of the path from n to s

• Ideal heuristic function:  

                        

• which is infeasible (∵ possibly infinitely many goal nodes 

reachable from n)
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instance weighted enumerative search. Let us begin by in-
troducing necessary notations.

3.3.1 Notations
A weighted directed graph consists of a set of vertices and a
set of edges with real-valued weights. An edge from p to q
with a label X is denoted p

X! q. A path p
Y
 q is a sequence

of vertices and edges leading from p to q with a sequence
Y of labels on the edges. Each edge has the associated cost.
Letters A,B denote non-terminal symbols, letters a,b denote
terminal symbols, and letters � , � denote sentential forms.
Our weighted enumerative algorithm operates on a weighted
directed graph of sentential forms de�ned as follows:

De�nition 3.1 (DerivationGraph of Sentential Forms). Given
a statistical program model Gq = hG,C,p,qi where G =
hN , �, S,Ri, a graph G(Gq) is a weighted directed labeled
graph hN , Ei where N ✓ (N [ �)⇤, E ✓ N ⇥ N ⇥ R, and
w : E ! R+ [ {1} de�ned as follows:

E = {�A�
A!�
�! ��� | A ! � 2 R,� 2 �⇤, � ,� 2 (N [ �)⇤}

w(n1
A!�
�! n2) =

⇢
� log2 q(A ! � | p(n1)) (q(A ! � | p(n1)) , 0)
1 (otherwise)

The graph has a start node S and (possibly) in�nitely many
goal nodes, which are all the programs in P.

3.3.2 A* based Search
We use A* search [13] over the derivation graph of sentential
forms. A* is a best-�rst graph search algorithm. It expands
nodes that appear to lead to the next closest goal node. It iden-
ti�es such nodes n by using not only their (known) distance
f (n) from the start node but also an estimate�(n) of their (un-
known) distance to the closest goal node. Using f (n)+�(n) as
the estimated least distance from the start node to the closest
goal node from n, the algorithm repeatedly chooses the next
node n0 whose f (n0) + �(n0) is minimum. It always �nds the
shortest path from the start node to a goal node when such
a path exists if �(n) never overestimates the actual distance
�⇤(n) to the closest goal node, i.e., �(n)  �⇤(n). The function
� is called the heuristic function.

Algorithm 2 depicts our algorithm. Not only the inputs
required by the abstract procedure ��������_������, but
also a heuristic function � is provided as input to the algo-
rithm. For a given statistical program model, the heuristic
function can be automatically derived once and for all, and it
is used throughout the search. How to derive such a function
will be described in the following Section 3.3.3. Also, note
that the derivation graph of sentential forms is not explicitly
constructed and then traversed, but built on the �y.
We detail the algorithm next. The priority queue main-

tained throughout the search is initialized at line 1. The queue
contains triples of a sentential form n, the shortest distance
from the start node to n, and a guessed distance from n to
the closest goal node. At every iteration of the loop, most

Algorithm 2 Weighted Enumerative Search
Function ��������_������e (Gq ,pts,�,�)

// � is a heuristic function described in Section 3.3.3.
1: Q := {(S, 0,�(S))}
2: while Q is not empty do
3: remove (n, cf , c�) whose cf + c� is minimal from Q .
4: if n 2 �⇤ ^ 8x 2 pts. �(x , JnK (x)) then
5: return n
6: end if
7: for all n0 s.t. n

r! n0 do
8: insert (n0, cf +w(n r! n0),�(n0)) into Q
9: end for
10: for all h(n, cf , c�), (n0, c 0f , c

0
�)i 2 Q ⇥Q do

11: if n ⇡pts n0 ^ cf + c� > c 0f + c
0
� then

12: remove (n, cf , c�) from Q
13: end if
14: end for
15: end while

promising sentential form n is picked from the queue (line
3). If n is a correct sentence (i.e., a program) with respect
to pts, it is returned (lines 4-5). Otherwise, we continue the
search. The neighborhoods of n are expanded and added into
the queue and the distances are updated (lines 7-9). As an
optimization that will be described in Section 3.4, we remove
redundant sentential forms from the queue by applying the
notion of equivalence classes of sentential forms to abstract
the search space (lines 10-14).
In the rest of this section, we explain how to obtain the

function� and how to apply the notion of equivalence classes.

3.3.3 Heuristic Function
Ideally, we can achieve the best performance (in terms of
expanded nodes) if we use the exact distance �⇤(n) for each
node n, formally: �⇤(n) = mins 2�⇤,n r

 s w(n r
 s) where

w(n r
 s) is the sum of the weights associated with the

edges on the path n
r
 s . However, it is infeasible to com-

pute �⇤(n) because there are possibly in�nitely many goal
nodes reachable from n and we cannot evaluate all of them.
Instead, we use an underapproximation � of �⇤. Intuitively,
we compute guessed future distances without considering
contexts that will condition future productions. The function
� is de�ned as:

�(n) =
(

0 (n 2 �⇤)
�Õ
ni 2N

log2 h(ni ) (otherwise)

where ni refers to the i-th symbol in the sentential form
n. If a given node is a sentence, then � returns 0 because
we have already reached a goal node. Otherwise, for each
non-terminal symbol in n, we compute a guessed distance
to the closest goal node reachable from n using a function
h, and then we sum up the computed values. For a non-
terminal symbol A 2 N , h(A) refers to an upper bound of
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instance weighted enumerative search. Let us begin by in-
troducing necessary notations.

3.3.1 Notations
A weighted directed graph consists of a set of vertices and a
set of edges with real-valued weights. An edge from p to q
with a label X is denoted p

X! q. A path p
Y
 q is a sequence

of vertices and edges leading from p to q with a sequence
Y of labels on the edges. Each edge has the associated cost.
Letters A,B denote non-terminal symbols, letters a,b denote
terminal symbols, and letters � , � denote sentential forms.
Our weighted enumerative algorithm operates on a weighted
directed graph of sentential forms de�ned as follows:

De�nition 3.1 (DerivationGraph of Sentential Forms). Given
a statistical program model Gq = hG,C,p,qi where G =
hN , �, S,Ri, a graph G(Gq) is a weighted directed labeled
graph hN , Ei where N ✓ (N [ �)⇤, E ✓ N ⇥ N ⇥ R, and
w : E ! R+ [ {1} de�ned as follows:

E = {�A�
A!�
�! ��� | A ! � 2 R,� 2 �⇤, � ,� 2 (N [ �)⇤}

w(n1
A!�
�! n2) =

⇢
� log2 q(A ! � | p(n1)) (q(A ! � | p(n1)) , 0)
1 (otherwise)

The graph has a start node S and (possibly) in�nitely many
goal nodes, which are all the programs in P.

3.3.2 A* based Search
We use A* search [13] over the derivation graph of sentential
forms. A* is a best-�rst graph search algorithm. It expands
nodes that appear to lead to the next closest goal node. It iden-
ti�es such nodes n by using not only their (known) distance
f (n) from the start node but also an estimate�(n) of their (un-
known) distance to the closest goal node. Using f (n)+�(n) as
the estimated least distance from the start node to the closest
goal node from n, the algorithm repeatedly chooses the next
node n0 whose f (n0) + �(n0) is minimum. It always �nds the
shortest path from the start node to a goal node when such
a path exists if �(n) never overestimates the actual distance
�⇤(n) to the closest goal node, i.e., �(n)  �⇤(n). The function
� is called the heuristic function.

Algorithm 2 depicts our algorithm. Not only the inputs
required by the abstract procedure ��������_������, but
also a heuristic function � is provided as input to the algo-
rithm. For a given statistical program model, the heuristic
function can be automatically derived once and for all, and it
is used throughout the search. How to derive such a function
will be described in the following Section 3.3.3. Also, note
that the derivation graph of sentential forms is not explicitly
constructed and then traversed, but built on the �y.
We detail the algorithm next. The priority queue main-

tained throughout the search is initialized at line 1. The queue
contains triples of a sentential form n, the shortest distance
from the start node to n, and a guessed distance from n to
the closest goal node. At every iteration of the loop, most

Algorithm 2 Weighted Enumerative Search
Function ��������_������e (Gq ,pts,�,�)

// � is a heuristic function described in Section 3.3.3.
1: Q := {(S, 0,�(S))}
2: while Q is not empty do
3: remove (n, cf , c�) whose cf + c� is minimal from Q .
4: if n 2 �⇤ ^ 8x 2 pts. �(x , JnK (x)) then
5: return n
6: end if
7: for all n0 s.t. n

r! n0 do
8: insert (n0, cf +w(n r! n0),�(n0)) into Q
9: end for
10: for all h(n, cf , c�), (n0, c 0f , c

0
�)i 2 Q ⇥Q do

11: if n ⇡pts n0 ^ cf + c� > c 0f + c
0
� then

12: remove (n, cf , c�) from Q
13: end if
14: end for
15: end while

promising sentential form n is picked from the queue (line
3). If n is a correct sentence (i.e., a program) with respect
to pts, it is returned (lines 4-5). Otherwise, we continue the
search. The neighborhoods of n are expanded and added into
the queue and the distances are updated (lines 7-9). As an
optimization that will be described in Section 3.4, we remove
redundant sentential forms from the queue by applying the
notion of equivalence classes of sentential forms to abstract
the search space (lines 10-14).
In the rest of this section, we explain how to obtain the

function� and how to apply the notion of equivalence classes.

3.3.3 Heuristic Function
Ideally, we can achieve the best performance (in terms of
expanded nodes) if we use the exact distance �⇤(n) for each
node n, formally: �⇤(n) = mins 2�⇤,n r

 s w(n r
 s) where

w(n r
 s) is the sum of the weights associated with the

edges on the path n
r
 s . However, it is infeasible to com-

pute �⇤(n) because there are possibly in�nitely many goal
nodes reachable from n and we cannot evaluate all of them.
Instead, we use an underapproximation � of �⇤. Intuitively,
we compute guessed future distances without considering
contexts that will condition future productions. The function
� is de�ned as:

�(n) =
(

0 (n 2 �⇤)
�Õ
ni 2N

log2 h(ni ) (otherwise)

where ni refers to the i-th symbol in the sentential form
n. If a given node is a sentence, then � returns 0 because
we have already reached a goal node. Otherwise, for each
non-terminal symbol in n, we compute a guessed distance
to the closest goal node reachable from n using a function
h, and then we sum up the computed values. For a non-
terminal symbol A 2 N , h(A) refers to an upper bound of
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instance weighted enumerative search. Let us begin by in-
troducing necessary notations.

3.3.1 Notations
A weighted directed graph consists of a set of vertices and a
set of edges with real-valued weights. An edge from p to q
with a label X is denoted p

X! q. A path p
Y
 q is a sequence

of vertices and edges leading from p to q with a sequence
Y of labels on the edges. Each edge has the associated cost.
Letters A,B denote non-terminal symbols, letters a,b denote
terminal symbols, and letters � , � denote sentential forms.
Our weighted enumerative algorithm operates on a weighted
directed graph of sentential forms de�ned as follows:

De�nition 3.1 (DerivationGraph of Sentential Forms). Given
a statistical program model Gq = hG,C,p,qi where G =
hN , �, S,Ri, a graph G(Gq) is a weighted directed labeled
graph hN , Ei where N ✓ (N [ �)⇤, E ✓ N ⇥ N ⇥ R, and
w : E ! R+ [ {1} de�ned as follows:

E = {�A�
A!�
�! ��� | A ! � 2 R,� 2 �⇤, � ,� 2 (N [ �)⇤}

w(n1
A!�
�! n2) =

⇢
� log2 q(A ! � | p(n1)) (q(A ! � | p(n1)) , 0)
1 (otherwise)

The graph has a start node S and (possibly) in�nitely many
goal nodes, which are all the programs in P.

3.3.2 A* based Search
We use A* search [13] over the derivation graph of sentential
forms. A* is a best-�rst graph search algorithm. It expands
nodes that appear to lead to the next closest goal node. It iden-
ti�es such nodes n by using not only their (known) distance
f (n) from the start node but also an estimate�(n) of their (un-
known) distance to the closest goal node. Using f (n)+�(n) as
the estimated least distance from the start node to the closest
goal node from n, the algorithm repeatedly chooses the next
node n0 whose f (n0) + �(n0) is minimum. It always �nds the
shortest path from the start node to a goal node when such
a path exists if �(n) never overestimates the actual distance
�⇤(n) to the closest goal node, i.e., �(n)  �⇤(n). The function
� is called the heuristic function.

Algorithm 2 depicts our algorithm. Not only the inputs
required by the abstract procedure ��������_������, but
also a heuristic function � is provided as input to the algo-
rithm. For a given statistical program model, the heuristic
function can be automatically derived once and for all, and it
is used throughout the search. How to derive such a function
will be described in the following Section 3.3.3. Also, note
that the derivation graph of sentential forms is not explicitly
constructed and then traversed, but built on the �y.
We detail the algorithm next. The priority queue main-

tained throughout the search is initialized at line 1. The queue
contains triples of a sentential form n, the shortest distance
from the start node to n, and a guessed distance from n to
the closest goal node. At every iteration of the loop, most

Algorithm 2 Weighted Enumerative Search
Function ��������_������e (Gq ,pts,�,�)

// � is a heuristic function described in Section 3.3.3.
1: Q := {(S, 0,�(S))}
2: while Q is not empty do
3: remove (n, cf , c�) whose cf + c� is minimal from Q .
4: if n 2 �⇤ ^ 8x 2 pts. �(x , JnK (x)) then
5: return n
6: end if
7: for all n0 s.t. n

r! n0 do
8: insert (n0, cf +w(n r! n0),�(n0)) into Q
9: end for
10: for all h(n, cf , c�), (n0, c 0f , c

0
�)i 2 Q ⇥Q do

11: if n ⇡pts n0 ^ cf + c� > c 0f + c
0
� then

12: remove (n, cf , c�) from Q
13: end if
14: end for
15: end while

promising sentential form n is picked from the queue (line
3). If n is a correct sentence (i.e., a program) with respect
to pts, it is returned (lines 4-5). Otherwise, we continue the
search. The neighborhoods of n are expanded and added into
the queue and the distances are updated (lines 7-9). As an
optimization that will be described in Section 3.4, we remove
redundant sentential forms from the queue by applying the
notion of equivalence classes of sentential forms to abstract
the search space (lines 10-14).
In the rest of this section, we explain how to obtain the

function� and how to apply the notion of equivalence classes.

3.3.3 Heuristic Function
Ideally, we can achieve the best performance (in terms of
expanded nodes) if we use the exact distance �⇤(n) for each
node n, formally: �⇤(n) = mins 2�⇤,n r

 s w(n r
 s) where

w(n r
 s) is the sum of the weights associated with the

edges on the path n
r
 s . However, it is infeasible to com-

pute �⇤(n) because there are possibly in�nitely many goal
nodes reachable from n and we cannot evaluate all of them.
Instead, we use an underapproximation � of �⇤. Intuitively,
we compute guessed future distances without considering
contexts that will condition future productions. The function
� is de�ned as:

�(n) =
(

0 (n 2 �⇤)
�Õ
ni 2N

log2 h(ni ) (otherwise)

where ni refers to the i-th symbol in the sentential form
n. If a given node is a sentence, then � returns 0 because
we have already reached a goal node. Otherwise, for each
non-terminal symbol in n, we compute a guessed distance
to the closest goal node reachable from n using a function
h, and then we sum up the computed values. For a non-
terminal symbol A 2 N , h(A) refers to an upper bound of



How to compute g?

