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Goal of This Lecture

• Learn advanced techniques for more precise and 
efficient analysis



Combination of Multiple Abstractions

• Verifying a program often requires reason over multiple 
kinds of properties.

• We can construct abstract domains that can handle such 
cases. 



Combination of Multiple Abstractions

• Suppose we have two abstract domains  with 
concretization function 

• The product abstraction is defined by 

•

• Concretization function: 
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expressed with basic decision trees of the form below, where C0 and C1 are basic numerical
constraints:

if b contains true then numerical condition C0 holds
otherwise then numerical condition C1 holds

Such predicates can be encoded as decision trees over program variables (Blanchet et al.,
2003), with techniques similar as in binary decision diagrams (BDDs), except that leaves
store numerical abstract constraints (such as C0 and C1 in the above example) instead of
boolean values true and false.
Example 5.2 (Relational boolean abstraction) The abstract decision tree shown in Figure 5.1(c)
characterizes precisely the set of reachable states shown in Figure 5.1(b), of the program of Fig-
ure 5.1(a): when b0 is equal to true, then x0 is strictly negative, and when b0 is positive, then x0 is
positive or null. Nonetheless, the analysis algorithms that are required to achieve these results are
more complex than those shown in Chapter 3, as the domain is relational.

5.1.2 Describing Conjunctive Properties
Verifying a program often requires to use conjunctive predicates, that is logical predicates
that correspond to the conjunction of several basic predicates. We consider here the con-
struction of abstract domains that can handle such cases.

Construction of a Domain for Conjunctions. More precisely, we assume that two ab-
stract domains A0,A1 describing sets of concrete states are defined together with their
concretization functions g0 : A0 �! P(M),g1 : A1 �! P(M), and we define an abstract
domain that describes logical predicates that correspond to the conjunction of a predicate
described in A0 and a predicate described in A1. Since the most intuitive way to define a
logical predicate P0 ^ P1 (where ^ denotes logical conjunction) is to build a pair made of
a description of P0 and of a description of P1, this domain of conjunctive properties boil
down to a product abstract domain:
Definition 5.1 (Product domain) The product abstraction is defined by:

• the abstract domain g⇥ = A0 ⇥A1 that collects the pairs made of an element of A0 and of an
element of A1;

• the concretization function g⇥ defined by:

8(a0,a1) 2 A⇥, g⇥(a0,a1) = g0(a0) \ g1(a1)

This definition matches the intuition of the conjunctive abstractions, since an abstract value
(a0,a1) denotes the set of concrete states that satisfy both the property denoted by a0
and the property denoted by a1. Furthermore, we note that it generalizes seamlessly to
conjunction made of more than two properties. The machine representation of product
abstract domains usually relies on record types. In fact, we have already manipulated
conjunctive properties, hence products in the previous chapters, even though we did not
stress this fact at that point:
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A⇥ = A0 ⇥ A1
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Combination of Multiple Abstractions

• Two abstract domains can characterize distinct kinds of 
properties. 

• E.g.,  ,  

• Abstract value ([0, 100], Even) describes even 

values between 0 and 100.  
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A1 : parity domain



Synergistic Combination of Multiple Abstractions

• Multiple abstract domains may exchange information to 
derive stronger properties. 

• e.g., Abstract value  

                         ([1,5], Even)  

is concretized to {2,4}.  

The most precise abstract information is  

                         ([2,4], Even)



Reduced Product

• The reduced product of abstract domains  is the 

set  of equivalence classes of  for the relation 

 defined by  

 

          

• e.g., ([1,5], Even) ≡ ([2,4], Even)
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Example 5.3 (Non relational domain as a product domain) Let us assume concrete states are
stores with two variables x,y (thus, a concrete state is essentially a point in the two-dimensional
space, as in Chapter 2). We consider a non relational abstraction introduced in Definition 3.7, e.g.,
intervals. Then, an abstract state defines an interval for x and an interval for y. This corresponds to
an instance of a product abstraction, where A0 characterizes the values that x may take and A1 does
the same for y.

Obviously, product abstractions are also very interesting when the two domains charac-
terize the same variables with distinct kinds of predicates:
Example 5.4 (Product of two numerical abstract domains) Let us assume that a concrete state
is a store with a single variable i (i.e., a concrete state is characterized by a single value, and the
non relational abstraction coincides with the value abstraction). Moreover, we let A0 denote the
abstract domain of intervals (presented in Example 3.7) and that A1 denote the abstract domain of
congruences (Example 3.8). Then, the product domain A0 ⇥A1 lets an abstract value pack both a
range constraint, and a congruence constraint. For instance, abstract state ([0,100],(0,2)) describes
sets of even values that are between 0 and 100. Low level programs often manipulate pointers,
with range and alignment constraints, and this product abstraction provides the right information to
characterize such values.

Product domain, precision and reduced product. The basic product abstraction of Defi-
nition 5.1 is not sufficient to effectively let both sides of the conjunction cooperate, that is,
exchange information so as to derive stronger properties. To show this, we use the same
set up as in Example 5.4, and consider the combination of the interval constraint [1,3] and
of the congruence constraint (0,2) that describes even numbers: then, the real concretiza-
tion is {2}, so that the most precise abstract information is defined by interval [2,2], and
by congruence (2,0) (that describes constant 2). This information refinement operation is
called a reduction (Cousot and Cousot, 1979). It proceeds by merging equivalent abstract
information into their best representation:
Definition 5.2 (Reduced product) With the same notations as in Definition 5.1, the reduced prod-
uct (Cousot and Cousot, 1979) of abstract domains A0 and A1 is defined by the set A./ of equivalence
classes of A0 ⇥A1 for the relation ⌘ defined by:

(a0,a1)⌘ (a00,a
0
1) () g⇥(a0,a1) = g⇥(a00,a01)

The concretization function of the reduced product is defined by g⇥, on the equivalence classes of ⌘.

Before we comment on the application of this definition in static analysis, we consider how
it works out on our two examples of product domains:
Example 5.5 (Coalescent product and non relational abstraction) We consider the issue of re-
duction in the case of Example 5.3. For the sake of simplicity, we assume that X = {x,y} and the
abstract domain of intervals is used (an abstract value maps each variable to an interval). First, we
search which abstract values require reduction. When an abstract state maps both x and y to non
empty intervals, it describes exactly the set of concrete states that satisfy these range constraints,
thus there exists no other abstract state in the same equivalence relation for ⌘, and it needs no re-
duction. On the other hand, if s ] is an element of the non relational abstract domain that maps x
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Reduction Operator
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representation.



