Enumerative Synthesis

VWoosuk Lee
CSE91 16 SPRING 2024

Hanyang University

HANYANG UNIVERSITY

Inductive Synthesis via Enumeration

User Intent: How to describe correctness specifications

? Input-output examples
| Logical formulas |
i Natural language description, etc. |

Programming-by-Example
(PBE)

 Enumeration + pruning |
{ Top-down propagation |
' Stochastic search ‘
{ Constraint solving !

Search Strategy Search Space

Two Challenges in Inductive Synthesis

Program you actually
want

X <

Programs matching
the observations

h

Space of
programs

|. How do you find a program matching the examples?

2. How do you know it is the program you're looking for?
(i.e., avoiding overfitting)

From https://stellar.mit.edu/S/course/6/sp15/6.885/courseMaterial/topics/topic3/lectureNotes/Lecture21/lL ecture2.pdf

https://stellar.mit.edu/S/course/6/sp15/6.885/courseMaterial/topics/topic3/lectureNotes/Lecture21/Lecture2.pdf

Two Challenges in Inductive Synthesis

® < Program you actually

_ want
Programs matchmg
Space of the observations
programs ;
\ | ML:focuson2 |
| (Fix the space so that}|
_) : (1) is easy)
\

|. How do you find a program matchin the examples!?

2. How do you know it is the program you're looking for?
(i.e., avoiding overfitting)

From https://stellar.mit.edu/S/course/6/sp15/6.885/courseMaterial/topics/topic3/lectureNotes/Lecture21/lL ecture2.pdf

https://stellar.mit.edu/S/course/6/sp15/6.885/courseMaterial/topics/topic3/lectureNotes/Lecture21/Lecture2.pdf

Two Challenges in Inductive Synthesis

® < Program you actually

_ want
Programs matching

Space of the observations
programs f :
\ | Synthesis: focus on 1|
| ((@isalsostill |

_) | important though)
\ |

|. How do you find a program matchin the examples!?

2. How do you know it is the program you're looking for?
(i.e., avoiding overfitting)

From https://stellar.mit.edu/S/course/6/sp15/6.885/courseMaterial/topics/topic3/lectureNotes/Lecture21/lL ecture2.pdf

https://stellar.mit.edu/S/course/6/sp15/6.885/courseMaterial/topics/topic3/lectureNotes/Lecture21/Lecture2.pdf

How Large is the Search Space?

E::=x | E@E
depth <=0 N(B) =1
depth<=1 ®@® N(1) = 2
=5

@ (@ (@
depth <=2 @ 6% (@)) x) (@) @) (@ N(2)
QIO OINIGIO IO

N(d) = 1 + N(d - 1)2

From https://github.com/nadia-polikarpova/cse291-program-synthesis

How Large is the Search Space?

E::=x | E@E

N(d) = 1 + N(d - 1)2 N(d) ~ c2° (c > 1)

OO N N

~N O
~

458330

210066388901

44127887745906175987802

1947270476915296449559703445493848930452791205
= 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352026

Z 2 2 2 2 2 2 2 2 Z2
R O 00 NOoO Ul B WN B

D 1 R 1 I | A | A | I | N

Ovvvvvvvvv

How Large is the Search Space?

E = X1 | x|
E @1 E | E @m E

N(®) = k
N(d) = k +m * N(d - 1)?
N(1) =3 k=m=3
N(2) = 30
N(3) =2703
N(4) =21918630
N(5) = 1441279023230703
N(6) =6231855668414547953818685622630
N(7) = 116508075215851596766492219468227024724121520304443212304350703

Enumerative Search

e Sample candidates from a given grammar one by one and
check if each candidate satisfies the spec

e How to sample!?
® bottom-up vs. top-down

® Various optimizations

Bottom-Up Enumeration

e Starting from terminal symbols

o Repeatedly composing smaller programs into larger ones
e E.go., Target function f(x:int):int

Syntactic constraint:

S—ax|1|-=-S|S+S5|]5x%xS
Semantic constraint;

F(1) =2

Bottom-Up Enumeration

Bottom-Up Enumeration

Bottom Up(grammar G, specification ¢) :