• Ues an underapproximation

• Compute the h function satisfying the following condition 

          
1) start with h(A) = 0 for all A 
2) repeatedly update h according to the above equation until 
saturation

• E.g., Consider the following PCFG 

          

1st iteration:    

2nd iteration:  
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the probabilities of expressions that can be derived from A.
For all A 2 N , h(A) should satisfy the following:

8A 2 N . h(A) = max
A!� 2R,c 2C

 
q(A ! � | c) ⇥ Œ

�i 2N
h(�i )

!
.

The functionh can be obtained by the following steps: i) start
with h(A) = 0 for allA 2 N ; ii) repeatedly update h using the
above equation until saturation. Note that i) the conditioning
set C should be �nite to do the above �xpoint computation,
and ii) we can arbitrarily choose any non-terminal at each
iteration. After a �nite number of iterations, the estimate h
always converges.
Example 3.2. Consider the following PCFG in which each
production rule is associated with a probability.

S ! aSb (0.9) S ! c (0.1)
where a,b, and c are terminal symbols. At the beginning, h(S)
is set to be 0. At the 1st iteration, h(S) = max(0.9⇥ 0, 0.1) =
0.1. At the 2nd iteration, h(S) = max(0.9 ⇥ 0.1, 0.1) = 0.1. It
converges in two iterations.
To conclude, our heuristic function � always underesti-

mates the exact future distances.
Theorem 3.3. 8n 2 (N [ �)⇤. �(n)  �⇤(n).

3.4 Optimizations
In this section, we illustrate how to incorporate two pow-
erful orthogonal optimization techniques employed by the
existing search strategies into the basic algorithm.

3.4.1 Pruning with Equivalence Classes
We further improve the search e�ciency via the notion of the
equivalence class of sentential forms, which is an extended
notion of the equivalence classes of programs used in the
existing enumerative search strategy.
De�nition 3.4 (Equivalence of sentential forms). For a given
derivation graph of sentential formsG(Gq) and a set of inputs
pts, two sentential forms ni ,nj 2 (N [ �)⇤ are equivalent
modulo pts (denoted ni ⇠pts nj ) if all pairs of programs
(Pi , Pj ) derivable from ni and n � respectively have the same
input-output behavior with respect to pts, formally:

8Pi , Pj 2 P,x 2 pts. ni
r
 Pi ^ nj

r
 Pj =) JPi K (x) =

q
Pj

y
(x).

Computing the above equivalence relation is infeasible
in general because there may be in�nitely many programs
reachable from given sentential forms. We instead use the
following relation.
De�nition 3.5 (Weak equivalence of sentential forms). For
a given graph of sentential forms G(Gq) and a set of inputs
pts, two sentential forms ni ,nj 2 (N [ �)⇤ are equivalent
modulo pts (denoted ni ⇡pts nj ) i� ni = nj or

9Pi , Pj 2 P. Pi < ni , Pj < nj ,8x 2 pts. JPiK (x) = JPjK (x)
ni [Pi/�] ⇡pts nj [Pj/�]

where < denotes the subsequence relation.

Example 3.6. Consider the second CEGIS iteration of the
weighted enumeration described in Table 2 where pts =
{“-.”}. Supposewe have two sentential formsn1 = (“-”+“.”)+S
and n2 = x + S along with their costs in the priority queue
during the search. Then, n1 ⇡pts n2 holds and we can remove
either n1 or n2 from the priority queue for the following
reason. Let P1 = (“-” + “.”) and P2 = x . Then, P1 < n1 and
P2 < n2. In addition, JP1K (“-.”) = JP2K (“-.”) = “-.”. Also,
n1[P1/�] ⇡pts n2[P2/�] because n1[P1/�] = n2[P2/�] = +S .
Therefore, n1 ⇡pts n2.

The relation is sound in the following sense.

Theorem 3.7. 8pts. ni ⇡pts nj =) ni ⇠pts nj

We detail the lines 10-14 in Algorithm 2. We group multi-
ple sentential forms together to abstract search space. For
each equivalence class, only a representative that has the
highest probability is maintained in the queue (line 11). If
any two sentential forms n and n0 are equivalent, we remove
one of the smaller scores from the queue to avoid exploring
all paths reachable from that node. In the implementation,
in order to save computation, we maintain a map that keeps
track of the representatives of equivalence. This map let us
avoiding redundant comparisons between sentential forms.

Theorem 3.8. For a given synthesis problem, assuming P
is �nite, ��������_������e generates a sequence of candi-
date programs satisfying the prioritization, correctness, and
completeness properties.

3.4.2 Divide-and-Conquer Enumeration
We can further improve the search e�ciency by adopting
the divide-and-conquer enumerative approach [4] when we
aim to synthesize programs with conditionals. This approach
allows synthesizing large conditional expressions. The idea
is to �nd di�erent expressions that work for di�erent subsets
of the inputs, and unify them into a solution that works for
all inputs. The sub-expressions are found using enumera-
tion techniques and are then uni�ed into a program using
techniques for decision tree learning.

The algorithm enumerates terms and predicates separately
and uni�es them into a single large conditional expression.
For example, in the if-then-else expression ite(x  �,�,x),
the terms are x and �, and the predicate is x  �. To this end,
the algorithm initially automatically decomposes a given
context-free grammar G into a pair of grammars hGT ,GP i
where (a) the term grammar GT is a grammar generating
terms of type of target program; and (b) the predicate gram-
mar GP is a grammar generating boolean terms. We refer
the reader to [4] for more details.
Our weighted enumeration with the divide-and-conquer

strategy is described in Algorithm 3. It takes two statistical
programmodels: the termmodelGT

q and the predicate model
GP
q , and the two heuristic functions based on those grammars,

respectively. That means we need to train two statistical
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the probabilities of expressions that can be derived from A.
For all A 2 N , h(A) should satisfy the following:

8A 2 N . h(A) = max
A!� 2R,c 2C

 
q(A ! � | c) ⇥ Œ

�i 2N
h(�i )

!
.

The functionh can be obtained by the following steps: i) start
with h(A) = 0 for allA 2 N ; ii) repeatedly update h using the
above equation until saturation. Note that i) the conditioning
set C should be �nite to do the above �xpoint computation,
and ii) we can arbitrarily choose any non-terminal at each
iteration. After a �nite number of iterations, the estimate h
always converges.
Example 3.2. Consider the following PCFG in which each
production rule is associated with a probability.

S ! aSb (0.9) S ! c (0.1)
where a,b, and c are terminal symbols. At the beginning, h(S)
is set to be 0. At the 1st iteration, h(S) = max(0.9⇥ 0, 0.1) =
0.1. At the 2nd iteration, h(S) = max(0.9 ⇥ 0.1, 0.1) = 0.1. It
converges in two iterations.
To conclude, our heuristic function � always underesti-

mates the exact future distances.
Theorem 3.3. 8n 2 (N [ �)⇤. �(n)  �⇤(n).

3.4 Optimizations
In this section, we illustrate how to incorporate two pow-
erful orthogonal optimization techniques employed by the
existing search strategies into the basic algorithm.

3.4.1 Pruning with Equivalence Classes
We further improve the search e�ciency via the notion of the
equivalence class of sentential forms, which is an extended
notion of the equivalence classes of programs used in the
existing enumerative search strategy.
De�nition 3.4 (Equivalence of sentential forms). For a given
derivation graph of sentential formsG(Gq) and a set of inputs
pts, two sentential forms ni ,nj 2 (N [ �)⇤ are equivalent
modulo pts (denoted ni ⇠pts nj ) if all pairs of programs
(Pi , Pj ) derivable from ni and n � respectively have the same
input-output behavior with respect to pts, formally:

8Pi , Pj 2 P,x 2 pts. ni
r
 Pi ^ nj

r
 Pj =) JPi K (x) =

q
Pj

y
(x).

Computing the above equivalence relation is infeasible
in general because there may be in�nitely many programs
reachable from given sentential forms. We instead use the
following relation.
De�nition 3.5 (Weak equivalence of sentential forms). For
a given graph of sentential forms G(Gq) and a set of inputs
pts, two sentential forms ni ,nj 2 (N [ �)⇤ are equivalent
modulo pts (denoted ni ⇡pts nj ) i� ni = nj or

9Pi , Pj 2 P. Pi < ni , Pj < nj ,8x 2 pts. JPiK (x) = JPjK (x)
ni [Pi/�] ⇡pts nj [Pj/�]

where < denotes the subsequence relation.

Example 3.6. Consider the second CEGIS iteration of the
weighted enumeration described in Table 2 where pts =
{“-.”}. Supposewe have two sentential formsn1 = (“-”+“.”)+S
and n2 = x + S along with their costs in the priority queue
during the search. Then, n1 ⇡pts n2 holds and we can remove
either n1 or n2 from the priority queue for the following
reason. Let P1 = (“-” + “.”) and P2 = x . Then, P1 < n1 and
P2 < n2. In addition, JP1K (“-.”) = JP2K (“-.”) = “-.”. Also,
n1[P1/�] ⇡pts n2[P2/�] because n1[P1/�] = n2[P2/�] = +S .
Therefore, n1 ⇡pts n2.

The relation is sound in the following sense.

Theorem 3.7. 8pts. ni ⇡pts nj =) ni ⇠pts nj

We detail the lines 10-14 in Algorithm 2. We group multi-
ple sentential forms together to abstract search space. For
each equivalence class, only a representative that has the
highest probability is maintained in the queue (line 11). If
any two sentential forms n and n0 are equivalent, we remove
one of the smaller scores from the queue to avoid exploring
all paths reachable from that node. In the implementation,
in order to save computation, we maintain a map that keeps
track of the representatives of equivalence. This map let us
avoiding redundant comparisons between sentential forms.

Theorem 3.8. For a given synthesis problem, assuming P
is �nite, ��������_������e generates a sequence of candi-
date programs satisfying the prioritization, correctness, and
completeness properties.

3.4.2 Divide-and-Conquer Enumeration
We can further improve the search e�ciency by adopting
the divide-and-conquer enumerative approach [4] when we
aim to synthesize programs with conditionals. This approach
allows synthesizing large conditional expressions. The idea
is to �nd di�erent expressions that work for di�erent subsets
of the inputs, and unify them into a solution that works for
all inputs. The sub-expressions are found using enumera-
tion techniques and are then uni�ed into a program using
techniques for decision tree learning.

The algorithm enumerates terms and predicates separately
and uni�es them into a single large conditional expression.
For example, in the if-then-else expression ite(x  �,�,x),
the terms are x and �, and the predicate is x  �. To this end,
the algorithm initially automatically decomposes a given
context-free grammar G into a pair of grammars hGT ,GP i
where (a) the term grammar GT is a grammar generating
terms of type of target program; and (b) the predicate gram-
mar GP is a grammar generating boolean terms. We refer
the reader to [4] for more details.
Our weighted enumeration with the divide-and-conquer

strategy is described in Algorithm 3. It takes two statistical
programmodels: the termmodelGT

q and the predicate model
GP
q , and the two heuristic functions based on those grammars,

respectively. That means we need to train two statistical
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the probabilities of expressions that can be derived from A.
For all A 2 N , h(A) should satisfy the following:

8A 2 N . h(A) = max
A!� 2R,c 2C

 
q(A ! � | c) ⇥ Œ

�i 2N
h(�i )

!
.

The functionh can be obtained by the following steps: i) start
with h(A) = 0 for allA 2 N ; ii) repeatedly update h using the
above equation until saturation. Note that i) the conditioning
set C should be �nite to do the above �xpoint computation,
and ii) we can arbitrarily choose any non-terminal at each
iteration. After a �nite number of iterations, the estimate h
always converges.
Example 3.2. Consider the following PCFG in which each
production rule is associated with a probability.

S ! aSb (0.9) S ! c (0.1)
where a,b, and c are terminal symbols. At the beginning, h(S)
is set to be 0. At the 1st iteration, h(S) = max(0.9⇥ 0, 0.1) =
0.1. At the 2nd iteration, h(S) = max(0.9 ⇥ 0.1, 0.1) = 0.1. It
converges in two iterations.
To conclude, our heuristic function � always underesti-

mates the exact future distances.
Theorem 3.3. 8n 2 (N [ �)⇤. �(n)  �⇤(n).

3.4 Optimizations
In this section, we illustrate how to incorporate two pow-
erful orthogonal optimization techniques employed by the
existing search strategies into the basic algorithm.

3.4.1 Pruning with Equivalence Classes
We further improve the search e�ciency via the notion of the
equivalence class of sentential forms, which is an extended
notion of the equivalence classes of programs used in the
existing enumerative search strategy.
De�nition 3.4 (Equivalence of sentential forms). For a given
derivation graph of sentential formsG(Gq) and a set of inputs
pts, two sentential forms ni ,nj 2 (N [ �)⇤ are equivalent
modulo pts (denoted ni ⇠pts nj ) if all pairs of programs
(Pi , Pj ) derivable from ni and n � respectively have the same
input-output behavior with respect to pts, formally:

8Pi , Pj 2 P,x 2 pts. ni
r
 Pi ^ nj

r
 Pj =) JPi K (x) =

q
Pj

y
(x).

Computing the above equivalence relation is infeasible
in general because there may be in�nitely many programs
reachable from given sentential forms. We instead use the
following relation.
De�nition 3.5 (Weak equivalence of sentential forms). For
a given graph of sentential forms G(Gq) and a set of inputs
pts, two sentential forms ni ,nj 2 (N [ �)⇤ are equivalent
modulo pts (denoted ni ⇡pts nj ) i� ni = nj or

9Pi , Pj 2 P. Pi < ni , Pj < nj ,8x 2 pts. JPiK (x) = JPjK (x)
ni [Pi/�] ⇡pts nj [Pj/�]

where < denotes the subsequence relation.

Example 3.6. Consider the second CEGIS iteration of the
weighted enumeration described in Table 2 where pts =
{“-.”}. Supposewe have two sentential formsn1 = (“-”+“.”)+S
and n2 = x + S along with their costs in the priority queue
during the search. Then, n1 ⇡pts n2 holds and we can remove
either n1 or n2 from the priority queue for the following
reason. Let P1 = (“-” + “.”) and P2 = x . Then, P1 < n1 and
P2 < n2. In addition, JP1K (“-.”) = JP2K (“-.”) = “-.”. Also,
n1[P1/�] ⇡pts n2[P2/�] because n1[P1/�] = n2[P2/�] = +S .
Therefore, n1 ⇡pts n2.

