

Enumerative Synthesis

Woosuk Lee

CSE9116 SPRING 2024

Hanyang University

Inductive Synthesis via Enumeration

User Intent: How to describe correctness specifications

Two Challenges in Inductive Synthesis

- I. How do you find a program matching the examples?
- 2. How do you know it is the program you're looking for? (i.e., avoiding overfitting)

Two Challenges in Inductive Synthesis

- I. How do you find a program matching the examples?
- 2. How do you know it is the program you're looking for? (i.e., avoiding overfitting)

Two Challenges in Inductive Synthesis

- I. How do you find a program matching the examples?
- 2. How do you know it is the program you're looking for? (i.e., avoiding overfitting)

How Large is the Search Space?

$$N(0) = 1$$

$$N(1) = 2$$

$$N(2) = 5$$

$$N(d) = 1 + N(d - 1)^2$$

How Large is the Search Space?

$$N(d) = 1 + N(d - 1)^2$$
 $N(d) \sim c^{2^d}$ $(c > 1)$

N(1) = 1

N(2) = 2

N(3) = 5

N(4) = 26

N(5) = 677

N(6) = 458330

N(7) = 210066388901

N(8) = 44127887745906175987802

N(9) = 1947270476915296449559703445493848930452791205

How Large is the Search Space?

$$N(0) = k$$

 $N(d) = k + m * N(d - 1)^{2}$

```
N(1) = 3 k = m = 3
```

N(2) = 30

N(3) = 2703

N(4) = 21918630

N(5) = 1441279023230703

N(6) = 6231855668414547953818685622630

N(7) = 116508075215851596766492219468227024724121520304443212304350703

Enumerative Search

- Sample candidates from a given grammar one by one and check if each candidate satisfies the spec
- How to sample?
 - bottom-up vs. top-down
- Various optimizations

- Starting from terminal symbols
- Repeatedly composing smaller programs into larger ones
- ullet E.g., Target function $f(x: \mathrm{int}): \mathrm{int}$

Syntactic constraint:

$$S \rightarrow x \mid 1 \mid -S \mid S + S \mid S \times S$$

Semantic constraint:

$$f(1) = 2$$

$$x = 1 :: f(1) = 2$$

Size 1

x = 1

Size 2

-x -1

Size 3

$$1 \times 1$$
 $1 \times x$ $x \times 1$ $x \times x$

```
egin{aligned} & m{BottomUp}(\operatorname{grammar}\ G,\operatorname{specification}\ \phi): \ & P \leftarrow \operatorname{set}\ \operatorname{of}\ \operatorname{all}\ \operatorname{terminals}\ \operatorname{in}\ G \ & \operatorname{progSize} \leftarrow 1 \ & \operatorname{while}\ \operatorname{True}\ \operatorname{do} \ & P \leftarrow \operatorname{EnumerateExprs}(G,P,\operatorname{progSize}) \ & \operatorname{foreach}\ p \in P \ & \operatorname{if}\ \phi(p)\ \operatorname{then}\ \operatorname{return}\ p \ & \operatorname{progSize} \leftarrow \operatorname{progSize} + 1 \end{aligned}
```

Room for Optimization

- Enumerated candidates are complete programs
 - E.g., x + I
- Thus "executable"
 - → can apply "observational equivalence" for optimization

Pruning via Observational Equivalence

- Maintains a semantically unique set of expressions
 - i.e., no two expressions are functionally equivalent wrt inputs
- Applicable only if we want a single solution

After Optimization

$$x = 1 :: f(1) = 2$$

Size 1

x 1

Size 2

 $-\gamma$

Size 3

x + x

After Optimization

$$x = 1 :: f(1) = 2$$

Size 1

 $x \mid 1$

Only representatives of classes of

- programs that output 1
- programs that output (-1)
- programs that output 2

are explored.