P < set of all terminals in G

progSize < 1

while True do
P < ENUMERATEEXPRS(G, P, progSize)
foreach p € P

if ¢(p) then return p

progSize < progSize + 1

Room for Optimization

® Enumerated candidates are complete programs
e Eg, x+ |

® Thus “executable”
— can apply “observational equivalence” for

optimization

Pruning via Observational Equivalence

® Maintains a semantically unique set of expressions

® i.e, no two expressions are functionally equivalent wrt
Inputs

e Applicable only if we want a single solution

Udupa et al., TRANSIT: specifying protocols with concolic snippets. PLDI'13

After Optimization

After Optimization

 Only representatives of classes of |

'+ programs that output 1
i programs that output (-1)

nat output 2

Bottom-Up Enumeration (improved)

Bottom Up(grammar G, specification ¢) :
P + set of all terminals in G
progSize < 1

while True do

if ¢(p) then return p

progSize < progSize + 1

Top-Down Enumeration

e Starting from the start non-terminal symbol

e Applying production rules repeatedly

Top-Down Enumeration

S—x|l1|-S|S+S5S|S5xS

Top-Down Enumeration

Production
: rules . .
Non-terminals Termlnals _ Starting non-terminal
Grammar G = <N E R S>
TopDown(grammar G, specification ¢) : Un'roll (grammar G, program p)
P+ {5} " () %Nontermlnal
while P 7 forall A€ p:

D < DGQUGUG(P)\

forall (A — B) e R :
p' < p[B/A] .
P+ P U{p}

/
return P

if ¢(p) : return
P’ « Unroll(G,p)
forall p’' € P’

P <+ Enqueue(P,p)

Replace Awith Binp

Candidates with fewer
non-terminals first

Optimizations

¢ Maintaining only representatives of equivalence by
® |) considering observationally equivalent sub-expressions

e E.g.,only maintain“x + S” or “l + S” in the queue as x = |
® 1)) breaking symmetries

e E.g.,only maintain“x + S” or“S + x”
“I x(S+S)"or”“S+5”

Lee et al., Accelerating Search-based Program Synthesis using Learned Probabilistic Models, PLDI’18

Smith et al., Program Synthesis with Equivalence Reduction, VMCAI’'19

Top-Down Enumeration (improved)

TopDown(grammar G, specification ¢) : Unroll(grammar G, program p)
P« {5} P
while P 7# () forall Aep:
p ¢ Dequeue(P) forall (A — B) e G':
if ¢(p) : return p ' p[B/A

P’ «+ Unroll(G, p)

P« P 'U{p
forall p' € P’ : W'}

/
return P

7] JAdded

-—

P nuue, p’)

Other Optimizations

e Early pruning of hopeless candidates

e E.g., when specis f(2) = 3,2 x S is not maintained in

the queue

® Various deductive methods such as type inference,
constraint solving, abstract interpretation are used.

Nadia Polikarpova, Ivan Kuraj, Armando Solar-Lezama: Program synthesis from Polymorphic Refinement Types. PLDI’'16

Feng, Martins, Bastani, Dillig: Program synthesis using conflict-driven learning. PLDI'18

Implementation Details (Top-Down)

® A priority queue can be used to prioritize candidates
with fewer non-terminals.

o Keeping track of the representatives of equivalence
obtained so far can save computation.

https://en.wikipedia.org/wiki/Priority_queue

Implementation Details (Bottom-Up)

e The EnumerateExprs procedure is typically

implemented as a generator.
e A generator is a function that returns an array.

® |nstead of returning an array containing all the values
at once, it yields the values one at a time.

® Requires less memory

Further Optimization: Divide-and-Conquer

e E.g, Target function: f(z:int,y:int): int
Syntactic:

S—=x|y|lS+S|S—S|if BSS|0]|1|2
B—-S§>§S

Semantic: f(1,1)=1A f(1,2) =2A f(2,1) =2

Further Optimization: Divide-and-Conquer

- Find expressions correct wrt some I/0 examples

- And composing them with conditionals (via Decision tree learning)

Step L: Prqpose terms Step 2: Generate predicates
until all points covered

Partial Solutions Examples Predicates
0 (1,1) 0>1)

) (1,2) 1>1

. (2,1) x> 1

‘. x =2
Y X2y |
\)

1

Step 3: Combine! if (x =2 y)thenxelsey

Scaling Enumerative Program Synthesis via Divide and Conquer, TACAS’17

Further Optimization: Divide-and-Conquer

Term S—x|y|S+S|S-5|0|1]2
Predicate B — S >S5
Terms (1) (1 1) X =y
in order of) .
increasing 2 (1,2) ‘ | | \ .
size X (2,1) | 2,1) (1,2) |
y I R —
Predicates 0=1
inorderof 121 ‘>
increasing * =1 | B
size x> 2 if (x>y)thenxelsey - \
X =Y
X y