Reduction Operator

• Optimal reduction operator ( ) is often very 
expensive. 

• In practice, a sound but approximate reduction 
operation ( ) is often preferable. 

• Reduction is typically performed only at specific points 
where it is known that it can provide a useful precision 
gain. 

<latexit sha1_base64="9SrITvLRJdvo4lBLsM7qMx/1JQ0=">AAAB/XicbVBNS8NAEN3Ur1q/4sfNy2IRPJVERD0WvXisYGuhCWWy3bRLdzdhdyPUUPwrXjwo4tX/4c1/47bNQVsfDDzem2FmXpRypo3nfTulpeWV1bXyemVjc2t7x93da+kkU4Q2ScIT1Y5AU84kbRpmOG2nioKIOL2PhtcT//6BKs0SeWdGKQ0F9CWLGQFjpa57EABPB4ADwhTBQR+EANx1q17NmwIvEr8gVVSg0XW/gl5CMkGlIRy07vheasIclGGE03ElyDRNgQyhTzuWShBUh/n0+jE+tkoPx4myJQ2eqr8nchBaj0RkOwWYgZ73JuJ/Xicz8WWYM5lmhkoyWxRnHJsET6LAPaYoMXxkCRDF7K2YDEABMTawig3Bn395kbROa/55zb89q9avijjK6BAdoRPkowtURzeogZqIoEf0jF7Rm/PkvDjvzsesteQUM/voD5zPH3jblJc=</latexit>↵ � �

<latexit sha1_base64="lNMfo1kQHLCMfEzIR25baactSAE=">AAACDXicbVC7SgNBFJ31GeMramkzGAWrsCuilkEbywjmAdkQ7k5uskNmdjczs0JY8gM2/oqNhSK29nb+jZNHoYkHLpw5517m3hMkgmvjut/O0vLK6tp6biO/ubW9s1vY26/pOFUMqywWsWoEoFHwCKuGG4GNRCHIQGA96N+M/foDKs3j6N4ME2xJ6EW8yxkYK7ULxz6IJATqM64Y9XsgpX3ogU4DjQYH1Fdh3C4U3ZI7AV0k3owUyQyVduHL78QslRgZJkDrpucmppWBMpwJHOX9VGMCrA89bFoagUTdyibXjOiJVTq0GytbkaET9fdEBlLroQxspwQT6nlvLP7nNVPTvWplPEpSgxGbftRNBTUxHUdDO1whM2JoCTDF7a6UhaCAGRtg3obgzZ+8SGpnJe+i5N2dF8vXszhy5JAckVPikUtSJrekQqqEkUfyTF7Jm/PkvDjvzse0dcmZzRyQP3A+fwAzvpuo</latexit>

↵ � � v ⇢



Advanced Iteration Techniques

• Loop invariant inference: sequences of abstract iterates

• Computes weaker and weaker abstract states until 
stabilization, hence a common source of imprecision 
(e.g., widening)

• There are various techniques to improve the precision 
of the static analysis of loops. 
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5.2 Advanced Iteration techniques

We have observed in Chapter 2, in Chapter 3 and in Chapter 4 that the inference of loop
invariants involves the computation of sequences of abstract iterates. This process com-
putes weaker and weaker abstract states until stabilization, hence it is a common source of
imprecision. There exist many techniques to improve the precision of the static analysis of
loops. We study some of them in the following paragraphs, after we recall a basic setup
for the analysis of a loop (B ){C }:

• we let B designate the loop condition and C denote the body of the loop;
• we assume a concrete function F from sets of states to sets of states accounts for the

effect of the condition on loop entry followed by the body of the loop (as shown in
Chapter 3, F = JC KP �FB );

• we assume an abstract function F] over-approximates F in the sense that F �g ✓ g �F],
and that M] is an abstract pre-condition for the loop;

• we note G the function defined by G(X) = g(M]) [ F(X);
• then, the analysis needs to compute an over-approximation for the join of the iterates

of G, which is also its least fixpoint (the notion of least fixpoint will be used in Sec-
tion 5.2.3, but not in Section 5.2.1, Section 5.2.2):

Mloop =
[

i�0
Fi(g(M])) = lfp G

• to achieve this, we proposed to use a widening operator O and to compute the converg-
ing sequence of abstract iterates defined by:

M]
0 = M]

M]
k+1 = M]

k O F](M]
k)

• we let G] denote the function defined by G](X) =M] t] F](X) (which is thus also such
that G� g ✓ g �G]);

• we note M]
lim for the limit of this sequence, that is reached after finitely many iterates,

and the analysis returns the sound loop post-condition F
]
¬B (M

]
lim).

Moreover, we use the language of Chapter 3 and the interval abstract domains, but all
techniques discussed in the following would apply to other setups as well.

• Concrete semantic function: 

• Sound abstract semantic function: 

• : abstract pre-condition for the loop

• Semantics of the loop:  

                    
where 
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Review: Static Analysis of Loops

• To ensure termination of the analysis, we use widening. To 
compute the converging sequence 
 

                       

•  : the limit of the sequence (after finitely many iterates)

• The analysis returns the sound loop post-condition 

 

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 April 13, 2021 9:18am

5.2 Advanced Iteration techniques 127

in Figure 5.2:

the “true” branch was executed =) x0 2 [1,+•)

^ the “false” branch was executed =) x0 2 (�•,0]

5.2 Advanced Iteration techniques

We have observed in Chapter 2, in Chapter 3 and in Chapter 4 that the inference of loop
invariants involves the computation of sequences of abstract iterates. This process com-
putes weaker and weaker abstract states until stabilization, hence it is a common source of
imprecision. There exist many techniques to improve the precision of the static analysis of
loops. We study some of them in the following paragraphs, after we recall a basic setup
for the analysis of a loop (B ){C }:

• we let B designate the loop condition and C denote the body of the loop;
• we assume a concrete function F from sets of states to sets of states accounts for the

effect of the condition on loop entry followed by the body of the loop (as shown in
Chapter 3, F = JC KP �FB );