The relation is sound in the following sense.

Theorem 3.7. 8pts. ni ⇡pts nj =) ni ⇠pts nj

We detail the lines 10-14 in Algorithm 2. We group multi-
ple sentential forms together to abstract search space. For
each equivalence class, only a representative that has the
highest probability is maintained in the queue (line 11). If
any two sentential forms n and n0 are equivalent, we remove
one of the smaller scores from the queue to avoid exploring
all paths reachable from that node. In the implementation,
in order to save computation, we maintain a map that keeps
track of the representatives of equivalence. This map let us
avoiding redundant comparisons between sentential forms.

Theorem 3.8. For a given synthesis problem, assuming P
is �nite, ��������_������e generates a sequence of candi-
date programs satisfying the prioritization, correctness, and
completeness properties.

3.4.2 Divide-and-Conquer Enumeration
We can further improve the search e�ciency by adopting
the divide-and-conquer enumerative approach [4] when we
aim to synthesize programs with conditionals. This approach
allows synthesizing large conditional expressions. The idea
is to �nd di�erent expressions that work for di�erent subsets
of the inputs, and unify them into a solution that works for
all inputs. The sub-expressions are found using enumera-
tion techniques and are then uni�ed into a program using
techniques for decision tree learning.

The algorithm enumerates terms and predicates separately
and uni�es them into a single large conditional expression.
For example, in the if-then-else expression ite(x  �,�,x),
the terms are x and �, and the predicate is x  �. To this end,
the algorithm initially automatically decomposes a given
context-free grammar G into a pair of grammars hGT ,GP i
where (a) the term grammar GT is a grammar generating
terms of type of target program; and (b) the predicate gram-
mar GP is a grammar generating boolean terms. We refer
the reader to [4] for more details.
Our weighted enumeration with the divide-and-conquer

strategy is described in Algorithm 3. It takes two statistical
programmodels: the termmodelGT

q and the predicate model
GP
q , and the two heuristic functions based on those grammars,

respectively. That means we need to train two statistical
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the probabilities of expressions that can be derived from A.
For all A 2 N , h(A) should satisfy the following:

8A 2 N . h(A) = max
A!� 2R,c 2C

 
q(A ! � | c) ⇥ Œ

�i 2N
h(�i )

!
.

The functionh can be obtained by the following steps: i) start
with h(A) = 0 for allA 2 N ; ii) repeatedly update h using the
above equation until saturation. Note that i) the conditioning
set C should be �nite to do the above �xpoint computation,
and ii) we can arbitrarily choose any non-terminal at each
iteration. After a �nite number of iterations, the estimate h
always converges.
Example 3.2. Consider the following PCFG in which each
production rule is associated with a probability.

S ! aSb (0.9) S ! c (0.1)
where a,b, and c are terminal symbols. At the beginning, h(S)
is set to be 0. At the 1st iteration, h(S) = max(0.9⇥ 0, 0.1) =
0.1. At the 2nd iteration, h(S) = max(0.9 ⇥ 0.1, 0.1) = 0.1. It
converges in two iterations.
To conclude, our heuristic function � always underesti-

mates the exact future distances.
Theorem 3.3. 8n 2 (N [ �)⇤. �(n)  �⇤(n).

3.4 Optimizations
In this section, we illustrate how to incorporate two pow-
erful orthogonal optimization techniques employed by the
existing search strategies into the basic algorithm.

3.4.1 Pruning with Equivalence Classes
We further improve the search e�ciency via the notion of the
equivalence class of sentential forms, which is an extended
notion of the equivalence classes of programs used in the
existing enumerative search strategy.
De�nition 3.4 (Equivalence of sentential forms). For a given
derivation graph of sentential formsG(Gq) and a set of inputs
pts, two sentential forms ni ,nj 2 (N [ �)⇤ are equivalent
modulo pts (denoted ni ⇠pts nj ) if all pairs of programs
(Pi , Pj ) derivable from ni and n � respectively have the same
input-output behavior with respect to pts, formally:

8Pi , Pj 2 P,x 2 pts. ni
r
 Pi ^ nj

r
 Pj =) JPi K (x) =

q
Pj

y
(x).

Computing the above equivalence relation is infeasible
in general because there may be in�nitely many programs
reachable from given sentential forms. We instead use the
following relation.
De�nition 3.5 (Weak equivalence of sentential forms). For
a given graph of sentential forms G(Gq) and a set of inputs
pts, two sentential forms ni ,nj 2 (N [ �)⇤ are equivalent
modulo pts (denoted ni ⇡pts nj ) i� ni = nj or

9Pi , Pj 2 P. Pi < ni , Pj < nj ,8x 2 pts. JPiK (x) = JPjK (x)
ni [Pi/�] ⇡pts nj [Pj/�]

where < denotes the subsequence relation.

Example 3.6. Consider the second CEGIS iteration of the
weighted enumeration described in Table 2 where pts =
{“-.”}. Supposewe have two sentential formsn1 = (“-”+“.”)+S
and n2 = x + S along with their costs in the priority queue
during the search. Then, n1 ⇡pts n2 holds and we can remove
either n1 or n2 from the priority queue for the following
reason. Let P1 = (“-” + “.”) and P2 = x . Then, P1 < n1 and
P2 < n2. In addition, JP1K (“-.”) = JP2K (“-.”) = “-.”. Also,
n1[P1/�] ⇡pts n2[P2/�] because n1[P1/�] = n2[P2/�] = +S .
Therefore, n1 ⇡pts n2.

The relation is sound in the following sense.

Theorem 3.7. 8pts. ni ⇡pts nj =) ni ⇠pts nj

We detail the lines 10-14 in Algorithm 2. We group multi-
ple sentential forms together to abstract search space. For
each equivalence class, only a representative that has the
highest probability is maintained in the queue (line 11). If
any two sentential forms n and n0 are equivalent, we remove
one of the smaller scores from the queue to avoid exploring
all paths reachable from that node. In the implementation,
in order to save computation, we maintain a map that keeps
track of the representatives of equivalence. This map let us
avoiding redundant comparisons between sentential forms.

Theorem 3.8. For a given synthesis problem, assuming P
is �nite, ��������_������e generates a sequence of candi-
date programs satisfying the prioritization, correctness, and
completeness properties.

3.4.2 Divide-and-Conquer Enumeration
We can further improve the search e�ciency by adopting
the divide-and-conquer enumerative approach [4] when we
aim to synthesize programs with conditionals. This approach
allows synthesizing large conditional expressions. The idea
is to �nd di�erent expressions that work for di�erent subsets
of the inputs, and unify them into a solution that works for
all inputs. The sub-expressions are found using enumera-
tion techniques and are then uni�ed into a program using
techniques for decision tree learning.

The algorithm enumerates terms and predicates separately
and uni�es them into a single large conditional expression.
For example, in the if-then-else expression ite(x  �,�,x),
the terms are x and �, and the predicate is x  �. To this end,
the algorithm initially automatically decomposes a given
context-free grammar G into a pair of grammars hGT ,GP i
where (a) the term grammar GT is a grammar generating
terms of type of target program; and (b) the predicate gram-
mar GP is a grammar generating boolean terms. We refer
the reader to [4] for more details.
Our weighted enumeration with the divide-and-conquer

strategy is described in Algorithm 3. It takes two statistical
programmodels: the termmodelGT

q and the predicate model
GP
q , and the two heuristic functions based on those grammars,

respectively. That means we need to train two statistical
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the probabilities of expressions that can be derived from A.
For all A 2 N , h(A) should satisfy the following:

8A 2 N . h(A) = max
A!� 2R,c 2C

 
q(A ! � | c) ⇥ Œ
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The functionh can be obtained by the following steps: i) start
with h(A) = 0 for allA 2 N ; ii) repeatedly update h using the
above equation until saturation. Note that i) the conditioning
set C should be �nite to do the above �xpoint computation,
and ii) we can arbitrarily choose any non-terminal at each
iteration. After a �nite number of iterations, the estimate h
always converges.
Example 3.2. Consider the following PCFG in which each
production rule is associated with a probability.

S ! aSb (0.9) S ! c (0.1)
where a,b, and c are terminal symbols. At the beginning, h(S)
is set to be 0. At the 1st iteration, h(S) = max(0.9⇥ 0, 0.1) =
0.1. At the 2nd iteration, h(S) = max(0.9 ⇥ 0.1, 0.1) = 0.1. It
converges in two iterations.
To conclude, our heuristic function � always underesti-

mates the exact future distances.
Theorem 3.3. 8n 2 (N [ �)⇤. �(n)  �⇤(n).

3.4 Optimizations
In this section, we illustrate how to incorporate two pow-
erful orthogonal optimization techniques employed by the
existing search strategies into the basic algorithm.

3.4.1 Pruning with Equivalence Classes
We further improve the search e�ciency via the notion of the
equivalence class of sentential forms, which is an extended
notion of the equivalence classes of programs used in the
existing enumerative search strategy.
De�nition 3.4 (Equivalence of sentential forms). For a given
derivation graph of sentential formsG(Gq) and a set of inputs
pts, two sentential forms ni ,nj 2 (N [ �)⇤ are equivalent
modulo pts (denoted ni ⇠pts nj ) if all pairs of programs
(Pi , Pj ) derivable from ni and n � respectively have the same
input-output behavior with respect to pts, formally:

8Pi , Pj 2 P,x 2 pts. ni
r
 Pi ^ nj

r
 Pj =) JPi K (x) =

q
Pj

y
(x).

Computing the above equivalence relation is infeasible
in general because there may be in�nitely many programs
reachable from given sentential forms. We instead use the
following relation.
De�nition 3.5 (Weak equivalence of sentential forms). For
a given graph of sentential forms G(Gq) and a set of inputs
pts, two sentential forms ni ,nj 2 (N [ �)⇤ are equivalent
modulo pts (denoted ni ⇡pts nj ) i� ni = nj or

9Pi , Pj 2 P. Pi < ni , Pj < nj ,8x 2 pts. JPiK (x) = JPjK (x)
ni [Pi/�] ⇡pts nj [Pj/�]

where < denotes the subsequence relation.

Example 3.6. Consider the second CEGIS iteration of the
weighted enumeration described in Table 2 where pts =
{“-.”}. Supposewe have two sentential formsn1 = (“-”+“.”)+S
and n2 = x + S along with their costs in the priority queue
during the search. Then, n1 ⇡pts n2 holds and we can remove
either n1 or n2 from the priority queue for the following
reason. Let P1 = (“-” + “.”) and P2 = x . Then, P1 < n1 and
P2 < n2. In addition, JP1K (“-.”) = JP2K (“-.”) = “-.”. Also,
n1[P1/�] ⇡pts n2[P2/�] because n1[P1/�] = n2[P2/�] = +S .
Therefore, n1 ⇡pts n2.

The relation is sound in the following sense.

Theorem 3.7. 8pts. ni ⇡pts nj =) ni ⇠pts nj

We detail the lines 10-14 in Algorithm 2. We group multi-
ple sentential forms together to abstract search space. For
each equivalence class, only a representative that has the
highest probability is maintained in the queue (line 11). If
any two sentential forms n and n0 are equivalent, we remove
one of the smaller scores from the queue to avoid exploring
all paths reachable from that node. In the implementation,
in order to save computation, we maintain a map that keeps
track of the representatives of equivalence. This map let us
avoiding redundant comparisons between sentential forms.

Theorem 3.8. For a given synthesis problem, assuming P
is �nite, ��������_������e generates a sequence of candi-
date programs satisfying the prioritization, correctness, and
completeness properties.

3.4.2 Divide-and-Conquer Enumeration
We can further improve the search e�ciency by adopting
the divide-and-conquer enumerative approach [4] when we
aim to synthesize programs with conditionals. This approach
allows synthesizing large conditional expressions. The idea
is to �nd di�erent expressions that work for di�erent subsets
of the inputs, and unify them into a solution that works for
all inputs. The sub-expressions are found using enumera-
tion techniques and are then uni�ed into a program using
techniques for decision tree learning.

The algorithm enumerates terms and predicates separately
and uni�es them into a single large conditional expression.
For example, in the if-then-else expression ite(x  �,�,x),
the terms are x and �, and the predicate is x  �. To this end,
the algorithm initially automatically decomposes a given
context-free grammar G into a pair of grammars hGT ,GP i
where (a) the term grammar GT is a grammar generating
terms of type of target program; and (b) the predicate gram-
mar GP is a grammar generating boolean terms. We refer
the reader to [4] for more details.
Our weighted enumeration with the divide-and-conquer

strategy is described in Algorithm 3. It takes two statistical
programmodels: the termmodelGT

q and the predicate model
GP
q , and the two heuristic functions based on those grammars,

respectively. That means we need to train two statistical
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instance weighted enumerative search. Let us begin by in-
troducing necessary notations.

3.3.1 Notations
A weighted directed graph consists of a set of vertices and a
set of edges with real-valued weights. An edge from p to q
with a label X is denoted p

X! q. A path p
Y
 q is a sequence

of vertices and edges leading from p to q with a sequence
Y of labels on the edges. Each edge has the associated cost.
Letters A,B denote non-terminal symbols, letters a,b denote
terminal symbols, and letters � , � denote sentential forms.
Our weighted enumerative algorithm operates on a weighted
directed graph of sentential forms de�ned as follows:

De�nition 3.1 (DerivationGraph of Sentential Forms). Given
a statistical program model Gq = hG,C,p,qi where G =
hN , �, S,Ri, a graph G(Gq) is a weighted directed labeled
graph hN , Ei where N ✓ (N [ �)⇤, E ✓ N ⇥ N ⇥ R, and
w : E ! R+ [ {1} de�ned as follows:

E = {�A�
A!�
�! ��� | A ! � 2 R,� 2 �⇤, � ,� 2 (N [ �)⇤}

w(n1
A!�
�! n2) =

⇢
� log2 q(A ! � | p(n1)) (q(A ! � | p(n1)) , 0)
1 (otherwise)

The graph has a start node S and (possibly) in�nitely many
goal nodes, which are all the programs in P.

3.3.2 A* based Search
We use A* search [13] over the derivation graph of sentential
forms. A* is a best-�rst graph search algorithm. It expands
nodes that appear to lead to the next closest goal node. It iden-
ti�es such nodes n by using not only their (known) distance
f (n) from the start node but also an estimate�(n) of their (un-
known) distance to the closest goal node. Using f (n)+�(n) as
the estimated least distance from the start node to the closest
goal node from n, the algorithm repeatedly chooses the next
node n0 whose f (n0) + �(n0) is minimum. It always �nds the
shortest path from the start node to a goal node when such
a path exists if �(n) never overestimates the actual distance
�⇤(n) to the closest goal node, i.e., �(n)  �⇤(n). The function
� is called the heuristic function.