Size 2

-x - 1

Size 3

$$\begin{array}{cccc}
1+1 & 1+x & x+1 \\
\hline
x+x & & \\
\end{array}$$

Bottom-Up Enumeration (improved)

```
Bottom Up (grammar G, specification \phi):
   P \leftarrow \text{set of all terminals in } G
   progSize \leftarrow 1
   while True do
         P \leftarrow \text{EnumerateExprs}(G, P, \text{progSize}) \\ P \leftarrow \{p' \in P \mid \forall p \in P. \ \neg \text{Equiv}(\phi, p, p')\} \\ \text{Added}
          foreach p \in P
                if \phi(p) then return p
          progSize \leftarrow progSize + 1
```

Top-Down Enumeration

- Starting from the start non-terminal symbol
- Applying production rules repeatedly

Top-Down Enumeration

$$S \rightarrow x \mid 1 \mid -S \mid S + S \mid S \times S$$

Iter 0

S

Iter 1

x 1 -S S+S $S\times S$

Iter 2

$$-x - 1 - (-S) \quad x + S \cdots$$

Iter 3

$$-(-x)$$
 $-(-1)$ $x+1$

Top-Down Enumeration

Non-terminals Terminals

rules

Grammar
$$G = \langle N, \Sigma, R, S \rangle$$

Starting non-terminal

 $TopDown(grammar G, specification \phi):$

$$P \leftarrow \{S\}$$

while $P \neq \emptyset$:

$$p \leftarrow Dequeue(P)$$

if $\phi(p)$: return p

$$P' \leftarrow Unroll(G, p)$$

forall $p' \in P'$:

$$P \leftarrow Enqueue(P, p')$$

Candidates with fewer non-terminals first

Unroll(grammar G, program p)

$$P' \leftarrow \emptyset$$

Nonterminal

forall $A \in p$:

forall $(A \rightarrow B) \in R$:

$$p' \leftarrow p[B/A]$$

$$p' \leftarrow p[B/A]$$

 $P' \leftarrow P' \cup \{p'\}$

return P'

Replace A with B in p

Optimizations

- Maintaining only representatives of equivalence by
- I) considering observationally equivalent sub-expressions
 - E.g., only maintain "x + S" or "I + S" in the queue as x = I
- 2) breaking symmetries
 - E.g., only maintain "x + S" or "S + x"
 "I x (S + S)" or "S + S"

Top-Down Enumeration (improved)

```
TopDown(grammar G, specification \phi):
                                                           Unroll(grammar G, program p)
  P \leftarrow \{S\}
                                                             P' \leftarrow \emptyset
  while P \neq \emptyset:
                                                             forall A \in p:
     p \leftarrow Dequeue(P)
                                                                forall (A \rightarrow B) \in G:
     if \phi(p): return p
                                                                   p' \leftarrow p[B/A]
     P' \leftarrow Unroll(G, p)
                                                                   P' \leftarrow P' \cup \{p'\}
     forall p' \in P':
                                                             return P'
       if \neg Subsumed(P,p') : Added
           P \leftarrow Engueue(P, p')
```

Other Optimizations

- Early pruning of hopeless candidates
 - E.g., when spec is $f(2)=3, x\times S$ is not maintained in the queue
- Various deductive methods such as type inference, constraint solving, abstract interpretation are used.

Implementation Details (Top-Down)

- A priority queue can be used to prioritize candidates with fewer non-terminals.
- Keeping track of the representatives of equivalence obtained so far can save computation.

Implementation Details (Bottom-Up)

- The EnumerateExprs procedure is typically implemented as a generator.
- A generator is a function that returns an array.
 - Instead of returning an array containing all the values at once, it *yields* the values one at a time.
 - Requires less memory

Further Optimization: Divide-and-Conquer

• E.g., Target function: f(x : int, y : int) : int

Syntactic:

$$S \to x \mid y \mid S + S \mid S - S \mid \text{if } B \mid S \mid S \mid 0 \mid 1 \mid 2$$

$$B \to S > S$$

Semantic: $f(1,1) = 1 \land f(1,2) = 2 \land f(2,1) = 2$

Further Optimization: Divide-and-Conquer

- Find expressions correct wrt some I/O examples
- And composing them with conditionals (via Decision tree learning)

Step 3: Combine! if $(x \ge y)$ then x else y

Further Optimization: Divide-and-Conquer

Divide-and-Conquer Enumeration

Algorithm 2 DCSolve: The divide-and-conquer enumeration algorithm **Require:** Conditional expression grammar $G = \langle G_T, G_P \rangle$ **Require:** Specification Φ **Ensure:** Expression e s.t. $e \in [G] \land e \models \Phi$ 1: pts $\leftarrow \emptyset$ 2: while true do 3: terms $\leftarrow \emptyset$; preds $\leftarrow \emptyset$; cover $\leftarrow \emptyset$; $DT = \bot$ while $\bigcup_{t \in \text{terms}} \text{cover}[t] \neq \text{pts do}$ 4: > Term solver 5: terms \leftarrow terms \cup NEXTDISTINCTTERM(pts, terms, cover) 6: while $DT = \bot$ do ▶ Unifier 7: $terms \leftarrow terms \cup NEXTDISTINCTTERM(pts, terms, cover)$