• we assume an abstract function F] over-approximates F in the sense that F �g ✓ g �F],
and that M] is an abstract pre-condition for the loop;

• we note G the function defined by G(X) = g(M]) [ F(X);
• then, the analysis needs to compute an over-approximation for the join of the iterates

of G, which is also its least fixpoint (the notion of least fixpoint will be used in Sec-
tion 5.2.3, but not in Section 5.2.1, Section 5.2.2):

Mloop =
[

i�0
Fi(g(M])) = lfp G

• to achieve this, we proposed to use a widening operator O and to compute the converg-
ing sequence of abstract iterates defined by:

M]
0 = M]

M]
k+1 = M]

k O F](M]
k)

• we let G] denote the function defined by G](X) =M] t] F](X) (which is thus also such
that G� g ✓ g �G]);

• we note M]
lim for the limit of this sequence, that is reached after finitely many iterates,

and the analysis returns the sound loop post-condition F
]
¬B (M

]
lim).

Moreover, we use the language of Chapter 3 and the interval abstract domains, but all
techniques discussed in the following would apply to other setups as well.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 April 13, 2021 9:18am

5.2 Advanced Iteration techniques 127

in Figure 5.2:

the “true” branch was executed =) x0 2 [1,+•)

^ the “false” branch was executed =) x0 2 (�•,0]

5.2 Advanced Iteration techniques

We have observed in Chapter 2, in Chapter 3 and in Chapter 4 that the inference of loop
invariants involves the computation of sequences of abstract iterates. This process com-
putes weaker and weaker abstract states until stabilization, hence it is a common source of
imprecision. There exist many techniques to improve the precision of the static analysis of
loops. We study some of them in the following paragraphs, after we recall a basic setup
for the analysis of a loop (B ){C }:

• we let B designate the loop condition and C denote the body of the loop;
• we assume a concrete function F from sets of states to sets of states accounts for the

effect of the condition on loop entry followed by the body of the loop (as shown in
Chapter 3, F = JC KP �FB );

• we assume an abstract function F] over-approximates F in the sense that F �g ✓ g �F],
and that M] is an abstract pre-condition for the loop;

• we note G the function defined by G(X) = g(M]) [ F(X);
• then, the analysis needs to compute an over-approximation for the join of the iterates

of G, which is also its least fixpoint (the notion of least fixpoint will be used in Sec-
tion 5.2.3, but not in Section 5.2.1, Section 5.2.2):

Mloop =
[

i�0
Fi(g(M])) = lfp G

• to achieve this, we proposed to use a widening operator O and to compute the converg-
ing sequence of abstract iterates defined by:

M]
0 = M]

M]
k+1 = M]

k O F](M]
k)

• we let G] denote the function defined by G](X) =M] t] F](X) (which is thus also such
that G� g ✓ g �G]);

• we note M]
lim for the limit of this sequence, that is reached after finitely many iterates,

and the analysis returns the sound loop post-condition F
]
¬B (M

]
lim).

Moreover, we use the language of Chapter 3 and the interval abstract domains, but all
techniques discussed in the following would apply to other setups as well.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 April 13, 2021 9:18am

5.2 Advanced Iteration techniques 127

in Figure 5.2:

the “true” branch was executed =) x0 2 [1,+•)

^ the “false” branch was executed =) x0 2 (�•,0]

5.2 Advanced Iteration techniques

We have observed in Chapter 2, in Chapter 3 and in Chapter 4 that the inference of loop
invariants involves the computation of sequences of abstract iterates. This process com-
putes weaker and weaker abstract states until stabilization, hence it is a common source of
imprecision. There exist many techniques to improve the precision of the static analysis of
loops. We study some of them in the following paragraphs, after we recall a basic setup
for the analysis of a loop (B ){C }:

• we let B designate the loop condition and C denote the body of the loop;
• we assume a concrete function F from sets of states to sets of states accounts for the

effect of the condition on loop entry followed by the body of the loop (as shown in
Chapter 3, F = JC KP �FB );

• we assume an abstract function F] over-approximates F in the sense that F �g ✓ g �F],
and that M] is an abstract pre-condition for the loop;

• we note G the function defined by G(X) = g(M]) [ F(X);
• then, the analysis needs to compute an over-approximation for the join of the iterates

of G, which is also its least fixpoint (the notion of least fixpoint will be used in Sec-
tion 5.2.3, but not in Section 5.2.1, Section 5.2.2):

Mloop =
[

i�0
Fi(g(M])) = lfp G

• to achieve this, we proposed to use a widening operator O and to compute the converg-
ing sequence of abstract iterates defined by:

M]
0 = M]

M]
k+1 = M]

k O F](M]
k)

• we let G] denote the function defined by G](X) =M] t] F](X) (which is thus also such
that G� g ✓ g �G]);

• we note M]
lim for the limit of this sequence, that is reached after finitely many iterates,

and the analysis returns the sound loop post-condition F
]
¬B (M

]
lim).

Moreover, we use the language of Chapter 3 and the interval abstract domains, but all
techniques discussed in the following would apply to other setups as well.



Techniques for Improving Precision of Analysis of Loops

• Loop unrolling

• Delayed widening

• Widening with thresholds



Loop Unrolling

• Motivation: hasty join

8. Advanced Iteration Techniques IS593 / KAIST Kihong Heo / 18

Problem 2: Hasty Join

• The abstract value for x with a naive approach would be [-∞, +∞]


• Idea: detach the first iteration from the rest

11

x = ?; // any value 
i = 1; 
while (i > 0) { 
  if(x < 0 || x > 1000) { 
    x = 0; 
  } else { 
    x = x + 1; 
  } 
  input(i); 
} 
// actually, x is in [0, 1001]

Initialization step



Loop Unrolling

8. Advanced Iteration Techniques IS593 / KAIST Kihong Heo / 18

Solution: Loop Unrolling

12

x = ?; // any value 
i = 1; 
while (i > 0) { 
  if(x < 0 || x > 1000) { 
    x = 0; 
  } else { 
    x = 1 + x; 
  } 
  input(i); 
} 
// actually, x is in [0, 1001]

x = ?; // any value 
i = 1; 
if(x < 0 || x > 1000) { 
  x = 0; 
} else { 
  x = 1 + x; 
} 
input(i); 
// x is in [0, 1001] 
while (i > 0) { 
  if(x < 0 || x > 1000) { 
    x = 0; 
  } else { 
    x = 1 + x; 
  } 
  input(i); 
} 
// x is in [0, 1001]