Algorithm 2 depicts our algorithm. Not only the inputs
required by the abstract procedure ��������_������, but
also a heuristic function � is provided as input to the algo-
rithm. For a given statistical program model, the heuristic
function can be automatically derived once and for all, and it
is used throughout the search. How to derive such a function
will be described in the following Section 3.3.3. Also, note
that the derivation graph of sentential forms is not explicitly
constructed and then traversed, but built on the �y.
We detail the algorithm next. The priority queue main-

tained throughout the search is initialized at line 1. The queue
contains triples of a sentential form n, the shortest distance
from the start node to n, and a guessed distance from n to
the closest goal node. At every iteration of the loop, most

Algorithm 2 Weighted Enumerative Search
Function ��������_������e (Gq ,pts,�,�)

// � is a heuristic function described in Section 3.3.3.
1: Q := {(S, 0,�(S))}
2: while Q is not empty do
3: remove (n, cf , c�) whose cf + c� is minimal from Q .
4: if n 2 �⇤ ^ 8x 2 pts. �(x , JnK (x)) then
5: return n
6: end if
7: for all n0 s.t. n

r! n0 do
8: insert (n0, cf +w(n r! n0),�(n0)) into Q
9: end for
10: for all h(n, cf , c�), (n0, c 0f , c

0
�)i 2 Q ⇥Q do

11: if n ⇡pts n0 ^ cf + c� > c 0f + c
0
� then

12: remove (n, cf , c�) from Q
13: end if
14: end for
15: end while

promising sentential form n is picked from the queue (line
3). If n is a correct sentence (i.e., a program) with respect
to pts, it is returned (lines 4-5). Otherwise, we continue the
search. The neighborhoods of n are expanded and added into
the queue and the distances are updated (lines 7-9). As an
optimization that will be described in Section 3.4, we remove
redundant sentential forms from the queue by applying the
notion of equivalence classes of sentential forms to abstract
the search space (lines 10-14).
In the rest of this section, we explain how to obtain the

function� and how to apply the notion of equivalence classes.

3.3.3 Heuristic Function
Ideally, we can achieve the best performance (in terms of
expanded nodes) if we use the exact distance �⇤(n) for each
node n, formally: �⇤(n) = mins 2�⇤,n r

 s w(n r
 s) where

w(n r
 s) is the sum of the weights associated with the

edges on the path n
r
 s . However, it is infeasible to com-

pute �⇤(n) because there are possibly in�nitely many goal
nodes reachable from n and we cannot evaluate all of them.
Instead, we use an underapproximation � of �⇤. Intuitively,
we compute guessed future distances without considering
contexts that will condition future productions. The function
� is de�ned as:

�(n) =
(

0 (n 2 �⇤)
�Õ
ni 2N

log2 h(ni ) (otherwise)

where ni refers to the i-th symbol in the sentential form
n. If a given node is a sentence, then � returns 0 because
we have already reached a goal node. Otherwise, for each
non-terminal symbol in n, we compute a guessed distance
to the closest goal node reachable from n using a function
h, and then we sum up the computed values. For a non-
terminal symbol A 2 N , h(A) refers to an upper bound of
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the probabilities of expressions that can be derived from A.
For all A 2 N , h(A) should satisfy the following:

8A 2 N . h(A) = max
A!� 2R,c 2C

 
q(A ! � | c) ⇥ Œ

�i 2N
h(�i )

!
.

The functionh can be obtained by the following steps: i) start
with h(A) = 0 for allA 2 N ; ii) repeatedly update h using the
above equation until saturation. Note that i) the conditioning
set C should be �nite to do the above �xpoint computation,
and ii) we can arbitrarily choose any non-terminal at each
iteration. After a �nite number of iterations, the estimate h
always converges.
Example 3.2. Consider the following PCFG in which each
production rule is associated with a probability.

S ! aSb (0.9) S ! c (0.1)
where a,b, and c are terminal symbols. At the beginning, h(S)
is set to be 0. At the 1st iteration, h(S) = max(0.9⇥ 0, 0.1) =
0.1. At the 2nd iteration, h(S) = max(0.9 ⇥ 0.1, 0.1) = 0.1. It
converges in two iterations.
To conclude, our heuristic function � always underesti-

mates the exact future distances.
Theorem 3.3. 8n 2 (N [ �)⇤. �(n)  �⇤(n).

3.4 Optimizations
In this section, we illustrate how to incorporate two pow-
erful orthogonal optimization techniques employed by the
existing search strategies into the basic algorithm.

3.4.1 Pruning with Equivalence Classes
We further improve the search e�ciency via the notion of the
equivalence class of sentential forms, which is an extended
notion of the equivalence classes of programs used in the
existing enumerative search strategy.
De�nition 3.4 (Equivalence of sentential forms). For a given
derivation graph of sentential formsG(Gq) and a set of inputs
pts, two sentential forms ni ,nj 2 (N [ �)⇤ are equivalent
modulo pts (denoted ni ⇠pts nj ) if all pairs of programs
(Pi , Pj ) derivable from ni and n � respectively have the same
input-output behavior with respect to pts, formally:

8Pi , Pj 2 P,x 2 pts. ni
r
 Pi ^ nj

r
 Pj =) JPi K (x) =

q
Pj

y
(x).

Computing the above equivalence relation is infeasible
in general because there may be in�nitely many programs
reachable from given sentential forms. We instead use the
following relation.
De�nition 3.5 (Weak equivalence of sentential forms). For
a given graph of sentential forms G(Gq) and a set of inputs
pts, two sentential forms ni ,nj 2 (N [ �)⇤ are equivalent
modulo pts (denoted ni ⇡pts nj ) i� ni = nj or

9Pi , Pj 2 P. Pi < ni , Pj < nj ,8x 2 pts. JPiK (x) = JPjK (x)
ni [Pi/�] ⇡pts nj [Pj/�]

where < denotes the subsequence relation.

Example 3.6. Consider the second CEGIS iteration of the
weighted enumeration described in Table 2 where pts =
{“-.”}. Supposewe have two sentential formsn1 = (“-”+“.”)+S
and n2 = x + S along with their costs in the priority queue
during the search. Then, n1 ⇡pts n2 holds and we can remove
either n1 or n2 from the priority queue for the following
reason. Let P1 = (“-” + “.”) and P2 = x . Then, P1 < n1 and
P2 < n2. In addition, JP1K (“-.”) = JP2K (“-.”) = “-.”. Also,
n1[P1/�] ⇡pts n2[P2/�] because n1[P1/�] = n2[P2/�] = +S .
Therefore, n1 ⇡pts n2.

The relation is sound in the following sense.

Theorem 3.7. 8pts. ni ⇡pts nj =) ni ⇠pts nj

We detail the lines 10-14 in Algorithm 2. We group multi-
ple sentential forms together to abstract search space. For
each equivalence class, only a representative that has the
highest probability is maintained in the queue (line 11). If
any two sentential forms n and n0 are equivalent, we remove
one of the smaller scores from the queue to avoid exploring
all paths reachable from that node. In the implementation,
in order to save computation, we maintain a map that keeps
track of the representatives of equivalence. This map let us
avoiding redundant comparisons between sentential forms.

Theorem 3.8. For a given synthesis problem, assuming P
is �nite, ��������_������e generates a sequence of candi-
date programs satisfying the prioritization, correctness, and
completeness properties.

3.4.2 Divide-and-Conquer Enumeration
We can further improve the search e�ciency by adopting
the divide-and-conquer enumerative approach [4] when we
aim to synthesize programs with conditionals. This approach
allows synthesizing large conditional expressions. The idea
is to �nd di�erent expressions that work for di�erent subsets
of the inputs, and unify them into a solution that works for
all inputs. The sub-expressions are found using enumera-
tion techniques and are then uni�ed into a program using
techniques for decision tree learning.

The algorithm enumerates terms and predicates separately
and uni�es them into a single large conditional expression.
For example, in the if-then-else expression ite(x  �,�,x),
the terms are x and �, and the predicate is x  �. To this end,
the algorithm initially automatically decomposes a given
context-free grammar G into a pair of grammars hGT ,GP i
where (a) the term grammar GT is a grammar generating
terms of type of target program; and (b) the predicate gram-
mar GP is a grammar generating boolean terms. We refer
the reader to [4] for more details.
Our weighted enumeration with the divide-and-conquer

strategy is described in Algorithm 3. It takes two statistical
programmodels: the termmodelGT

q and the predicate model
GP
q , and the two heuristic functions based on those grammars,

respectively. That means we need to train two statistical
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The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
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Figure 3. PHOG learned using our transfer learning method.

� log2(0.72) = 0.47. Under that same context, the probability
of the production rule S ! “-” is 0.01. Therefore, the edge
from (1) to (2) has weight � log2(0.001) = 9.97. Note that
now we avoid enumerating node (2) because the solution
node (3) is explored �rst as it is closer to the start node.

However, blindly using PHOGs for guiding synthesis hin-
ders their performance, because of the problem of over�tting.
Consider another synthesis problem of �nding a function f
following a semantic speci�cation comprising input-output
examples as follows:

f (“12.31”) = “12-31” ^ f (“01.07”) = “01-07”. (3)

The syntactic speci�cation is the same as before. Suppose
we use the PHOG in Figure 2(b) to guide the search towards
the desired solution: Rep(x , “.”, “-”), which is the inverse of
the previous solution Rep(x , “-”, “.”). Let us assume that we
are in the middle of the search, and a current sentential form
Rep(x , “.”, S). We explain how we encounter over�tting in
this situation. Note that the context is [“.”, Rep], the symbols
at the left sibling and the parent of the non-terminal symbol
S , respectively. To reach the solution, the production rule
S ! “-” should be applied to the current sentential form.
However, since the probability of the rule conditioned by
the context is small (P(S[“.”, Rep] ! “-”) = 0.002) compared
to the other rules, the search will not be guided toward it.

To solve this problem,we introduce a new learningmethod
inspired by transfer learning [19, 20], that enables PHOGs to
generalize well across synthesis problems whose solutions
have di�erent probability distributions. Our key idea is to
design a feature map that transforms sentences both in the
training and testing data into a common feature space. In
this example, we assume a feature map that transforms the
original constant symbols into featured terminal symbols
representing certain types of constant strings. Let I andO be
sets of strings that appear as input examples and output ex-
amples in the semantic speci�cation, respectively. Consider
the following categories of all possible constant strings:
• constIO represents the set of substrings of all the strings
in I \O

• constI represents the set of substrings of the strings in I
• constO represents the set of substrings of the strings inO
• const? represents all the remaining strings.

In the training phase, we learn a PHOG of a pivot gram-
mar that uses the above symbols instead of the constant
strings. The pivot grammar is depicted in Figure 3(a). In
contrast to learning the previous PHOG that only requires
the syntax of solutions of other existing synthesis problems,
we need semantic speci�cations as well for training. Using
a corresponding semantic speci�cation, each existing so-
lution can be transformed into one in which the original
constant symbols are replaced with the above symbols. For
example, the solution Rep(x , “-”, “.”) can be transformed into
Rep(x , constI , constO ) since “-” and “.” appear in the input
and output examples depicted in (2), respectively. Using the
transformed programs, we learn a PHOG depicted in Fig-
ure 3(b), which we call a pivot PHOG.
Returning to the over�tting problem, we can guide the

search appropriately using the pivot PHOG. The current sen-
tential form Rep(x , “.”, S) is transformed into Rep(x , constI , S)
since the string “.” appears in the input examples in (3).
The context, comprising symbols at the left sibling and par-
ent of S in the AST of the transformed sentential form, is
[constI , Rep]. Now the probability of the production rule
S ! “-” is assigned the probability of S[constI , Rep] !
constO since “-” appears in the output examples. Now that
the assigned probability is higher than that of the other pro-
duction rules, the search is guided toward the solution.
The rest of the paper is organized as follows. Section 3

presents our weighted search algorithm. Section 4 describes
how a PHOG is learned from training data. Section 5 presents
our experimental results. Section 6 discusses related work
and Section 7 concludes. Proofs of all stated theorems are
provided in the Appendix.

3 Weighted Search Algorithm
In this section, we describe our weighted search algorithm
based on A* search. We �rst formulate our problem of guid-
ing search-based synthesis using the CEGIS procedure with
a probabilistic program model. We then present a basic algo-
rithm that prioritizes likely solution candidates. Lastly, we
extend it with two orthogonal optimizations that are widely
used by existing search strategies.

3.1 Preliminaries
Context-free Grammar. A context-free grammar G is a
quadruple hN , �,R, Si where N is a �nite set of nonterminal
symbols, � is a �nite set of terminal symbols, R is a �nite
subset of N ⇥ (N [ �)⇤ where each member (A, �) is called a
production and is written asA ! � , and S is the start symbol
in N . A sequence of non-terminal and terminal symbols in
(N [ �)⇤ is called a sentential form. Throughout the paper,
for brevity, we only consider leftmost derivations, that is,
derivations in which productions are always applied to the
leftmost non-terminal symbol. Furthermore, we assume the
grammar is unambiguous in the sense that for all sentences,
there exists a unique leftmost derivation.
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• Suppose   (node (1)) is currently explored. 

• Using the PHOG we have, node (2) is preferred above (3) as 
the next candidate
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Figure 1. Graph of sentential forms derived from a PCFG.

Our main idea is to guide the search towards likely pro-
grams. We propose a weighted enumerative algorithm to
achieve this objective. Table 2 depicts an execution of this
algorithm on our example. Our algorithm is essentially the
same as the existing enumerative algorithm except that it
enumerates programs in order of likelihood instead of size.
Therefore, instead of enumerating all the smallest expres-
sions (e.g., “.”, “-”, x ), it �rst proposes x + “.”, which is found
only in the third iteration by the existing enumerative search.
In the next iteration, it quickly �nds the solution because it
avoids enumerating many unlikely programs (e.g., “.” + “.”).

2.1 A* Search for Weighted Enumeration
The �rst key contribution of our approach is an e�cient al-
gorithm based on A* search to enumerate programs in order
of decreasing probability. The algorithm is applicable to a
wide range of statistical program models, characterized in
Section 3. Figure 1(a) depicts one such model called PCFG
for the CFG of our synthesis problem, shown in (1). The
model takes a current non-empty sequence of terminal/non-
terminal symbols (i.e., a sentential form) and returns a prob-
ability for each production rule. For example, the probability
of the production rule S ! “.” is 0.72 when the current
sentential form is Rep(x , “-”, S).

Our algorithm conceptually works on a directed weighted
graph—constructed on demand—of sentential forms derived
from the given model. An example such graph for the PCFG
model above is shown in Figure 1(b). Each node of the graph
represents a sentential form that can be derived from the
start symbol S of the grammar. Each directed edge si ! sj
means that si expands to sj by applying a production rule to
the leftmost non-terminal symbol in si . Each edge is asso-
ciated with a real-valued weight which is the negative log
probability of its corresponding production rule provided by
the given model. The sum of the weights on a path from S
to a goal node is the negative log probability of the corre-
sponding program. Then, enumerating programs in order
of decreasing probability corresponds to enumerating goal
nodes by shortest (weighted) distance from the source node.

