Advanced Static Analysis Technique

Woosuk Lee

CSE 6049 Program Analysis

Hanyang University, Korea

Some slides are borrowed from https://github.com/prosyslab-classroom/is593-2020-spring/blob/master/slides/lecture8.pdf

https://github.com/prosyslab-classroom/is593-2020-spring/blob/master/slides/lecture8.pdf

Goal of This Lecture

® | earn advanced techniques for more precise and
efficient analysis

Combination of Multiple Abstractions

¢ Verifying a program often requires reason over multiple
kinds of properties.

® VWe can construct abstract domains that can handle such
cases.

Combination of Multiple Abstractions

e Suppose we have two abstract domains 4041 with
concretization function 1 : Ao — Z (M), 71 1 Ay — P (M)

® The product abstraction is defined by

OAX :AOXAl

e Concretization function:
V(ag,a1) € Ax, ¥x(aop,ar) = y(ao) Nyi(ar)

Combination of Multiple Abstractions

e [wo abstract domains can characterize distinct kinds of
properties.

e Eg, £ : interval domain, Aq : parity domain

e Abstract value ([0, 100], Ewven) describes even

values between 0 and 100.

Synergistic Combination of Multiple Abstractions

e Multiple abstract domains may exchange information to

derive stronger properties.

e e.g.,Abstract value
([1,25], Even)
is concretized to {2, 4}.

The most precise abstract information is

([2,4], Even)

Reduced Product

e The reduced product of abstract domains Ao, A1 is the

set A of equivalence classes of Ao X A1 for the relation

= defined by

(a07a1) = (a67a/1) — Vx (aOaal) = x (aé)?all)

e eg, ([1,5], Even) = ([2,4], Even)

Reduction Operator

Reduction operator turns any abstract element into its optimal
representation.

Concrete Domain Abstract Domain

D

Reduction Operator

e Optimal reduction operator (¢ © 7) is often very
expensive.

® |n practice, a sound but approximate reduction

operation (¢ © 7 & P) is often preferable.

e Reduction is typically performed only at specific points
where it is known that it can provide a useful precision
gain.

Advanced lteration Techniques

® | oop invariant inference: sequences of abstract iterates

o Computes weaker and weaker abstract states until
stabilization, hence a common source of imprecision

(e.g., widening)

® There are various techniques to improve the precision
of the static analysis of loops.

Review: Static Analysis of while(B){C}

Concrete semantic function: F = [C] # o %5
Sound abstract semantic function: ' oY € Yo F?

M abstract pre-condition for the loop

Semantics of the loop:
Mloop — UFZ(Y(Mu)) =lfp G

>0

where G(X) = y(M*) U F(X)

Review: Static Analysis of Loops

® Jo ensure termination of the analysis, we use widening. To
compute the converging sequence

Mg — M
M;,, = M vF{M)

° Mlﬂimz the limit of the sequence (after finitely many iterates)

® The analysis returns the sound loop post-condition

Techniques for Improving Precision of Analysis of Loops

® | oop unrolling
e Delayed widening

® Widening with thresholds

Loop Unrolling

® Motivation: hasty join

X = ?7; // any value

1 =1;

while (i > @) {
if(x < | |

>
0 X > 1000) {
} else {

X =X + 1;
I3
input(i);
}
// actually, x is in [0, 1001]

* The abstract value for x with a naive approach would be [-c0, +o0]

e |dea: detach the first iteration from the rest

Loop Unrolling

X = 7; // any value

input(i);

}

// actually, x is in [0, 1001]

- X

= 7; // any value

= 1;

if(x <@ || x > 1000) {
e

:@;
s

}
input(i);
// x is in [0, 1001]
while (i > 0) { -
if(x <0 || x > 1000) {
X = 0;
} else {
X =1+ X;
¥
input(i);
F
// X is in [0, 1001]

X
lse {
X =1+ X;

first iter.

> rest

Loop Unrolling

® The previous sequence for the loop

Mg — M
M, = M vF{M)

e With loop unrolling

Mg — M
; F' (M) if k<N
Y =\ st v P j
i (M) otherwise

and the analysis returns -Z*5 (M})

Delayed Widening

® Motivation: hasty widening

X = 0;
while (rand()) {
if(rand()) {

boelse { BN oo VIEM -2 - Bl
X = X + 2;
I3
¥
// X >= -1

* The abstract value of x with a naive approach would be [-co, +0c0]

* |dea: delay the application of widening for the first N iterations

Delayed Widening

Delayed widening where N = 1

X = 0;

while (rand()

) 1
if(rand()) {

X = =-1;

} else {

X = X + 23

}

L

// X >= =1

| Fixed Point!

Delayed Widening

® The sequence with delayed widening:

M, = M
M; | MU FY(MY) ifk<N
M{,, = M. VF'M) ifk>N

® |oop unrolling: postpones join first N iterations

® Delayed widening: postpones widening first N iterations

Widening with Thresholds

¢ Motivation: the standard widening is too conservative!

X = 0;
while (x <= 100) {
if(x >= 50) {

x = 10; - 0 |V n [02] | = - [0, +o0]
} else {
X =X + 1;

}

}
// actually, x is in [0, 50]

e The abstract value of x with a naive approach is [0, +oo]

 |dea: use a slower and more precise widening

Widening with Thresholds

 Take several small steps and stops at pre-defined threshold values

 For example, consider only one threshold B:

A naive widening operator

n,p] v

n,q|

|

n, p|
1, +00]

ifp>gq
if p<q

A widening with thresholds

[nvp] v [n7Q] = 4

(

n, p
n, B

7, 400

ifp>gq
iftp<qg<B
if B <q

*only the right bounds, for brevity

Widening with Thresholds

X = 0;
while (x <= 100) {
if(X > 5@) {

X = 10;
} else {
X =X + 1;

}
}

V

V

[0,1]

[0,50]

| Fixed Point!]