}

}
first iter.

rest



Loop Unrolling

• The previous sequence for the loop  

                  

• With loop unrolling 

                   

and the analysis returns  
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putes weaker and weaker abstract states until stabilization, hence it is a common source of
imprecision. There exist many techniques to improve the precision of the static analysis of
loops. We study some of them in the following paragraphs, after we recall a basic setup
for the analysis of a loop (B ){C }:

• we let B designate the loop condition and C denote the body of the loop;
• we assume a concrete function F from sets of states to sets of states accounts for the

effect of the condition on loop entry followed by the body of the loop (as shown in
Chapter 3, F = JC KP �FB );

• we assume an abstract function F] over-approximates F in the sense that F �g ✓ g �F],
and that M] is an abstract pre-condition for the loop;

• we note G the function defined by G(X) = g(M]) [ F(X);
• then, the analysis needs to compute an over-approximation for the join of the iterates

of G, which is also its least fixpoint (the notion of least fixpoint will be used in Sec-
tion 5.2.3, but not in Section 5.2.1, Section 5.2.2):

Mloop =
[

i�0
Fi(g(M])) = lfp G

• to achieve this, we proposed to use a widening operator O and to compute the converg-
ing sequence of abstract iterates defined by:

M]
0 = M]

M]
k+1 = M]

k O F](M]
k)

• we let G] denote the function defined by G](X) =M] t] F](X) (which is thus also such
that G� g ✓ g �G]);

• we note M]
lim for the limit of this sequence, that is reached after finitely many iterates,

and the analysis returns the sound loop post-condition F
]
¬B (M

]
lim).

Moreover, we use the language of Chapter 3 and the interval abstract domains, but all
techniques discussed in the following would apply to other setups as well.
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out, and analyze it separately from the subsequent iterations. The program of Figure 5.3(b)
captures this intuition. While x is still assumed uninitialized at the beginning, the most
precise range constraint over x at the loop head is indeed [0,1001], and it allows to derive
the precise post-condition mentioned above.

The principle of loop unrolling (Blanchet et al., 2003) is to delay the application of
abstract unions during the analysis of programs as the one in Figure 5.3(a). The delay may
affect one iteration or more. We now formalize this intuition with the notations recalled
at the beginning of Section 5.2. The analysis unrolling the N first iterations of the loop
computes the following sequence :

M]
0 = M]

M]
k+1 =

(
F](M]

k) if k < N
M]

k O F](M]
k) otherwise

Once this sequence reaches a limit M]
lim, it returns:

F
]
¬B (M

]
0) t

] . . . t]
F

]
¬B (M

]
N�1) t

]
F

]
¬B (M

]
lim)

This approach delays join, hence the loss of precision that it may induce. In particular, if
we consider Figure 5.3(a) and let N = 1, it effectively avoids to merge the first iteration
states with the states observed later, hence, it allows to compute range [0,1001] for x.

5.2.2 Fixpoint Approximation with More Precise Widening Iteration
We now discuss a few techniques related to the computation of widening sequences. In-
deed, we observed in Chapter 3 that widening enforces convergence at the cost of a signif-
icant loss of precision. However, in many cases, this loss of precision can be significantly
reduced, as the next paragraph show, based on a couple of contrived but representative
examples.

Delaying widening with union. Let us first consider the program shown in Figure 5.4(a).
We write () for an expression that returns a random value (it would be trivial to
simulate it in the language of Section 3.1 using an command and an additional
variable). In this example, the variable x ranges in [�1,+•) since it starts at 0, may be set
to �1 at any time, and it may take arbitrarily high values. A widening sequence following
the definitions of Chapter 3 would produce the result below:

• before entering the loop, the range for x is [0,0];
• at the exit of the first iteration, x is in [�1,2], thus the first iterate is [0,0] O [�1,2] =
>; at this stage, the abstract iteration obviously terminates, since it reached the most
imprecise possible result.

The issue is that the first iteration causes x to take various new values thus weakening the
previous [0,0] in both directions. The standard widening presented in Chapter 3 produces

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 April 13, 2021 9:18am

5.2 Advanced Iteration techniques 127

in Figure 5.2:

the “true” branch was executed =) x0 2 [1,+•)

^ the “false” branch was executed =) x0 2 (�•,0]

5.2 Advanced Iteration techniques

We have observed in Chapter 2, in Chapter 3 and in Chapter 4 that the inference of loop
invariants involves the computation of sequences of abstract iterates. This process com-
putes weaker and weaker abstract states until stabilization, hence it is a common source of
imprecision. There exist many techniques to improve the precision of the static analysis of
loops. We study some of them in the following paragraphs, after we recall a basic setup
for the analysis of a loop (B ){C }:

• we let B designate the loop condition and C denote the body of the loop;
• we assume a concrete function F from sets of states to sets of states accounts for the

effect of the condition on loop entry followed by the body of the loop (as shown in
Chapter 3, F = JC KP �FB );

• we assume an abstract function F] over-approximates F in the sense that F �g ✓ g �F],
and that M] is an abstract pre-condition for the loop;

• we note G the function defined by G(X) = g(M]) [ F(X);
• then, the analysis needs to compute an over-approximation for the join of the iterates

of G, which is also its least fixpoint (the notion of least fixpoint will be used in Sec-
tion 5.2.3, but not in Section 5.2.1, Section 5.2.2):

Mloop =
[

i�0
Fi(g(M])) = lfp G

• to achieve this, we proposed to use a widening operator O and to compute the converg-
ing sequence of abstract iterates defined by:

M]
0 = M]

M]
k+1 = M]

k O F](M]
k)

• we let G] denote the function defined by G](X) =M] t] F](X) (which is thus also such
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Delayed Widening

• Motivation: hasty widening
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Problem 3: Hasty Widening

• The abstract value of x with a naive approach would be [-∞, +∞]