A straightforward way to perform this enumeration is to
employ uniform cost search algorithms such as Dijkstra’s

S

Rep(x,"-",".")

. . .

Rep(x,"-",S)

Rep(x,"-","-")

(1)

(2) (3)
� log2(0.001) � log2(0.72)

x

Rep

"-"

(c) AST and                    which is symbols
at left sibling and parent

A[context] � �

(a) PHOG when                is symbols
at left sibling and parent

P
S[“-”, Rep] � “.” 0.72
S[“-”, Rep] � “-” 0.001
S[“-”, Rep] � x 0.12
S[“-”, Rep] � S + S 0.02

· · ·

context

S

P
S[“.”, Rep] � “.” 0.001
S[“.”, Rep] � “-” 0.002
S[“.”, Rep] � x 0.01
S[“.”, Rep] � S + S 0.19

· · ·

(b) Graph of sentential forms weighted
by PHOG

context

Figure 2. Graph of sentential forms derived from a PHOG.

algorithm. This algorithm repeatedly chooses the next node
that is at the least distance from the start node until a solu-
tion is found. Since the least-distance path is always the one
chosen for an extension, it is guaranteed to enumerate goal
nodes in order of increasing distance (i.e., decreasing proba-
bility). However, as our evaluation in Section 5 shows, uni-
form cost search performs poorly in practice by expanding
a huge number of paths before reaching the solution node.

We address this problem by employing A* search [12] in-
stead of uniform cost search. A* signi�cantly improves upon
uniform cost search by �rst expanding nodes that appear to
lead to the next closest goal node. It identi�es such nodes by
using not only their (known) distance from the start node but
also an estimate of their (unknown) distance to the closest
goal node. The more accurate this estimate, the smaller the
number of nodes expanded by A*, and is typically a small
fraction of that explored by uniform cost search. We show
how to obtain accurate estimates in Section 3.3.

2.2 Transfer Learning for PHOG
The second key contribution is a new learning method based
on a state-of-the-art probabilistic model called probabilis-
tic higher-order grammar (PHOG) [6]. Figure 2(a) depicts
a PHOG for the original CFG. It allows the non-terminal
symbol on the left side of each production rule to be pa-
rameterized by a context that captures contextual informa-
tion around a production position. The context is a list of
terminal/non-terminal symbols that can be collected from
the abstract syntax tree (AST) of a sentential form.

A PHOG can be learned from known solutions of synthesis
problems that were solved by existing techniques. In this
example, we assume that a learner (detailed in Section 4)
infers that the symbols at the left sibling and the parent of
a production position provide meaningful information. In
Figure 2(c), arrows % show the movement over the AST
that leads to computing the context. The obtained context
is [“-”, Rep], and the probability of the production rule S !
“.” is 0.72. Therefore, the edge from (1) to (3) has weight

3

• Because statistical models like PHOG only consider syntactic information.
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Transfer Learning

• Training data: solutions of existing synthesis problems  

• Testing data: solutions of unseen synthesis problems  

• They may follow different probability distributions because 
of diverse semantic specifications.  

• Transfer learning reduces discrepancy between the 
probability distributions of training and testing data 
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Figure 3. PHOG learned using our transfer learning method.

� log2(0.72) = 0.47. Under that same context, the probability
of the production rule S ! “-” is 0.01. Therefore, the edge
from (1) to (2) has weight � log2(0.001) = 9.97. Note that
now we avoid enumerating node (2) because the solution
node (3) is explored �rst as it is closer to the start node.

However, blindly using PHOGs for guiding synthesis hin-
ders their performance, because of the problem of over�tting.
Consider another synthesis problem of �nding a function f
following a semantic speci�cation comprising input-output
examples as follows:

f (“12.31”) = “12-31” ^ f (“01.07”) = “01-07”. (3)

The syntactic speci�cation is the same as before. Suppose
we use the PHOG in Figure 2(b) to guide the search towards
the desired solution: Rep(x , “.”, “-”), which is the inverse of
the previous solution Rep(x , “-”, “.”). Let us assume that we
are in the middle of the search, and a current sentential form
Rep(x , “.”, S). We explain how we encounter over�tting in
this situation. Note that the context is [“.”, Rep], the symbols
at the left sibling and the parent of the non-terminal symbol
S , respectively. To reach the solution, the production rule
S ! “-” should be applied to the current sentential form.
However, since the probability of the rule conditioned by
the context is small (P(S[“.”, Rep] ! “-”) = 0.002) compared
to the other rules, the search will not be guided toward it.

To solve this problem,we introduce a new learningmethod
inspired by transfer learning [19, 20], that enables PHOGs to
generalize well across synthesis problems whose solutions
have di�erent probability distributions. Our key idea is to
design a feature map that transforms sentences both in the
training and testing data into a common feature space. In
this example, we assume a feature map that transforms the
original constant symbols into featured terminal symbols
representing certain types of constant strings. Let I andO be
sets of strings that appear as input examples and output ex-
amples in the semantic speci�cation, respectively. Consider
the following categories of all possible constant strings:
• constIO represents the set of substrings of all the strings
in I \O

• constI represents the set of substrings of the strings in I
• constO represents the set of substrings of the strings inO
• const? represents all the remaining strings.

In the training phase, we learn a PHOG of a pivot gram-
mar that uses the above symbols instead of the constant
strings. The pivot grammar is depicted in Figure 3(a). In
contrast to learning the previous PHOG that only requires
the syntax of solutions of other existing synthesis problems,
we need semantic speci�cations as well for training. Using
a corresponding semantic speci�cation, each existing so-
lution can be transformed into one in which the original
constant symbols are replaced with the above symbols. For
example, the solution Rep(x , “-”, “.”) can be transformed into
Rep(x , constI , constO ) since “-” and “.” appear in the input
and output examples depicted in (2), respectively. Using the
transformed programs, we learn a PHOG depicted in Fig-
ure 3(b), which we call a pivot PHOG.
Returning to the over�tting problem, we can guide the

search appropriately using the pivot PHOG. The current sen-
tential form Rep(x , “.”, S) is transformed into Rep(x , constI , S)
since the string “.” appears in the input examples in (3).
The context, comprising symbols at the left sibling and par-
ent of S in the AST of the transformed sentential form, is
[constI , Rep]. Now the probability of the production rule
S ! “-” is assigned the probability of S[constI , Rep] !
constO since “-” appears in the output examples. Now that
the assigned probability is higher than that of the other pro-
duction rules, the search is guided toward the solution.
The rest of the paper is organized as follows. Section 3

presents our weighted search algorithm. Section 4 describes
how a PHOG is learned from training data. Section 5 presents
our experimental results. Section 6 discusses related work
and Section 7 concludes. Proofs of all stated theorems are
provided in the Appendix.

3 Weighted Search Algorithm
In this section, we describe our weighted search algorithm
based on A* search. We �rst formulate our problem of guid-
ing search-based synthesis using the CEGIS procedure with
a probabilistic program model. We then present a basic algo-
rithm that prioritizes likely solution candidates. Lastly, we
extend it with two orthogonal optimizations that are widely
used by existing search strategies.

3.1 Preliminaries
Context-free Grammar. A context-free grammar G is a
quadruple hN , �,R, Si where N is a �nite set of nonterminal
symbols, � is a �nite set of terminal symbols, R is a �nite
subset of N ⇥ (N [ �)⇤ where each member (A, �) is called a
production and is written asA ! � , and S is the start symbol
in N . A sequence of non-terminal and terminal symbols in
(N [ �)⇤ is called a sentential form. Throughout the paper,
for brevity, we only consider leftmost derivations, that is,
derivations in which productions are always applied to the
leftmost non-terminal symbol. Furthermore, we assume the
grammar is unambiguous in the sense that for all sentences,
there exists a unique leftmost derivation.
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The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
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Figure 3. PHOG learned using our transfer learning method.

� log2(0.72) = 0.47. Under that same context, the probability
of the production rule S ! “-” is 0.01. Therefore, the edge
from (1) to (2) has weight � log2(0.001) = 9.97. Note that
now we avoid enumerating node (2) because the solution
node (3) is explored �rst as it is closer to the start node.

However, blindly using PHOGs for guiding synthesis hin-
ders their performance, because of the problem of over�tting.
Consider another synthesis problem of �nding a function f
following a semantic speci�cation comprising input-output
examples as follows:

f (“12.31”) = “12-31” ^ f (“01.07”) = “01-07”. (3)

The syntactic speci�cation is the same as before. Suppose
we use the PHOG in Figure 2(b) to guide the search towards
the desired solution: Rep(x , “.”, “-”), which is the inverse of
the previous solution Rep(x , “-”, “.”). Let us assume that we
are in the middle of the search, and a current sentential form
Rep(x , “.”, S). We explain how we encounter over�tting in
this situation. Note that the context is [“.”, Rep], the symbols
at the left sibling and the parent of the non-terminal symbol
S , respectively. To reach the solution, the production rule
S ! “-” should be applied to the current sentential form.
However, since the probability of the rule conditioned by
the context is small (P(S[“.”, Rep] ! “-”) = 0.002) compared
to the other rules, the search will not be guided toward it.

To solve this problem,we introduce a new learningmethod
inspired by transfer learning [19, 20], that enables PHOGs to
generalize well across synthesis problems whose solutions
have di�erent probability distributions. Our key idea is to
design a feature map that transforms sentences both in the
training and testing data into a common feature space. In
this example, we assume a feature map that transforms the
original constant symbols into featured terminal symbols
representing certain types of constant strings. Let I andO be
sets of strings that appear as input examples and output ex-
amples in the semantic speci�cation, respectively. Consider
the following categories of all possible constant strings:
• constIO represents the set of substrings of all the strings
in I \O

• constI represents the set of substrings of the strings in I
• constO represents the set of substrings of the strings inO
• const? represents all the remaining strings.

In the training phase, we learn a PHOG of a pivot gram-
mar that uses the above symbols instead of the constant
strings. The pivot grammar is depicted in Figure 3(a). In
contrast to learning the previous PHOG that only requires
the syntax of solutions of other existing synthesis problems,
we need semantic speci�cations as well for training. Using
a corresponding semantic speci�cation, each existing so-
lution can be transformed into one in which the original
constant symbols are replaced with the above symbols. For
example, the solution Rep(x , “-”, “.”) can be transformed into
Rep(x , constI , constO ) since “-” and “.” appear in the input
and output examples depicted in (2), respectively. Using the
transformed programs, we learn a PHOG depicted in Fig-
ure 3(b), which we call a pivot PHOG.
Returning to the over�tting problem, we can guide the

search appropriately using the pivot PHOG. The current sen-
tential form Rep(x , “.”, S) is transformed into Rep(x , constI , S)
since the string “.” appears in the input examples in (3).
The context, comprising symbols at the left sibling and par-
ent of S in the AST of the transformed sentential form, is
[constI , Rep]. Now the probability of the production rule
S ! “-” is assigned the probability of S[constI , Rep] !
constO since “-” appears in the output examples. Now that
the assigned probability is higher than that of the other pro-
duction rules, the search is guided toward the solution.
The rest of the paper is organized as follows. Section 3

presents our weighted search algorithm. Section 4 describes
how a PHOG is learned from training data. Section 5 presents
our experimental results. Section 6 discusses related work
and Section 7 concludes. Proofs of all stated theorems are
provided in the Appendix.

3 Weighted Search Algorithm
In this section, we describe our weighted search algorithm
based on A* search. We �rst formulate our problem of guid-
ing search-based synthesis using the CEGIS procedure with
a probabilistic program model. We then present a basic algo-
rithm that prioritizes likely solution candidates. Lastly, we
extend it with two orthogonal optimizations that are widely
used by existing search strategies.

3.1 Preliminaries
Context-free Grammar. A context-free grammar G is a
quadruple hN , �,R, Si where N is a �nite set of nonterminal
symbols, � is a �nite set of terminal symbols, R is a �nite
subset of N ⇥ (N [ �)⇤ where each member (A, �) is called a
production and is written asA ! � , and S is the start symbol
in N . A sequence of non-terminal and terminal symbols in
(N [ �)⇤ is called a sentential form. Throughout the paper,
for brevity, we only consider leftmost derivations, that is,
derivations in which productions are always applied to the
leftmost non-terminal symbol. Furthermore, we assume the
grammar is unambiguous in the sense that for all sentences,
there exists a unique leftmost derivation.
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The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.

2

Rep(x, “-”, “.”) �! Rep(x, constI , constO)

Rep(x, “.”, “-”) �! Rep(x, constI , constO)
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Types of Constants

• I : Input examples        O : Output examples 

• constIO : constants that appear in I and O 

• constI : constants that appear in I 

• constO : constants that appear in O 

• const⊥ : constants that appear in neither I nor O



Pivot PHOG

(b) A pivot PHOG learned using
the pivot grammar  

(a) A pivot grammar for string 
manipulation tasks

A[context#] ! �#

S ! x | S + S

| Rep(S, S, S)

| constIO | constI
| constO | const?

P
S[constO, Rep] ! constO 0.001
S[constO, Rep] ! constI 0.002
S[constO, Rep] ! x 0.01
S[constO, Rep] ! S + S 0.19

· · ·

P
S[constI , Rep] ! constO 0.72
S[constI , Rep] ! constI 0.001
S[constI , Rep] ! x 0.12
S[constI , Rep] ! S + S 0.02

· · ·



Guided Search with a Pivot PHOG

Before 

After S

Rep(x,constI,constO)

. . .

Rep(x,constI,S)

Rep(x,constI,S+S)

(1)

(2) (3)

� log2(0.19) = 2.4
� log2(0.72) = 0.47

x

Rep

constI S

Rep(x,".","-")

. . .

Rep(x,".",S)

Rep(x,".",S+S)

(1)

(2) (3)

� log2(0.19) = 2.4

x

Rep

"." S

S
x

Rep(S,S,S)
S+S. . . . . .

� log2(0.002) = 8.97
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Overfitting avoided!
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4 DEEPCODER

Here we describe DeepCoder, our instantiation of LIPS including a choice of DSL, a data generation
strategy, models for encoding input-output sets, and algorithms for searching over program space.

4.1 DOMAIN SPECIFIC LANGUAGE AND ATTRIBUTES

We consider binary attributes indicating the presence or absence of high-level functions in the target
program. To make this effective, the chosen DSL needs to contain constructs that are not so low-level
that they all appear in the vast majority of programs, but at the same time should be common enough
so that predicting their occurrence from input-output examples can be learned successfully.

Following this observation, our DSL is loosely inspired by query languages such as SQL or LINQ,
where high-level functions are used in sequence to manipulate data. A program in our DSL is a
sequence of function calls, where the result of each call initializes a fresh variable that is either a
singleton integer or an integer array. Functions can be applied to any of the inputs or previously
computed (intermediate) variables. The output of the program is the return value of the last function
call, i.e., the last variable. See Fig. 1 for an example program of length T = 4 in our DSL.

a [int]
b FILTER (<0) a
c MAP (*4) b
d SORT c
e REVERSE d

An input-output example:

Input:
[-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11]
Output:
[-12, -20, -32, -36, -68]

Figure 1: An example program in our DSL that takes a single integer array as its input.