Thresholds = {50}

[0,50]

(5]
Kl o

[0,50]

Scalability Challenge

The worklist algorithm often does not scale to large complex programs.

h S

Figure: Call graph of 1less-382 (23,822 lines of code

- R ————— e

Sparse Analysis

e The worklist algorithm is often still not efficient enough
to analyze large programes.

® Sparse analysis: exploit the semantic sparsity of the input
program to analyze

® Spatial sparsity & temporal sparsity

Right part at right moment

Example Performance Gain by Sparse Analysis

@ Sparrow: a “sound”, global C analyzer for the memory safety property
(no overrun, no null-pointer dereference, etc.)

http://github.com/ropas/sparrow

@ ~ 10 hours in analyzing million lines of C

CS/)(I/ 7o ;
sound-&-global version

Q
with intervals

o
with octagons

Spatial Sparcity

Each program portion accesses only a small part of the memory.

accessible store

¢ By e)
: o
call f ; g
v
| |non-accessible store f
return «—
\ 4
e P)

Temporal Sparcity

After the def of a memory, its use is far.

[)’z)’-l] VS.

Example

Example (Code fragment)

S N <SS ™
Il

ret

x + 1;
y - 1;
X,
Y
*a + *Db

Assume that a points to v and b to z.

Consider this program and suppose
that we analyze the program with the
initial abstract state.

(x=x+|

(y=y1)"
(z=x)
(v=y)

ret *a+*b)

_-

ﬁ.

Conventional static analysis propagates
the entire abstract states along control

flows of the program.

So, after the analysis is terminated, each
program point is associated with the

entire abstract states.

Sparse analysis aims to optimize this
conventional static analysis based on

two observations.

First, in the analysis of each statement,
only a small subset of the state is
actually used.

For example, only the value of x is
necessary to analyze the first
statement.

—
[—
Cx=x+l)
S =

So, in sparse analysis, we keep x here
and remove other values.

X In this way, at each program point,
sparse analysis stores only the values
that will be used in the analysis.

Y I
v {

N <ot

o

N <o

The second observation is that the

semantic dependencies among
statements are usually sparse.

For example, the value of x in the first
statement is not used at the next
statement but used at the third
statement.

i

tx=x+|)

(y=y-1)

N X

mm

T

(=x

<<

-

(v=y)

N <o e

]

ret *a+*b)
|

- \ﬁ)

So, sparse analysis propagates the value
directly to the use point.

<<

N <ot

Similarly, other values are also
propagated along semantic
dependencies of the program.

<~

N <ot

i<

These two “localizations” significantly
improves the scalability of the non-

sparse analysis.

Exploiting Spartial Sparcity

F*: (L - M) - (L - M¥)

becomes
F"j:iL . (L % Mgparse) % (L % MEpG/I"S@)

sparse

where

Mipame = {M* € M | dom(M*) = Access®(1),1 e LYU {L}.

| Variables used at label !
{ of the input program |

Exploiting Temporal Sparcity

Need the def-use chain information as follows.

@ we streamline the abstract one-step relation
(1, MP) <! (', M%) for I € next!(l, MY).

so that the link <—¥ should follow the def-use chain:

> from (def) a label where a location is defined
> to (use) a label where the defined location is read

Precision-Preserving Sparse Analysis

Goal
Fi:.Df - Dt B Bl : DE = D

still
IfpF? = prFShpa,,aSe

Step |: Estimating Accessed Variables at Each Label

Need to safely estimate
Access®(1).

Use yet another sound static analysis, a futher abstraction:

(L — M* C) &= (M, Cyy)

(a “flow-insensitive” version of the “flow-sensitive” analysis design)

| Flow-insensitive pointer analysis will be |
| introduced in the upcoming lectures |

Step 2: Computing Def-Use Information

@ Let
D : L — p(X) and U* : L — p(X)

be the def and use sets from the original analysis.
o Need to safely estimate D? and U*.
@ Use yet another sound static analysis to compute

D! and U?

pre pre

such that
» VieL:D! (1) DD¥1) and UE._ (1) D U*).

pre pre

» VieL: U} (1) 2 DE (1)\ D).

pre

Def and Use Sets

D (0) = {x}
U#(0) = {x)
DH(1) = {y)
U(1) = {y}
DH(2) = {2}
U¥(2) = {}
D (3) = (v}
U(3) = {y}
DH(4) = {}

U*(4) = {a,b,v, 2}

*Assume a and b pointto z and v

Step 3:Analysis with Def-Use Chains

e Def-use chain: Label a to label b is a def-use chain
for a variable x whenever x is defined at a and used at

b, and x is not re-defined in-between a and b.

® The resulting sparse analysis with safe def-use chains has
the same precision as the original non-sparse analysis.

Need for the Second Condition for szie and UV pre

| vieL: Ugre(l) DDfm . | / \

a C b
n € D*(a) n ¢ D*(c) n € UH(b)

(d) Original analysis def-use edge for n

a C b
o o o
7 € Diye(a) 1 € Dpre(c) 1 € Upre(b)

(e) Missing def-use edge (a to b) for 1 because of over-
approximate D%, (c)

a C b
o o o
7 € Diye(a) 1 € Dpre(c) 1 € Upre(b)

1 € Upre(c)

(f) Recovered def-use edge (a to b via c) for n by safe UZ,..(c)