• Idea: delay the application of widening for the first N iterations

13

x = 0; 
while (rand()) { 
  if(rand()) { 
    x = -1; 
  } else { 
    x = x + 2; 
  } 
} 
// x >= -1 

5

<latexit sha1_base64="yTMTYQ7v1Vma+T5HYJRFLk1G7io=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0WPRi8cK9gPaUDabTbt0sxt2N5US+k+8eFDEq//Em//GbZuDtj4YeLw3w8y8MOVMG8/7dkpr6xubW+Xtys7u3v6Be3jU0jJThDaJ5FJ1QqwpZ4I2DTOcdlJFcRJy2g5HdzO/PaZKMykezSSlQYIHgsWMYGOlvuv2QjYwimEx4DSST1aqejVvDrRK/IJUoUCj7371IkmyhApDONa663upCXKsDCOcTiu9TNMUkxEe0K6lAidUB/n88ik6s0qEYqlsCYPm6u+JHCdaT5LQdibYDPWyNxP/87qZiW+CnIk0M1SQxaI448hINIsBRUxRYvjEEkwUs7ciMsQKE2PDqtgQ/OWXV0nrouZf1q4eLqv12yKOMpzAKZyDD9dQh3toQBMIjOEZXuHNyZ0X5935WLSWnGLmGP7A+fwBCtWT7w==</latexit>

x [0,0] x [-1,2] = x [-∞,+∞]



Delayed Widening
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Solution: Delayed Widening

14

x = 0; 
while (rand()) { 
  if(rand()) { 
    x = -1; 
  } else { 
    x = x + 2; 
  } 
} 
// x >= -1 

5

<latexit sha1_base64="yTMTYQ7v1Vma+T5HYJRFLk1G7io=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0WPRi8cK9gPaUDabTbt0sxt2N5US+k+8eFDEq//Em//GbZuDtj4YeLw3w8y8MOVMG8/7dkpr6xubW+Xtys7u3v6Be3jU0jJThDaJ5FJ1QqwpZ4I2DTOcdlJFcRJy2g5HdzO/PaZKMykezSSlQYIHgsWMYGOlvuv2QjYwimEx4DSST1aqejVvDrRK/IJUoUCj7371IkmyhApDONa663upCXKsDCOcTiu9TNMUkxEe0K6lAidUB/n88ik6s0qEYqlsCYPm6u+JHCdaT5LQdibYDPWyNxP/87qZiW+CnIk0M1SQxaI448hINIsBRUxRYvjEEkwUs7ciMsQKE2PDqtgQ/OWXV0nrouZf1q4eLqv12yKOMpzAKZyDD9dQh3toQBMIjOEZXuHNyZ0X5935WLSWnGLmGP7A+fwBCtWT7w==</latexit>

x [0,0] x [-1,2] = x [-1,2]

x [-1,2] x [-1,4] x [-1,+∞]=

Delayed widening where N = 1

5

<latexit sha1_base64="yTMTYQ7v1Vma+T5HYJRFLk1G7io=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0WPRi8cK9gPaUDabTbt0sxt2N5US+k+8eFDEq//Em//GbZuDtj4YeLw3w8y8MOVMG8/7dkpr6xubW+Xtys7u3v6Be3jU0jJThDaJ5FJ1QqwpZ4I2DTOcdlJFcRJy2g5HdzO/PaZKMykezSSlQYIHgsWMYGOlvuv2QjYwimEx4DSST1aqejVvDrRK/IJUoUCj7371IkmyhApDONa663upCXKsDCOcTiu9TNMUkxEe0K6lAidUB/n88ik6s0qEYqlsCYPm6u+JHCdaT5LQdibYDPWyNxP/87qZiW+CnIk0M1SQxaI448hINIsBRUxRYvjEEkwUs7ciMsQKE2PDqtgQ/OWXV0nrouZf1q4eLqv12yKOMpzAKZyDD9dQh3toQBMIjOEZXuHNyZ0X5935WLSWnGLmGP7A+fwBCtWT7w==</latexit>

x [-1,+∞] x [-1,+∞] x [-1,+∞]=

Fixed Point!

t

<latexit sha1_base64="pQsF63GH9+si+JneoF1kb8wCxiY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48VTFtoQ9lsN+3SzWbd3Qgl9Ed48aCIV3+PN/+NmzYHbX0w8Hhvhpl5oeRMG9f9dkpr6xubW+Xtys7u3v5B9fCorZNUEeqThCeqG2JNORPUN8xw2pWK4jjktBNObnO/80SVZol4MFNJgxiPBIsYwcZKnb5+JKmsDKo1t+7OgVaJV5AaFGgNql/9YULSmApDONa657nSBBlWhhFOZ5V+qqnEZIJHtGepwDHVQTY/d4bOrDJEUaJsCYPm6u+JDMdaT+PQdsbYjPWyl4v/eb3URNdBxoRMDRVksShKOTIJyn9HQ6YoMXxqCSaK2VsRGWOFibEJ5SF4yy+vkvZF3WvUL+8bteZNEUcZTuAUzsGDK2jCHbTABwITeIZXeHOk8+K8Ox+L1pJTzBzDHzifP/6Zj1o=</latexit>



Delayed Widening

• The sequence with delayed widening:  
 

            

• Loop unrolling: postpones join first N iterations

• Delayed widening: postpones widening first N iterations
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x := 0;
( ()){

( ()){
x :=�1

} {
x := x+2

}
}

(a)

x := 0;
(x 100){

(x� 50){
x := 10

} {
x := x+1

}
}

(b)

Figure 5.4
Basic loop examples where analysis can be improved using basic widening techniques

rather coarse results in such a case. While widening the right bound to +• provides the
desired result, it is not acceptable to widen the left bound to �•.

An alternate approach is to delay the application of widening (Blanchet et al., 2003).
This could be done by loop unrolling as in Section 5.2.1, but loop unrolling is not really
necessary here as the first iteration in the loop body is not any different from the subsequent
ones. A middle ground solution consists in using regular abstract union t] for the first N
iterations in the loop. This way, the results of the N first iterations are likely more precise
than if widening was used. This amounts to computing the following iteration sequence:

M]
0 = M]

M]
k+1 = M]

k t
] F](M]

k) if k  N
M]

k+1 = M]
k O F](M]

k) if k > N

The soundness of the result of this iteration sequence can be justified in the same way as
in Section 3.3.3.