Overall, our DSL contains the first-order functions HEAD, LAST, TAKE, DROP, ACCESS, MINIMUM,
MAXIMUM, REVERSE, SORT, SUM, and the higher-order functions MAP, FILTER, COUNT, ZIP-
WITH, SCANL1. Higher-order functions require suitable lambda functions for their behavior to be
fully specified: for MAP our DSL provides lambdas (+1), (-1), (*2), (/2), (*(-1)), (**2),
(*3), (/3), (*4), (/4); for FILTER and COUNT there are predicates (>0), (<0), (%2==0),
(%2==1) and for ZIPWITH and SCANL1 the DSL provides lambdas (+), (-), (*), MIN, MAX.
A description of the semantics of all functions is provided in Appendix F.

Note that while the language only allows linear control flow, many of its functions do perform
branching and looping internally (e.g., SORT, COUNT, ...). Examples of more sophisticated programs
expressible in our DSL, which were inspired by the simplest problems appearing on programming
competition websites, are shown in Appendix A.

4.2 DATA GENERATION

To generate a dataset, we enumerate programs in the DSL, heuristically pruning away those with
easily detectable issues such as a redundant variable whose value does not affect the program output,
or, more generally, existence of a shorter equivalent program (equivalence can be overapproximated
by identical behavior on randomly or carefully chosen inputs). To generate valid inputs for a program,
we enforce a constraint on the output value bounding integers to some predetermined range, and then
propagate these constraints backward through the program to obtain a range of valid values for each
input. If one of these ranges is empty, we discard the program. Otherwise, input-output pairs can be
generated by picking inputs from the pre-computed valid ranges and executing the program to obtain
the output values. The binary attribute vectors are easily computed from the program source codes.

4.3 MACHINE LEARNING MODEL

Observe how the input-output data in Fig. 1 is informative of the functions appearing in the program:
the values in the output are all negative, divisible by 4, they are sorted in decreasing order, and they
happen to be multiples of numbers appearing in the input. Our aim is to learn to recognize such
patterns in the input-output examples, and to leverage them to predict the presence or absence of
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propagate these constraints backward through the program to obtain a range of valid values for each
input. If one of these ranges is empty, we discard the program. Otherwise, input-output pairs can be
generated by picking inputs from the pre-computed valid ranges and executing the program to obtain
the output values. The binary attribute vectors are easily computed from the program source codes.

4.3 MACHINE LEARNING MODEL

Observe how the input-output data in Fig. 1 is informative of the functions appearing in the program:
the values in the output are all negative, divisible by 4, they are sorted in decreasing order, and they
happen to be multiples of numbers appearing in the input. Our aim is to learn to recognize such
patterns in the input-output examples, and to leverage them to predict the presence or absence of
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4 DEEPCODER

Here we describe DeepCoder, our instantiation of LIPS including a choice of DSL, a data generation
strategy, models for encoding input-output sets, and algorithms for searching over program space.

4.1 DOMAIN SPECIFIC LANGUAGE AND ATTRIBUTES

We consider binary attributes indicating the presence or absence of high-level functions in the target
program. To make this effective, the chosen DSL needs to contain constructs that are not so low-level
that they all appear in the vast majority of programs, but at the same time should be common enough
so that predicting their occurrence from input-output examples can be learned successfully.

Following this observation, our DSL is loosely inspired by query languages such as SQL or LINQ,
where high-level functions are used in sequence to manipulate data. A program in our DSL is a
sequence of function calls, where the result of each call initializes a fresh variable that is either a
singleton integer or an integer array. Functions can be applied to any of the inputs or previously
computed (intermediate) variables. The output of the program is the return value of the last function
call, i.e., the last variable. See Fig. 1 for an example program of length T = 4 in our DSL.

a [int]
b FILTER (<0) a
c MAP (*4) b
d SORT c
e REVERSE d

An input-output example:

Input:
[-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11]
Output:
[-12, -20, -32, -36, -68]

Figure 1: An example program in our DSL that takes a single integer array as its input.

Overall, our DSL contains the first-order functions HEAD, LAST, TAKE, DROP, ACCESS, MINIMUM,
MAXIMUM, REVERSE, SORT, SUM, and the higher-order functions MAP, FILTER, COUNT, ZIP-
WITH, SCANL1. Higher-order functions require suitable lambda functions for their behavior to be
fully specified: for MAP our DSL provides lambdas (+1), (-1), (*2), (/2), (*(-1)), (**2),
(*3), (/3), (*4), (/4); for FILTER and COUNT there are predicates (>0), (<0), (%2==0),
(%2==1) and for ZIPWITH and SCANL1 the DSL provides lambdas (+), (-), (*), MIN, MAX.
A description of the semantics of all functions is provided in Appendix F.

Note that while the language only allows linear control flow, many of its functions do perform
branching and looping internally (e.g., SORT, COUNT, ...). Examples of more sophisticated programs
expressible in our DSL, which were inspired by the simplest problems appearing on programming
competition websites, are shown in Appendix A.

4.2 DATA GENERATION

To generate a dataset, we enumerate programs in the DSL, heuristically pruning away those with
easily detectable issues such as a redundant variable whose value does not affect the program output,
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by identical behavior on randomly or carefully chosen inputs). To generate valid inputs for a program,
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propagate these constraints backward through the program to obtain a range of valid values for each
input. If one of these ranges is empty, we discard the program. Otherwise, input-output pairs can be
generated by picking inputs from the pre-computed valid ranges and executing the program to obtain
the output values. The binary attribute vectors are easily computed from the program source codes.

4.3 MACHINE LEARNING MODEL

Observe how the input-output data in Fig. 1 is informative of the functions appearing in the program:
the values in the output are all negative, divisible by 4, they are sorted in decreasing order, and they
happen to be multiples of numbers appearing in the input. Our aim is to learn to recognize such
patterns in the input-output examples, and to leverage them to predict the presence or absence of
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individual functions. We employ neural networks to model and learn the mapping from input-output
examples to attributes. We can think of these networks as consisting of two parts:

1. an encoder: a differentiable mapping from a set of M input-output examples generated by
a single program to a latent real-valued vector, and

2. a decoder: a differentiable mapping from the latent vector representing a set of M input-
output examples to predictions of the ground truth program’s attributes.

For the encoder we use a simple feed-forward architecture. First, we represent the input and output
types (singleton or array) by a one-hot-encoding, and we pad the inputs and outputs to a maximum
length L with a special NULL value. Second, each integer in the inputs and in the output is mapped
to a learned embedding vector of size E = 20. (The range of integers is restricted to a finite range
and each embedding is parametrized individually.) Third, for each input-output example separately,
we concatenate the embeddings of the input types, the inputs, the output type, and the output into a
single (fixed-length) vector, and pass this vector through H = 3 hidden layers containing K = 256
sigmoid units each. The third hidden layer thus provides an encoding of each individual input-output
example. Finally, for input-output examples in a set generated from the same program, we pool these
representations together by simple arithmetic averaging. See Appendix C for more details.

The advantage of this encoder lies in its simplicity, and we found it reasonably easy to train. A
disadvantage is that it requires an upper bound L on the length of arrays appearing in the input and
output. We confirmed that the chosen encoder architecture is sensible in that it performs empirically
at least as well as an RNN encoder, a natural baseline, which may however be more difficult to train.

DeepCoder learns to predict presence or absence of individual functions of the DSL. We shall see
this can already be exploited by various search techniques to large computational gains. We use a
decoder that pre-multiplies the encoding of input-output examples by a learned C⇥K matrix, where
C = 34 is the number of functions in our DSL (higher-order functions and lambdas are predicted
independently), and treats the resulting C numbers as log-unnormalized probabilities (logits) of each
function appearing in the source code. Fig. 2 shows the predictions a trained neural network made
from 5 input-output examples for the program shown in Fig. 1.

Figure 2: Neural network predicts the probability of each function appearing in the source code.

4.4 SEARCH

One of the central ideas of this work is to use a neural network to guide the search for a program
consistent with a set of input-output examples instead of directly predicting the entire source code.
This section briefly describes the search techniques and how they integrate the predicted attributes.

Depth-first search (DFS). We use an optimized version of DFS to search over programs with a
given maximum length T (see Appendix D for details). When the search procedure extends a partial
program by a new function, it has to try the functions in the DSL in some order. At this point DFS
can opt to consider the functions as ordered by their predicted probabilities from the neural network.

“Sort and add” enumeration. A stronger way of utilizing the predicted probabilities of functions
in an enumerative search procedure is to use a Sort and add scheme, which maintains a set of active
functions and performs DFS with the active function set only. Whenever the search fails, the next
most probable function (or several) are added to the active set and the search restarts with this larger
active set. Note that this scheme has the deficiency of potentially re-exploring some parts of the
search space several times, which could be avoided by a more sophisticated search procedure.

Sketch. Sketch (Solar-Lezama, 2008) is a successful SMT-based program synthesis tool from the
programming languages research community. While its main use case is to synthesize programs
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expressible in our DSL, which were inspired by the simplest problems appearing on programming
competition websites, are shown in Appendix A.
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To generate a dataset, we enumerate programs in the DSL, heuristically pruning away those with
easily detectable issues such as a redundant variable whose value does not affect the program output,
or, more generally, existence of a shorter equivalent program (equivalence can be overapproximated
by identical behavior on randomly or carefully chosen inputs). To generate valid inputs for a program,
we enforce a constraint on the output value bounding integers to some predetermined range, and then
propagate these constraints backward through the program to obtain a range of valid values for each
input. If one of these ranges is empty, we discard the program. Otherwise, input-output pairs can be
generated by picking inputs from the pre-computed valid ranges and executing the program to obtain
the output values. The binary attribute vectors are easily computed from the program source codes.
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Observe how the input-output data in Fig. 1 is informative of the functions appearing in the program:
the values in the output are all negative, divisible by 4, they are sorted in decreasing order, and they
happen to be multiples of numbers appearing in the input. Our aim is to learn to recognize such
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lar interest, machine learning speeds up search (infer-
ence). This is unlike earlier work on string process-
ing using PBE, which restricted the types of programs
that could be searched through so that e�cient search
would be possible using so-called version space alge-
bras (Lau et al., 2000). It is also unlike work in struc-
tured learning that uses dynamic programming for e�-
cient search. The types of programs we can handle are
more general than earlier systems such as SMARTe-
dit (Lau et al., 2000), LAPIS (Miller, 2002), Flash Fill
(Gulwani, 2011), and others (Nix, 1985; Witten & Mo,
1993). In addition, our approach is more extensible
and broadly applicable than earlier approaches.

How can one improve on brute force search for com-
bining functions from a general library? In general,
it seems impossible to speed up search if all one can
tell is whether a program correctly maps example x̄
to ȳ. The key idea in our approach is to augment the
library with certain telling textual features on exam-
ple pairs. These features suggest which functions are
more likely to be involved in the program. As a sim-
ple example beyond the scope of earlier PBE systems,
consider sorting a list of names by last name. Say the
user gives just one example pair: x̄ is a list of a few
names, one per line, where each line is in the form
FirstName LastName, and ȳ is the same list sorted by
last name. One feature of (x̄, ȳ) is that the lines are
permutations of one another, which is a clue that the
desired program may involve sorting. We learn the re-
liability of such clues, and use these to dramatically
speed up search and inference in complex examples.

The contributions of this work are: (i) a framework for
learning general programs that speeds up search (infer-
ence) and is also used for ranking. Previous work ad-
dressed ranking (Liang et al., 2010) and used restricted
classes of programs that could be e�ciently searched
but not extended; (ii) the use of features relating in-
put and output examples in PBE. Previous work such
as Liang et al. (2010) use features of the target pro-

grams in the training set; (iii) advancing the state of
the art in PBE by introducing a general, extensible
framework, that can be applied to tasks beyond the
scope of earlier systems (as discussed shortly). While
our discussion is in the context of text processing, the
approach could be adapted for di↵erent domains; and
(iv) experiments with a prototype system on data ex-
tracted from help forums. To clarify matters, we step
through a concrete example of our system’s operation.

1.1. Example of our system’s operation

Imagine a user has a long list of names with some re-
peated entries (say, the Oscar winners for Best Actor),

and would like to create a list of the unique names,
each annotated with their number of occurrences. Fol-
lowing the PBE paradigm, in our system, the user il-
lustrates the operation by providing an example, which
is an input-output pair of strings. Figure 1 shows one
possible such pair, which uses a subset of the full list
(in particular, the winners from ’91–’95) the user pos-
sesses.

Anthony Hopkins
Al Pacino
Tom Hanks
Tom Hanks
Nicolas Cage

!
Anthony Hopkins (1)
Al Pacino (1)
Tom Hanks (2)
Nicolas Cage (1)

Figure 1. Input-output example for the desired task.

One way to perform the above transformation is
to first generate an intermediate list where each
element of the input list is appended with its oc-
currence count – which would look like [ "Anthony

Hopkins (1)", "Al Pacino (1)", "Tom Hanks (2)",

"Tom Hanks (2)", "Nicolas Cage (1)"] – and then
remove duplicates. The corresponding program f(·)
may be expressed as the composition

f(x) = dedup(concatLists(x, “ ”,

concatLists(“(”, count(x, x), “)”))).
(1)

The argument x here represents the list of input lines
that the user wishes to process, which may be much
larger than the input provided in the example. We
assume here a base language comprising (among oth-
ers) a function dedup that removes duplicates from a
list, concatLists that concatenates lists of strings el-
ementwise, implicitly expanding singleton arguments,
and count that finds the number of occurrences of the
elements of one list in another.

While conceptually simple, this example is out of scope
for existing text processing PBE systems. Most sys-
tems support a restricted, pre-defined set of functions
that do not include natural tasks like removing du-
plicates; for example (Gulwani, 2011) only supports
functions that operate on a line-by-line basis. These
systems perform inference with search routines that
are hand-coded for their supported functionality, and
are thus not easily extensible. (Even if an exception
could be made for specific examples like the one above,
there are countless other text processing applications
we would like to solve.)

Notice that certain textual features can help bias
our search by providing clues about which functions
may be relevant: in particular, (a) there are dupli-
cate lines in the input but not output, suggesting

A Machine Learning Framework for Programming by Example

Table 1. Example of grammar rules generated for task in Figure 1.

Production Probability Production Probability

P!join(LIST,DELIM) 1 CAT!LIST 0.7

LIST!split(x,DELIM) 0.3 CAT!DELIM 0.3

LIST!concatList(CAT,CAT,CAT) 0.1 DELIM!"\n" 0.5

LIST!concatList("(",CAT,")") 0.2 DELIM!" " 0.3

LIST!dedup(LIST) 0.2 DELIM!"(" 0.1

LIST!count(LIST,LIST) 0.2 DELIM!")" 0.1

that dedup may be useful, (b) there are parentheses
in the output but not input, suggesting the function
concatLists("(",L,")") for some list L, (c) there are
numbers on each line of the output but none in the in-
put, suggesting that countmay be useful, and (d) there
are many more spaces in the output than the input,
suggesting that " " may be useful. Our claim is that
by learning weights that tell us the reliability of these
clues – for example, how confident can we be that du-
plicates in the input but not the output suggests dedup
– we can significantly speed up the inference process
over brute force search.