Divide-and-Conquer Enumeration

Algorithm 2 DCSolve: The divide-and-conquer enumeration algorithm

Require: Conditional expression grammar G = (Gp,Gp)
Require: Specification &
Ensure: Expression e s.t. e € [G] ANe =&

1: pts <« 0

2: while true do

3 terms <— (; preds < (); cover < (; DT = L
4 while | tcterms COVEr[t] # pts do > Term solver
5 terms < terms U NEXTDISTINCTTERM(pts, terms, cover)
6: while DT = 1 do > Unifier
7 terms < terms U NEXTDISTINCTTERM (pts, terms, cover)
8 preds <— preds U ENUMERATE(G p, pts)
9 DT <+ LEARNDT (terms, preds)
10: e < expr(DT); cexpt < verify(e, P) > Verifier
11: if cexpt = L then return e

12: pts < pts U cexpt

Divide-and-Conquer Enumeration

Algorithm 3 Learning Decision Trees

Require: pts, terms, cover, preds
Ensure: Decision tree DT
if 3t : pts C cover[t] then return LeafNode[L <+ t]

if preds = () then return L

: p < Pick predicate from preds

L < LEARNDT ({pt | p|pt]}, terms, cover, preds \ {p})
R <+ LEARNDT ({pt | —p|pt]}, terms, cover, preds \ {p})
return InternalNode|A < p, left < L, right < R]

SN o > e

Divide-and-Conquer Enumeration

® Jo synthesize conditional programs as small as possible,
® The information gain heuristic is used.

® More predicates are collected.

x =10
y < 2 r=1
./ \. y<1 x =2
3 I

Y
(a) Decision tree for predicates of size 3

x4y <2

0 ol

(b) Decision tree for predicates of size 4

Overfitting

* |nput-output examples can be an underspecification.

e E.g,. The max function f(z:int,y:int):int

Syntactic constraint:
S—zxl|ly|S+S|S-S5|ifBSS
B—-5§<S§5|5=S

Semantic constraint: {f(3,1) =3 A f(1,2)

=2

Bottom-Up Enumeration

Sk { X y }

Br { xsx, xSy, vsX, 9

Sk { X+ x, X +tvy, VyV t+t X,.,

Not the desired solution!

Counter-example Guided Inductive Synthesis
(CEGIS)

® Enables inductive synthesis strategies beyond |/O examples

e E.g, The max function: f(x:int,y:int):int

Syntactic constraint:
S—zx|y|lS+S5|5-S5|iftBSS
B—-5§<S§5|5=S

Semantic constraint: “(oTTr=07 {17z =2~
Vo, y. f(z,y) > a A flzy) 2y A (flzy) =2V flz,y) =y)

Counter-example Guided Inductive Synthesis
(CEGIS)

® Makes inductive synthesis strategies applicable for

beyond I/O examples
® Generator proposes candidates.

o Verifier checks correctness for each proposed candidate.

Armando Solar Lezama, Program Synthesis by Sketching

CEGIS + Bottom-Up Search

| Candidate fro——
| Bottom-Up Enumeration | f($ y) — | SMT solver |

ampios. ¥

@ »

Counterexample .. —) y =1
)

f(0,1) =1

—Ve,y. x>z ANx>yANlr=zVzr=y)

CEGIS + Bottom-Up Search

Candidate
flz,y) =y

Examples:

e SR

Counterexample

r=1y=0
f(1,0) =1

CEGIS + Bottom-Up Search

Candidate
flz,y) =1
Examples:

x07y1_>
r=1,y=0

Counterexample . _ y =0

. f(0,0) =0

CEGIS + Bottom-Up Search

Candidate
fla,y)=ifz <yyua
Examples:
x=0y=1 _»
r=1y=0
Success!

r=0,y=0
X, Y, X T Y, X TV, oy lf(xg_Y)yx

Benefits of CEGIS

e Generator and verifier are independent to each other.

e #. of CEGIS iteration is often small in practice.
e i.e., candidate correct wrt a few examples is often a solution

e Programmers often aspire to write programs correct wrt a few
corner cases

e which gives performance benefits for various generators

e e.d., constraint solving-based synthesizers — may handle
smaller constraints

e e.g., enumeration-based synthesizer — can enjoy better
optimization impacts such as observational equivalence

Limitations of Enumerative Synthesis

® Pros
¢ Generally applicable to almost any kinds of specs
e Fasy to implement

e Cons

e |imited scalability: cannot synthesize large programs!