It is also possible to unroll the N first iterations (as done in Section 5.2.1), and then to
apply t] instead of O for the next N0 iterations. Note that both techniques are different:
unrolling completely postpones join until after the loop invariant computation whereas
using abstract join for the first abstract iterations allows to initiate the abstract convergence
(though using a slower and more precise operation than O).



Widening with Thresholds

• Motivation: the standard widening is too conservative!
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Problem 4: Excessive Widening

• The abstract value of x with a naive approach is [0, +∞]


• Idea: use a slower and more precise widening

15

x = 0; 
while (x <= 100) { 
  if(x >= 50) { 
    x = 10; 
  } else { 
    x = x + 1; 
  } 
} 
// actually, x is in [0, 50]

5

<latexit sha1_base64="yTMTYQ7v1Vma+T5HYJRFLk1G7io=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0WPRi8cK9gPaUDabTbt0sxt2N5US+k+8eFDEq//Em//GbZuDtj4YeLw3w8y8MOVMG8/7dkpr6xubW+Xtys7u3v6Be3jU0jJThDaJ5FJ1QqwpZ4I2DTOcdlJFcRJy2g5HdzO/PaZKMykezSSlQYIHgsWMYGOlvuv2QjYwimEx4DSST1aqejVvDrRK/IJUoUCj7371IkmyhApDONa663upCXKsDCOcTiu9TNMUkxEe0K6lAidUB/n88ik6s0qEYqlsCYPm6u+JHCdaT5LQdibYDPWyNxP/87qZiW+CnIk0M1SQxaI448hINIsBRUxRYvjEEkwUs7ciMsQKE2PDqtgQ/OWXV0nrouZf1q4eLqv12yKOMpzAKZyDD9dQh3toQBMIjOEZXuHNyZ0X5935WLSWnGLmGP7A+fwBCtWT7w==</latexit>

x [0,0] x [0,2] = x [0,+∞]



Widening with Thresholds
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Solution: Widening with Thresholds

• Take several small steps and stops at pre-defined threshold values


• For example, consider only one threshold B:

16

[n, p] O [n, q] =

(
[n, p] if p � q

[n,+1] if p < q

<latexit sha1_base64="az9aajtxx2uDbgx8bIkJoGLeDu8=">AAACZHicbVFNb9QwFHQC/SAtJaXihISeWLVCarVKUBEcQKrgwrFIbFtpHa0c5yW16tip7QCraPmR3Dhy4Xfg7OYAXZ5kaTwzz88e540U1iXJzyC8d39jc2v7QbSz+3DvUbz/+MLq1nCccC21ucqZRSkUTpxwEq8ag6zOJV7mNx96/fILGiu0+uzmDWY1q5QoBWfOU7O4m6oTaDL4DtQZwVQlsdBfld/3wm0G7yKaYyVUx/0Uu4g87e1HQOtcf+tECQtogFYIt0Bprx5ToUo3X/O8XTkoqmI4axaPknGyLFgH6QBGZKjzWfyDFpq3NSrHJbN2miaNyzpmnOASFxFtLTaM37AKpx4qVqPNumVICzj0TAGlNn4pB0v2746O1dbO69w7a+au7V2tJ/+nTVtXvsk6oZrWoeKrQWUrwWnoE4dCGOROzj1g3Ah/V+DXzDDu/L9EPoT07pPXwcXLcXo6fvXpdHT2fohjmzwlz8kLkpLX5Ix8JOdkQjj5FWwFcbAf/A53w4PwycoaBkPPAfmnwmd/AAsrs9M=</latexit>

A naive widening operator

[n, p] O [n, q] =

8
><

>:

[n, p] if p � q

[n,B] if p < q  B

[n,+1] if B < q

<latexit sha1_base64="x7UOkFmOMVTVyh3nLkqt005j0Fk="></latexit>

A widening with thresholds

*only the right bounds, for brevity



Widening with Thresholds
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Widening with Thresholds

17

5

<latexit sha1_base64="yTMTYQ7v1Vma+T5HYJRFLk1G7io=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0WPRi8cK9gPaUDabTbt0sxt2N5US+k+8eFDEq//Em//GbZuDtj4YeLw3w8y8MOVMG8/7dkpr6xubW+Xtys7u3v6Be3jU0jJThDaJ5FJ1QqwpZ4I2DTOcdlJFcRJy2g5HdzO/PaZKMykezSSlQYIHgsWMYGOlvuv2QjYwimEx4DSST1aqejVvDrRK/IJUoUCj7371IkmyhApDONa663upCXKsDCOcTiu9TNMUkxEe0K6lAidUB/n88ik6s0qEYqlsCYPm6u+JHCdaT5LQdibYDPWyNxP/87qZiW+CnIk0M1SQxaI448hINIsBRUxRYvjEEkwUs7ciMsQKE2PDqtgQ/OWXV0nrouZf1q4eLqv12yKOMpzAKZyDD9dQh3toQBMIjOEZXuHNyZ0X5935WLSWnGLmGP7A+fwBCtWT7w==</latexit>

x [0,0] x [0,2] = x [0,50]

x [0,50] x [0,50] x [0,50]=

Thresholds = {50}
x = 0; 
while (x <= 100) { 
  if(x >= 50) { 
    x = 10; 
  } else { 
    x = x + 1; 
  } 
}

5

<latexit sha1_base64="yTMTYQ7v1Vma+T5HYJRFLk1G7io=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0WPRi8cK9gPaUDabTbt0sxt2N5US+k+8eFDEq//Em//GbZuDtj4YeLw3w8y8MOVMG8/7dkpr6xubW+Xtys7u3v6Be3jU0jJThDaJ5FJ1QqwpZ4I2DTOcdlJFcRJy2g5HdzO/PaZKMykezSSlQYIHgsWMYGOlvuv2QjYwimEx4DSST1aqejVvDrRK/IJUoUCj7371IkmyhApDONa663upCXKsDCOcTiu9TNMUkxEe0K6lAidUB/n88ik6s0qEYqlsCYPm6u+JHCdaT5LQdibYDPWyNxP/87qZiW+CnIk0M1SQxaI448hINIsBRUxRYvjEEkwUs7ciMsQKE2PDqtgQ/OWXV0nrouZf1q4eLqv12yKOMpzAKZyDD9dQh3toQBMIjOEZXuHNyZ0X5935WLSWnGLmGP7A+fwBCtWT7w==</latexit>

Fixed Point!