In more detail, a clue is a function that generates
rules in a probabilistic context free grammar based
on features of the provided example. Dynamic pro-
gramming common in structured learning approaches
with PCFGs (Rush et al., 2011) does not apply here
– it would be relevant if we were given a program and
wanted to parse it. Instead we generate programs ac-
cording to the PCFG and then evaluate them directly.

Each rule corresponds to a function1 (possibly with
bound arguments) or constant in the underlying pro-
gramming language. The rule probabilities are com-
puted from weights on the clues that generate them,
which in turn are learned from a training corpus of
input-output examples. To learn f(·), we now search
through derivations of this grammar in order of de-
creasing probability. Table 1 illustrates what the
grammar may look like for the above example. Note
that the grammar rules and probabilities are example

specific; we do not include a rule such as DELIM! "$",
say, because there is no instance of "$" in the input
or output. Further, compositions of rules may also be
generated, such as concatList("(",LIST,")").

Table 1 is of course a condensed view of the actual
grammar our prototype system generates, which is
based on a large library of about 100 features and
clues. With the full grammar, a näıve brute force
search over compositions takes 30 seconds to find the
right solution to the example of Figure 1, whereas with
learning the search terminates in just 0.5 seconds.

1
When we describe clues as suggesting functions, we

implicitly mean the corresponding grammar rule.

1.2. Comparison to previous learning systems

Most previous PBE systems for text processing han-
dle a relatively small subset of natural text processing
tasks. This is in order to admit e�cient representa-
tion and search over consistent programs, e.g. using a
version space (Lau et al., 2003), thus sidestepping the
issue of searching for programs using general classes of
functions. To our knowledge, every system designed
for a library of arbitrary functions searches for appro-
priate compositions of functions either by brute force
search, a similarly intractable operation such as invok-
ing a SAT/SMT solver (Jha et al., 2010), or by using
A*-style heuristics (Gulwani et al., 2011). (Gulwani,
2012) presents a survey of such techniques. Our learn-
ing approach based on textual features is thus more
general and flexible than previous approaches.

This said, our goal in this paper is not to compete
with existing PBE systems in terms of functionality.
Instead, we wish to show that the fundamental PBE
inference problem may be attacked by learning with
textual features. This idea could in fact be applied
in conjunction with prior systems. A specific feature
of the data, such as the input and output having the
same number of lines, may be a clue that a function
corresponding to a system like Flash Fill (Gulwani,
2011) will be useful.

2. Formalism of our approach

We begin a formal discussion of our approach by defin-
ing the learning problem in PBE.

2.1. Programming by example (PBE)

Let S denote the set of strings. Suppose the user has
some text processing operation in mind, in the form of
some target function or program f 2 SS , from the set
of functions that map strings to strings. For example,
in Figure 1, f could be the function in Equation 1.
To describe this program to a PBE system, at infer-

ence (or execution) time, the user provides a system

input z := (x, x̄, ȳ) 2 S3, where x represents the data
to be processed, and (x̄, ȳ) is an example input-output
pair that represents the string transformation the user

Feature Answ
erDuplicated lines in input but not output? Y

Parentheses in output but not input? Y
Numbers on each line in output but not input? Y

…

Syntactic features  
of I/O examples

Infer PCFG
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cient search. The types of programs we can handle are
more general than earlier systems such as SMARTe-
dit (Lau et al., 2000), LAPIS (Miller, 2002), Flash Fill
(Gulwani, 2011), and others (Nix, 1985; Witten & Mo,
1993). In addition, our approach is more extensible
and broadly applicable than earlier approaches.

How can one improve on brute force search for com-
bining functions from a general library? In general,
it seems impossible to speed up search if all one can
tell is whether a program correctly maps example x̄
to ȳ. The key idea in our approach is to augment the
library with certain telling textual features on exam-
ple pairs. These features suggest which functions are
more likely to be involved in the program. As a sim-
ple example beyond the scope of earlier PBE systems,
consider sorting a list of names by last name. Say the
user gives just one example pair: x̄ is a list of a few
names, one per line, where each line is in the form
FirstName LastName, and ȳ is the same list sorted by
last name. One feature of (x̄, ȳ) is that the lines are
permutations of one another, which is a clue that the
desired program may involve sorting. We learn the re-
liability of such clues, and use these to dramatically
speed up search and inference in complex examples.

The contributions of this work are: (i) a framework for
learning general programs that speeds up search (infer-
ence) and is also used for ranking. Previous work ad-
dressed ranking (Liang et al., 2010) and used restricted
classes of programs that could be e�ciently searched
but not extended; (ii) the use of features relating in-
put and output examples in PBE. Previous work such
as Liang et al. (2010) use features of the target pro-

grams in the training set; (iii) advancing the state of
the art in PBE by introducing a general, extensible
framework, that can be applied to tasks beyond the
scope of earlier systems (as discussed shortly). While
our discussion is in the context of text processing, the
approach could be adapted for di↵erent domains; and
(iv) experiments with a prototype system on data ex-
tracted from help forums. To clarify matters, we step
through a concrete example of our system’s operation.

1.1. Example of our system’s operation

Imagine a user has a long list of names with some re-
peated entries (say, the Oscar winners for Best Actor),

and would like to create a list of the unique names,
each annotated with their number of occurrences. Fol-
lowing the PBE paradigm, in our system, the user il-
lustrates the operation by providing an example, which
is an input-output pair of strings. Figure 1 shows one
possible such pair, which uses a subset of the full list
(in particular, the winners from ’91–’95) the user pos-
sesses.

Anthony Hopkins
Al Pacino
Tom Hanks
Tom Hanks
Nicolas Cage

!
Anthony Hopkins (1)
Al Pacino (1)
Tom Hanks (2)
Nicolas Cage (1)
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One way to perform the above transformation is
to first generate an intermediate list where each
element of the input list is appended with its oc-
currence count – which would look like [ "Anthony

Hopkins (1)", "Al Pacino (1)", "Tom Hanks (2)",

"Tom Hanks (2)", "Nicolas Cage (1)"] – and then
remove duplicates. The corresponding program f(·)
may be expressed as the composition

f(x) = dedup(concatLists(x, “ ”,

concatLists(“(”, count(x, x), “)”))).
(1)

The argument x here represents the list of input lines
that the user wishes to process, which may be much
larger than the input provided in the example. We
assume here a base language comprising (among oth-
ers) a function dedup that removes duplicates from a
list, concatLists that concatenates lists of strings el-
ementwise, implicitly expanding singleton arguments,
and count that finds the number of occurrences of the
elements of one list in another.

While conceptually simple, this example is out of scope
for existing text processing PBE systems. Most sys-
tems support a restricted, pre-defined set of functions
that do not include natural tasks like removing du-
plicates; for example (Gulwani, 2011) only supports
functions that operate on a line-by-line basis. These
systems perform inference with search routines that
are hand-coded for their supported functionality, and
are thus not easily extensible. (Even if an exception
could be made for specific examples like the one above,
there are countless other text processing applications
we would like to solve.)

Notice that certain textual features can help bias
our search by providing clues about which functions
may be relevant: in particular, (a) there are dupli-
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• Benchmarks 

  - 1,167 problems used in SyGuS annual competitions 

• Baselines 

  -  EUSolver (general-purpose): winner of SyGuS competition  

  -  FlashFill (domain-specific): string processing in spreadsheets 



Benchmarks

STRING: End-user Programming 
205 problems

BITVEC: Efficient low-level algorithm 
750 problems

CIRCUIT: Attack-resistant crypto circuits  
212 problems
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Figure 7. Comparison between E������ and EUS����� on di�erent domains. The timeout for both solvers is set to one hour.

Figure 8. Comparison of di�erent variants of E������.

Search Optimizations. Our approach is complementary to
existing search optimization techniques in program synthe-
sis. We already showed how our approach maintains the
optimizations in the existing enumerative search strategies
(Section 3.4). In addition, it could be combined with the idea
of leveraging type checking for synthesis [11, 22, 26], by us-
ing our method to guide the search within the search space
pruned using type information.

Domain Specializations. Recent proposals for speeding up
synthesis exploit domain knowledge in various forms, includ-
ing abstract semantics [33], domain-speci�c languages [5,
8, 25], templates [16] and features of input-output exam-
ples [21].While probabilisticmodels can themselves be viewed
as a kind of domain specialization, our feature maps allow
such models to generalize well across synthesis problems
in a domain when their solutions have di�erent probability
distributions.

Refutation Techniques. CVC4 [29] is a refutation-based
tool that also targets the SyGuS formulation. In contrast to
search-based techniques, refutation-based techniques use
an SMT solver to extracts solutions from unsatis�ability
proofs of the negated form of synthesis constraints. A tech-
nique called counterexample-guided quanti�er instantiation
(CEGQI) makes �nding such proofs feasible in practice. We
compared E������ to CVC4 on all the benchmark problems
in our evaluation. E������ solved 26x more instances and
was 4x faster than CVC4.

7 Conclusion
We presented a general approach to accelerate search-based
program synthesis by leveraging a probabilistic program
model to guide the search towards likely programs. Our
approach comprises a weighted search algorithm that is ap-
plicable to a wide range of probabilistic models. We also
proposed a method based on transfer learning that allows
a state-of-the-art probabilistic model, PHOG, to avoid over-
�tting. We demonstrated the e�ectiveness of the approach
on a large number of synthesis problems from a variety of
application domains. The experimental results show that our
approach outperforms existing general-purpose and domain-
speci�c synthesis tools.
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vs. EUSolver

• Training: 762 solved by EUSolver in 10 min  

• Testing: 405 (timeout: 1 hour) 

• # solved:  Euphony 236,  EUSolver 87
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Search Optimizations. Our approach is complementary to
existing search optimization techniques in program synthe-
sis. We already showed how our approach maintains the
optimizations in the existing enumerative search strategies
(Section 3.4). In addition, it could be combined with the idea
of leveraging type checking for synthesis [11, 22, 26], by us-
ing our method to guide the search within the search space
pruned using type information.

Domain Specializations. Recent proposals for speeding up
synthesis exploit domain knowledge in various forms, includ-
ing abstract semantics [33], domain-speci�c languages [5,
8, 25], templates [16] and features of input-output exam-
ples [21].While probabilisticmodels can themselves be viewed
as a kind of domain specialization, our feature maps allow
such models to generalize well across synthesis problems
in a domain when their solutions have di�erent probability
distributions.

Refutation Techniques. CVC4 [29] is a refutation-based
tool that also targets the SyGuS formulation. In contrast to
search-based techniques, refutation-based techniques use
an SMT solver to extracts solutions from unsatis�ability
proofs of the negated form of synthesis constraints. A tech-
nique called counterexample-guided quanti�er instantiation
(CEGQI) makes �nding such proofs feasible in practice. We
compared E������ to CVC4 on all the benchmark problems
in our evaluation. E������ solved 26x more instances and
was 4x faster than CVC4.

7 Conclusion
We presented a general approach to accelerate search-based
program synthesis by leveraging a probabilistic program
model to guide the search towards likely programs. Our
approach comprises a weighted search algorithm that is ap-
plicable to a wide range of probabilistic models. We also
proposed a method based on transfer learning that allows
a state-of-the-art probabilistic model, PHOG, to avoid over-
�tting. We demonstrated the e�ectiveness of the approach
on a large number of synthesis problems from a variety of
application domains. The experimental results show that our
approach outperforms existing general-purpose and domain-
speci�c synthesis tools.
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Search Optimizations. Our approach is complementary to
existing search optimization techniques in program synthe-
sis. We already showed how our approach maintains the
optimizations in the existing enumerative search strategies
(Section 3.4). In addition, it could be combined with the idea
of leveraging type checking for synthesis [11, 22, 26], by us-
ing our method to guide the search within the search space
pruned using type information.

Domain Specializations. Recent proposals for speeding up
synthesis exploit domain knowledge in various forms, includ-
ing abstract semantics [33], domain-speci�c languages [5,
8, 25], templates [16] and features of input-output exam-
ples [21].While probabilisticmodels can themselves be viewed
as a kind of domain specialization, our feature maps allow
such models to generalize well across synthesis problems
in a domain when their solutions have di�erent probability
distributions.

Refutation Techniques. CVC4 [29] is a refutation-based
tool that also targets the SyGuS formulation. In contrast to
search-based techniques, refutation-based techniques use
an SMT solver to extracts solutions from unsatis�ability
proofs of the negated form of synthesis constraints. A tech-
nique called counterexample-guided quanti�er instantiation
(CEGQI) makes �nding such proofs feasible in practice. We
compared E������ to CVC4 on all the benchmark problems
in our evaluation. E������ solved 26x more instances and
was 4x faster than CVC4.

7 Conclusion
We presented a general approach to accelerate search-based
program synthesis by leveraging a probabilistic program
model to guide the search towards likely programs. Our
approach comprises a weighted search algorithm that is ap-
plicable to a wide range of probabilistic models. We also
proposed a method based on transfer learning that allows
a state-of-the-art probabilistic model, PHOG, to avoid over-
�tting. We demonstrated the e�ectiveness of the approach
on a large number of synthesis problems from a variety of
application domains. The experimental results show that our
approach outperforms existing general-purpose and domain-
speci�c synthesis tools.
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vs. FlashFill

• Training: 91 solved by FlashFill 
in 10 s 

• Testing: 22 (timeout: 10 min) 

• Euphony outperforms in 20 / 22
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Efficacy of A* and PHOG

• Using PCFG and PHOG [Bielik et al. ICML’16] 

• # Solved (timout: 1 hour): 

  A* + PHOG:  236 

  Dijkstra + PHOG: 209 

  A* + PCFG: 133 

  Dijkstra + PCFG: 22

Accelerating Program Synthesis using Learned Probabilistic Models PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
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Search Optimizations. Our approach is complementary to
existing search optimization techniques in program synthe-
sis. We already showed how our approach maintains the
optimizations in the existing enumerative search strategies
(Section 3.4). In addition, it could be combined with the idea
of leveraging type checking for synthesis [11, 22, 26], by us-
ing our method to guide the search within the search space
pruned using type information.

Domain Specializations. Recent proposals for speeding up
synthesis exploit domain knowledge in various forms, includ-
ing abstract semantics [33], domain-speci�c languages [5,
8, 25], templates [16] and features of input-output exam-
ples [21].While probabilisticmodels can themselves be viewed
as a kind of domain specialization, our feature maps allow
such models to generalize well across synthesis problems
in a domain when their solutions have di�erent probability
distributions.