Verifier

 $\mathsf{preds} \leftarrow \mathsf{preds} \cup \mathsf{ENUMERATE}(G_P, \mathsf{pts})$

 $DT \leftarrow \text{LEARNDT}(\text{terms}, \text{preds})$

 $e \leftarrow \mathsf{expr}(DT); \, \mathsf{cexpt} \leftarrow \mathsf{verify}(e, \Phi)$

if $cexpt = \bot$ then return e

 $pts \leftarrow pts \cup cexpt$

9:

10:

11:

12:

Divide-and-Conquer Enumeration

Algorithm 3 Learning Decision Trees

```
Require: pts, terms, cover, preds
Ensure: Decision tree DT
1: if \exists t : \mathsf{pts} \subseteq \mathsf{cover}[t] then return LeafNode[\mathcal{L} \leftarrow t]
2: if \mathsf{preds} = \emptyset then return \bot
3: p \leftarrow \mathsf{Pick} predicate from \mathsf{preds}
4: L \leftarrow \mathsf{LEARNDT}(\{\mathsf{pt} \mid p[\mathsf{pt}]\}, \mathsf{terms}, \mathsf{cover}, \mathsf{preds} \setminus \{p\})
```

- 5: $R \leftarrow \text{LearnDT}(\{\mathsf{pt} \mid \neg p[\mathsf{pt}]\}, \mathsf{terms}, \mathsf{cover}, \mathsf{preds} \setminus \{p\})$
- 6: **return** $InternalNode[\mathcal{A} \leftarrow p, left \leftarrow L, right \leftarrow R]$

Divide-and-Conquer Enumeration

- To synthesize conditional programs as small as possible,
 - The information gain heuristic is used.
 - More predicates are collected.

(a) Decision tree for predicates of size 3

$$x + y \le 2$$

$$0$$

(b) Decision tree for predicates of size 4

Overfitting

- Input-output examples can be an underspecification.
- E.g.,: The max function f(x:int,y:int):int

Syntactic constraint:

$$S \to x \mid y \mid S + S \mid S - S \mid \text{if } B \mid S \mid S$$

 $B \to S \leq S \mid S = S$

Semantic constraint: $f(3,1) = 3 \land f(1,2) = 2$

Size 1

$$B \mapsto \{ \}$$

 $S \mapsto \{ x y \}$

Size 2

Size 3

$$B \mapsto \{ x \le x, x \le y, y \le x, y \le y, ... \}$$

 $S \mapsto \{ x + x, x + y, y + x, ..., x * y \}$

Not the desired solution!

Counter-example Guided Inductive Synthesis (CEGIS)

- Enables inductive synthesis strategies beyond I/O examples
- E.g., The max function: f(x : int, y : int) : int

Syntactic constraint:

$$S \to x \mid y \mid S + S \mid S - S \mid$$
 if $B \mid S \mid S$ $B \to S \leq S \mid S = S$

Semantic constraint: $f(3,1) = 3 \land f(1,2) = 2$ $\forall x,y. \ f(x,y) \ge x \land f(x,y) \ge y \land (f(x,y) = x \lor f(x,y) = y)$

Counter-example Guided Inductive Synthesis (CEGIS)

- Makes inductive synthesis strategies applicable for beyond I/O examples
- Generator proposes candidates.
- Verifier checks correctness for each proposed candidate.

Benefits of CEGIS

- Generator and verifier are independent to each other.
- #. of CEGIS iteration is often small in practice.
 - i.e., candidate correct wrt a few examples is often a solution
 - Programmers often aspire to write programs correct wrt a few corner cases
 - which gives performance benefits for various generators
 - e.g., constraint solving-based synthesizers may handle smaller constraints
 - e.g., enumeration-based synthesizer can enjoy better optimization impacts such as observational equivalence

Limitations of Enumerative Synthesis

- Pros
 - Generally applicable to almost any kinds of specs
 - Easy to implement
- Cons
 - Limited scalability: cannot synthesize large programs!