[0,1]



Scalability Challenge

A Technique for Scalability: Sparse Analysis

Scalability Challenge

Figure: Call graph of less-382 (23,822 lines of code)
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The worklist algorithm often does not scale to large complex programs.



Sparse Analysis

• The worklist algorithm is often still not efficient enough 
to analyze large programs. 

• Sparse analysis: exploit the semantic sparsity of the input 
program to analyze

• Spatial sparsity & temporal sparsity 
 
                Right part at right moment



Example Performance Gain by Sparse Analysis
A Technique for Scalability: Sparse Analysis

Example Performance Gain by Sparse Analysis

Sparrow: a “sound”, global C analyzer for the memory safety property
(no overrun, no null-pointer dereference, etc.)

http://github.com/ropas/sparrow

⇠ 10 hours in analyzing million lines of C

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 101 / 130



Spatial Sparcity
A Technique for Scalability: Sparse Analysis

Spatial Sparcity

Each program portion accesses only a small part of the memory.
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Temporal Sparcity
A Technique for Scalability: Sparse Analysis

Temporal Sparcity

After the def of a memory, its use is far.

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 103 / 130



Example
A Technique for Scalability: Sparse Analysis

Example (Code fragment)
x = x + 1;
y = y - 1;
z = x;
v = y;
ret *a + *b

Assume that a points to v and b to z.

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 104 / 130

























Exploiting Spartial Sparcity
A Technique for Scalability: Sparse Analysis

Exploiting Spatial Sparsity: Need Access](l)

“abstract garbage collecition”, “frame rule”

F ] : (L ! M]) ! (L ! M])

becomes
F ]
sparse : (L ! M]

sparse) ! (L ! M]
sparse)

where

M]
sparse = {M ] 2 M] | dom(M ]) = Access](l), l 2 L} [ {?}.

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 106 / 130

Variables used at label   
of the input program

<latexit sha1_base64="RRGEhkm45foh8b6gckV4e/ElqZ0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUEP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo1Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A1gGM9g==</latexit>

l



Exploiting Temporal SparcityA Technique for Scalability: Sparse Analysis

Exploiting Temporal Sparsity: Need Def-Use Chain

Need the def-use chain information as follows.
we streamline the abstract one-step relation

(l,M ]) ,!] (l0,M 0]) for l0 2 next](l,M ]).

so that the link ,!] should follow the def-use chain:
I from (def) a label where a location is defined

I to (use) a label where the defined location is read

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 107 / 130



Precision-Preserving Sparse AnalysisA Technique for Scalability: Sparse Analysis

Precision Preserving Sparse Analysis Framework

Goal

F ] : D] ! D] sparsify
=) F ]

sparse : D] ! D]

lfpF ] still
= lfpF ]

sparse

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 108 / 130



Step 1: Estimating Accessed Variables at Each Label
A Technique for Scalability: Sparse Analysis

Precision Preserving Sparse Analysis: for Spatial Sparsity
(1/3)

Need to safely estimate
Access](l).

Use yet another sound static analysis, a futher abstraction:

(L!M],v) ���! ���↵
�

(M],vM )

(a “flow-insensitive” version of the “flow-sensitive” analysis design)

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 109 / 130

Flow-insensitive pointer analysis will be 
introduced in the upcoming lectures



Step 2: Computing Def-Use Information

A Technique for Scalability: Sparse Analysis

Precision Preserving Sparse Analysis: for Temporal Sparsity
(2/3)

Let
D] : L ! }(X) and U ] : L ! }(X)

be the def and use sets from the original analysis.
Need to safely estimate D] and U ].
Use yet another sound static analysis to compute

D]
pre and U ]

pre

such that
I 8l 2 L : D]

pre(l) ◆ D](l) and U ]
pre(l) ◆ U ](l).

I 8l 2 L : U ]
pre(l) ◆ D]

pre(l) \D](l).
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Example

10

• Def-use chain

*Assume a and b point to z and v

x = x + 1

y = y - 1

z = x

v = y

*a + *b

0

1

2

3

4

D](0) = {x}
U ](0) = {x}

<latexit sha1_base64="n1eG9MtIwJMxf1K+cyu+urPnDSQ=">AAACFnicbVDLSsNAFJ34rPEVdelmsAh1YUmkohuhqAuXFUxbaGKZTCft0MkkzEzEEvIVbvwVNy4UcSvu/Bunj4W2PXDhcM693HtPkDAqlW3/GAuLS8srq4U1c31jc2vb2tmtyzgVmLg4ZrFoBkgSRjlxFVWMNBNBUBQw0gj6V0O/8UCEpDG/U4OE+BHqchpSjJSW2tbx9X3myR4SSV6yj+AF9LJHL/c8052nt62iXbZHgLPEmZAimKDWtr69TozTiHCFGZKy5diJ8jMkFMWM5KaXSpIg3Edd0tKUo4hIPxu9lcNDrXRgGAtdXMGR+nciQ5GUgyjQnRFSPTntDcV5XitV4bmfUZ6kinA8XhSmDKoYDjOCHSoIVmygCcKC6lsh1lEgrHSSpg7BmX55ltRPyk6lfHpbKVYvJ3EUwD44ACXggDNQBTegBlyAwRN4AW/g3Xg2Xo0P43PcumBMZvbAPxhfv4lnnbw=</latexit>