Refutation Techniques. CVC4 [29] is a refutation-based
tool that also targets the SyGuS formulation. In contrast to
search-based techniques, refutation-based techniques use
an SMT solver to extracts solutions from unsatis�ability
proofs of the negated form of synthesis constraints. A tech-
nique called counterexample-guided quanti�er instantiation
(CEGQI) makes �nding such proofs feasible in practice. We
compared E������ to CVC4 on all the benchmark problems
in our evaluation. E������ solved 26x more instances and
was 4x faster than CVC4.

7 Conclusion
We presented a general approach to accelerate search-based
program synthesis by leveraging a probabilistic program
model to guide the search towards likely programs. Our
approach comprises a weighted search algorithm that is ap-
plicable to a wide range of probabilistic models. We also
proposed a method based on transfer learning that allows
a state-of-the-art probabilistic model, PHOG, to avoid over-
�tting. We demonstrated the e�ectiveness of the approach
on a large number of synthesis problems from a variety of
application domains. The experimental results show that our
approach outperforms existing general-purpose and domain-
speci�c synthesis tools.
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What about Bottom-Up Search?

• Bottom-up enumeration in order of decreasing probability 
instead of increasing size 

• Cannot consider contexts (why?)

• Use PCFGs, which are statistical models which do not 
consider contexts

• Such PCFGs can be obtained from existing code, or just-
in-time learning (probabilities of production rules keep 
changed during search).

Barke et al., Just-in-Time Learning for Bottom-Up Enumerative Synthesis, OOPSLA 2020
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Bottom-up Enumeration

16

Grow(grammar G, set of programs P ) :

P 0  ;
forall (A! B) 2 G :

P 0 = P 0 [ {B[p/C] | p 2 P,C !⇤ p}
return P 0

<latexit sha1_base64="TW0VZjTB8KZBpVDKH2Zs8BneLN0="></latexit>

BottomUp(grammar G, specification �) :

P  set of all terminals in G

while true :

forall p 2 P 0 :

if �(p) : return p

P 0  Grow(G,P )

P  P [ {p0 2 P 0 | forall p 2 P : ¬Equiv(�, p, p0)}

<latexit sha1_base64="YBJ949SM2Whut9nLjxP/oRH90ng=">AAADlnicbVLbattAEF1LvaTuzWleCn1Z6jS2IRi7BNrkoQSH4D6qUCcBy5jVemUvWUmb3VESI5Qv6tf0rX/Tsaxc7GSR0FzOnDk7mkAraaHT+Vdx3GfPX7zceFV9/ebtu/e1zQ8nNkkNFwOeqMScBcwKJWMxAAlKnGkjWBQocRqcHy3yp5fCWJnEv2GuxShi01iGkjPA0Hiz8mfHB3ENQZgVXwlZLwFIooHO86YfMZiZKJsaFkXM5Df9XXobs1rwO6L8xtcz2Trw/eqOf5GyCfWor0QIzJjkCmuC5DqzAmgSUqYUBWEiGTNlqYzpdn87vy8s+AGyq5lUAnlLF0wq8nv+VWyYGGTNbzT1kc9rrOFWwTJcqm3q1sFd0AhIDV5Dr3XwGqv3QDSOqI9O3sRheK11/EM4OjxFTZlulMKQQT4hu0iimFhMb1scX6TyEv8ACt2lGp9Gy8/HtXqn3SkOfWx0S6NOyuONa3/9ScLTSMTAFbN22O1oGGXMgOQ43aqfWqEZP2dTMUQzZpGwo6xYq5x+wciEokh8Y6BF9GFFxiJr51GAyIVou55bBJ/KDVMIv48yGesURMyXjcIUtyKhix2lE2kEBzVHg3EjUSvlM2YYx7WxVRxCd/3Kj42Tr+3uXnv/1179sFeOY4N8Ip9Jk3TJN3JIfhKPDAh3tpx9p+ccuR/dH+6x219CnUpZs0VWjuv9B+7RKSQ=</latexit>

4.1. Enumerative Search 61

function EnumBottomUpSearch(grammar G, spec „)
ÂE Ω {�} // Set of expressions in G
progSize Ω 1
while True do

ÂC Ω EnumerateExprs(G, ÂE, progSize)
foreach c œ ÂC do

if „(c) then // Specification „ is satisfied
return c

if ¬÷ e œ ÂE : Equiv(e, c, „) then

ÂE.Insert(c)
progSize Ω progSize + 1

Figure 4.4: A simple bottom-down enumeration algorithm to search for a derivation
e in a hypothesis space defined by a CFG G that satisfies a given specification „.

expressions e and e
Õ in ÂE are functionally equivalent with respect to

the specification „. This pruning allows the bottom-up enumeration
algorithm to significantly decrease the space of expressions that need
to be considered before finding the desired expression.

Consider the grammar for conditional linear integer arithmetic
in Figure 4.1 with an additional leaf denoting constant 1 and the
specification of the unknown function f to be synthesized to be that of
the maximum function such that „ : f(x, y) Ø x·f(x, y) Ø y·(f(x, y) =
x ‚ f(x, y) = y). The bottom-up algorithm uses the CEGIS algorithm
to incrementally build the input-output examples for the specification.
Let’s assume the enumeration algorithm first starts with a random
example of (x = 0, y = 1, f(x, y) = 1). It can construct the expression y

as a satisfying expression. The verifier then returns a counter-example
(x = 1, y = 0, f(x, y) = 1). Given these two examples, the algorithm
constructs the conforming expression 1 and the verifier again returns
the counter-example (x = 0, y = 0, f(x, y) = 0). The search algorithm
can now return x + y as a conforming expression. Note that during this
search since both x+y and y +x are functionally equivalent, only one of
these expressions are added to the candidate set for constructing larger
expressions. This iteration between the bottom-up search algorithm
and the verifier continues until the search algorithm finds the desired

<latexit sha1_base64="ALOuuiZQvl7ndZZiMVbqG45Sifo=">AAACAnicbVDLSgMxFM3UV62vqitRJFgEV2XGhbosunHZgn1AZyiZNNOGZjJDckcsQ3Gjn+LGhSJuuvAr3PkN/oTpY6GtBwKHc84l9x4/FlyDbX9ZmYXFpeWV7GpubX1jcyu/vVPTUaIoq9JIRKrhE80El6wKHARrxIqR0Bes7veuRn79linNI3kD/Zh5IelIHnBKwEit/J4L7A78IA0iM0a7eIBj7HKJy618wS7aY+B54kxJoXQwrHw/Hg5N/tNtRzQJmQQqiNZNx47BS4kCTgUb5NxEs5jQHumwpqGShEx76fiEAT42ShubJcyTgMfq74mUhFr3Q98kQwJdPeuNxP+8ZgLBhZdyGSfAJJ18FCQCQ4RHfeA2V4yC6BtCqOJmV0y7RBEKprWcKcGZPXme1E6LzlnRqZg2LtEEWbSPjtAJctA5KqFrVEZVRNE9ekIv6NV6sJ6tN+t9Es1Y05ld9AfWxw9uqpp+</latexit>

foreach p 2 P
<latexit sha1_base64="ZebrsOfBMHDJCXKGo5A9Yy3gADI=">AAACF3icbVDLSgNBEJz1bXxFPXoZDIIihF0P6jHoxaOCSYRsCLOTXjM4OzvM9IphyV/k4q948aCIV73lb5w8BI0WNBRV3XR3RVoKi74/8GZm5+YXFpeWCyura+sbxc2tmk0zw6HKU5mam4hZkEJBFQVKuNEGWBJJqEd350O/fg/GilRdY1dDM2G3SsSCM3RSq1gOER4winMR0x4NdUfs6wP6LVLsgKIGMDPK2Zq2iiW/7I9A/5JgQkqV3fCwP6h0L1vFz7Cd8iwBhVwyaxuBr7GZM4OCS+gVwsyCZvyO3ULDUcUSsM189FeP7jmlTePUuFJIR+rPiZwl1naTyHUmDDt22huK/3mNDOPTZi6UzhAUHy+KM0kxpcOQaFsY4Ci7jjBuhLuV8g4zjKOLsuBCCKZf/ktqR+XguBxcuTTOyBhLZIfskn0SkBNSIRfkklQJJ33yRF7Iq/foPXtv3vu4dcabzGyTX/A+vgAXWKI2</latexit>

if �(p) then return p

<latexit sha1_base64="OpJvrENMc0HS82UVYFFHBjPXqRA="></latexit>

P  {p0 2 P | 8p 2 P. ¬Equiv(�, p, p0)}

<latexit sha1_base64="yVItj0slDFTCde7Ax7ptil31Fyc=">AAACCHicbVA9SwNBEN3zM8avU0sLF4MgCOFORC2DNpYRzAfkjrC32SRL9naP3TkhHClt/Cs2ForY+hPs/Ddukiti4oOBx3szzMyLEsENeN6Ps7S8srq2Xtgobm5t7+y6e/t1o1JNWY0qoXQzIoYJLlkNOAjWTDQjcSRYIxrcjv3GI9OGK/kAw4SFMelJ3uWUgJXa7lEW6BhTZWCEgx4Dg2eEM+y33ZJX9ibAi8TPSQnlqLbd76CjaBozCVQQY1q+l0CYEQ2cCjYqBqlhCaED0mMtSyWJmQmzySMjfGKVDu4qbUsCnqizExmJjRnGke2MCfTNvDcW//NaKXSvw4zLJAUm6XRRNxUYFB6ngjtcMwpiaAmhmttbMe0TTSjY7Io2BH/+5UVSPy/7l2X//qJUucnjKKBDdIxOkY+uUAXdoSqqIYqe0At6Q+/Os/PqfDif09YlJ585QH/gfP0CZFSY6g==</latexit>

cost cost + 1
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BottomUp(PCFG GP , specification �)
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P  EnumerateExprs(GP , P, cost)

cost = -log (probability of program according to PCFG)
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cost 0

Target cost is increased

Generate candidate programs 

of target cost



Guided Bottom-Up Search (cont.)

<latexit sha1_base64="HQvqAhtSZ05RkIzxmWPYOmSuuqE=">AAACIHicbVBNSwMxEM36WetX1aOXYBEUpOyKWI9iqfVYwVqhLSWbzmpoNrsks2JZ9qd48a948aCI3vTXmNYetPpI4PHeDDPz/FgKg6774UxNz8zOzecW8otLyyurhbX1SxMlmkODRzLSVz4zIIWCBgqUcBVrYKEvoen3K0O/eQvaiEhd4CCGTsiulQgEZ2ilbqHcRrhDE6RVlYSgGUL1LtYm2xnpab1yWqNZrVvfo/albR1SHhnMdruFoltyR6B/iTcmRTJGvVt4b/cibmco5JIZ0/LcGDsp0yi4hCzfTgzEjPfZNbQsVSwE00lHB2Z02yo9GkTafoV0pP7sSFlozCD0bWXI8MZMekPxP6+VYHDUSYWKEwTFvwcFiaQY0WFatCc0cJQDSxjXwu5K+Q3TjKPNNG9D8CZP/ksu90veYck7Pygen4zjyJFNskV2iEfK5JickTppEE7uySN5Ji/Og/PkvDpv36VTzrhng/yC8/kFdI2jFQ==</latexit>

EnumerateExprs(PCFG GP , P, cost)
<latexit sha1_base64="9LI3tO0POzWsSMjtNQYBuOICQx8=">AAAB7nicbVDLSgMxFL1TX7W+qi7dBIvoqsyIqAhC0Y3LCvYB7SCZNNOGZjJDckcoQz/CjQtF3Po97vwb03YW2nogcDjnXHLvCRIpDLrut1NYWl5ZXSuulzY2t7Z3yrt7TROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB8Hbit564NiJWDzhKuB/RvhKhYBSt1Kofk6trUn8sV9yqOwVZJF5OKpDD5r+6vZilEVfIJDWm47kJ+hnVKJjk41I3NTyhbEj7vGOpohE3fjZdd0yOrNIjYaztU0im6u+JjEbGjKLAJiOKAzPvTcT/vE6K4aWfCZWkyBWbfRSmkmBMJreTntCcoRxZQpkWdlfCBlRThrahki3Bmz95kTRPq9551bs/q9Ru8jqKcACHcAIeXEAN7qAODWAwhGd4hTcncV6cd+djFi04+cw+/IHz+QNXV45E</latexit>

P 0 := P
<latexit sha1_base64="O2d+U+S77v7lCLErxqhSsQkFDes=">AAACFHicbVDLSsNAFJ3UV62vqEs3g0WoWEoioi6LblyVKvYBTQiT6aQdOpmEmYlQQj/Cjb/ixoUibl2482+ctFlo64GBwzn3MvccP2ZUKsv6NgpLyyura8X10sbm1vaOubvXllEiMGnhiEWi6yNJGOWkpahipBsLgkKfkY4/us78zgMRkkb8Xo1j4oZowGlAMVJa8syT1PEDGERi4kDYgI6KYFBpeHYVOrgfKVmFDW90DB3K4Z1nlq2aNQVcJHZOyiBH0zO/nH6Ek5BwhRmSsmdbsXJTJBTFjExKTiJJjPAIDUhPU45CIt10GmoCj7TSzy7Tjys4VX9vpCiUchz6ejJEaijnvUz8z+slKrh0U8rjRBGOZx8FCYM6etYQ7FNBsGJjTRAWVN8K8RAJhJXusaRLsOcjL5L2ac0+r9m3Z+X6VV5HERyAQ1ABNrgAdXADmqAFMHgEz+AVvBlPxovxbnzMRgtGvrMP/sD4/AFDMZvO</latexit>

for N ! f(N1, · · · , Nk) 2 R
<latexit sha1_base64="JCCmOn6XYjka9L3JqxMHCrH8Y90="></latexit>

P 0 := P [ {f(p1, · · · , pk) | 8i. Ni )⇤ pi,� logPr(f(p1, · · · , pk)) = cost}
<latexit sha1_base64="R2D5p0sgTNgmTPLNXWado8lc+QY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbRU0lE1GPRi8cK9gPaUjbbSbt0swm7k0IJ/SdePCji1X/izX/jts1BWx8MPN6bYWZekEhh0PO+ncLa+sbmVnG7tLO7t3/gHh41TJxqDnUey1i3AmZACgV1FCihlWhgUSChGYzuZ35zDNqIWD3hJIFuxAZKhIIztFLPdbNOEFINmGo17dDaec8texVvDrpK/JyUSY5az/3q9GOeRqCQS2ZM2/cS7GZMo+ASpqVOaiBhfMQG0LZUsQhMN5tfPqVnVunTMNa2FNK5+nsiY5ExkyiwnRHDoVn2ZuJ/XjvF8LabCZWkCIovFoWppBjTWQy0LzRwlBNLGNfC3kr5kGnG0YZVsiH4yy+vksZlxb+u+I9X5epdHkeRnJBTckF8ckOq5IHUSJ1wMibP5JW8OZnz4rw7H4vWgpPPHJM/cD5/ANFRkyA=</latexit>

return P 0

For each production rule

pi is derivable from Ni