D](1) = {y}
U ](1) = {y}

<latexit sha1_base64="NPlioZbHQ98GR+zrIZP0igOUuEs=">AAACFnicbVDLSsNAFJ3UV42vqEs3g0WoC0siFd0IRV24rGDaQhPLZDpph04ezEyEEPIVbvwVNy4UcSvu/BunbRba9sCFwzn3cu89XsyokKb5o5WWlldW18rr+sbm1vaOsbvXElHCMbFxxCLe8ZAgjIbEllQy0ok5QYHHSNsbXY/99iPhgkbhvUxj4gZoEFKfYiSV1DNObh4yRwwRj/OqdQwvoZOlTu44ur1I7xkVs2ZOAOeJVZAKKNDsGd9OP8JJQEKJGRKia5mxdDPEJcWM5LqTCBIjPEID0lU0RAERbjZ5K4dHSulDP+KqQgkn6t+JDAVCpIGnOgMkh2LWG4uLvG4i/Qs3o2GcSBLi6SI/YVBGcJwR7FNOsGSpIghzqm6FWEWBsFRJ6ioEa/bledI6rVn12tldvdK4KuIogwNwCKrAAuegAW5BE9gAgyfwAt7Au/asvWof2ue0taQVM/vgH7SvX4+9ncA=</latexit>

D](2) = {z}
U ](2) = {x}

<latexit sha1_base64="NxJDapl8/8IXsIXaaNtYp2hs15A=">AAACFnicbVDLSsNAFJ3UV42vqEs3g0WoC0tSKroRirpwWcG0hSaWyXTSDp08mJmINeQr3Pgrblwo4lbc+TdO2yy09cCFwzn3cu89XsyokKb5rRUWFpeWV4qr+tr6xuaWsb3TFFHCMbFxxCLe9pAgjIbEllQy0o45QYHHSMsbXoz91h3hgkbhjRzFxA1QP6Q+xUgqqWscXd6mjhggHmfl6iE8g0764GSOo9tz+r2TdY2SWTEngPPEykkJ5Gh0jS+nF+EkIKHEDAnRscxYuinikmJGMt1JBIkRHqI+6SgaooAIN528lcEDpfSgH3FVoYQT9fdEigIhRoGnOgMkB2LWG4v/eZ1E+qduSsM4kSTE00V+wqCM4Dgj2KOcYMlGiiDMqboVYhUFwlIlqasQrNmX50mzWrFqlePrWql+nsdRBHtgH5SBBU5AHVyBBrABBo/gGbyCN+1Je9HetY9pa0HLZ3bBH2ifP5MHncI=</latexit>

D](3) = {v}
U ](3) = {y}

<latexit sha1_base64="a76vcwjB6yjuez6eM3BtTnJGcF4=">AAACFnicbVDLSsNAFJ34rPEVdelmsAh1YUm0ohuhqAuXFUxbaGKZTCft0MmDmUkhhHyFG3/FjQtF3Io7/8Zpm4W2HrhwOOde7r3HixkV0jS/tYXFpeWV1dKavr6xubVt7Ow2RZRwTGwcsYi3PSQIoyGxJZWMtGNOUOAx0vKG12O/NSJc0Ci8l2lM3AD1Q+pTjKSSusbxzUPmiAHicV45PYKX0MlGTu44uj2np07eNcpm1ZwAzhOrIGVQoNE1vpxehJOAhBIzJETHMmPpZohLihnJdScRJEZ4iPqko2iIAiLcbPJWDg+V0oN+xFWFEk7U3xMZCoRIA091BkgOxKw3Fv/zOon0L9yMhnEiSYini/yEQRnBcUawRznBkqWKIMypuhViFQXCUiWpqxCs2ZfnSfOkatWqZ3e1cv2qiKME9sEBqAALnIM6uAUNYAMMHsEzeAVv2pP2or1rH9PWBa2Y2QN/oH3+AJFHncE=</latexit>

D](4) = {}
U ](4) = {a, b, v, z}

<latexit sha1_base64="n1t0jOPngvSEoU66jkJCzMGQQIc=">AAACHXicbVDLSsNAFJ34rPEVdelmsCgVSkkkohuhqAuXFewDmlgm00k7dPJgZlKoIT/ixl9x40IRF27Ev3HaZqGtBy4czrmXe+/xYkaFNM1vbWFxaXlltbCmr29sbm0bO7sNESUckzqOWMRbHhKE0ZDUJZWMtGJOUOAx0vQGV2O/OSRc0Ci8k6OYuAHqhdSnGEkldQz7+j51RB/xOCvZx/DoAjqpkzmOXp/XUdkrD8sPTtYximbFnADOEysnRZCj1jE+nW6Ek4CEEjMkRNsyY+mmiEuKGcl0JxEkRniAeqStaIgCItx08l0GD5XShX7EVYUSTtTfEykKhBgFnuoMkOyLWW8s/ue1E+mfuykN40SSEE8X+QmDMoLjqGCXcoIlGymCMKfqVohVIghLFaiuQrBmX54njZOKZVdOb+1i9TKPowD2wQEoAQucgSq4ATVQBxg8gmfwCt60J+1Fe9c+pq0LWj6zB/5A+/oBYCCfnQ==</latexit>



Step 3: Analysis with Def-Use Chains

• Def-use chain: Label a to label b is a def-use chain 

for a variable x whenever x is defined at a and used at 

b, and x is not re-defined in-between a and b. 

• The resulting sparse analysis with safe def-use chains has 
the same precision as the original non-sparse analysis. 



Need for the Second Condition for  and 
<latexit sha1_base64="/BskHAOJR9IxMfR64vXi+W+HmJo=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBAfBVZkRUZdFXbisYB8wHUsmzbShmWRIMkIZ+hluXCji1q9x59+YtrPQ1gOBwzn3kHtPlHKmjed9O6WV1bX1jfJmZWt7Z3evun/Q0jJThDaJ5FJ1IqwpZ4I2DTOcdlJFcRJx2o5GN1O//USVZlI8mHFKwwQPBIsZwcZKwe1j1+3lNjFBvarr1bwZ0DLxC+JCgUav+tXtS5IlVBjCsdaB76UmzLEyjHA6qXQzTVNMRnhAA0sFTqgO89nKE3RilT6KpbJPGDRTfydynGg9TiI7mWAz1IveVPzPCzITX4U5E2lmqCDzj+KMIyPR9H7UZ4oSw8eWYKKY3RWRIVaYGNtSxZbgL568TFpnNf+i5t+fu/Xroo4yHMExnIIPl1CHO2hAEwhIeIZXeHOM8+K8Ox/z0ZJTZA7hD5zPH5TBkM0=</latexit>

D#
pre

<latexit sha1_base64="2ddfbohNd3Ig2VjAZnhPgshZbOc=">AAAB8nicbVBNSwMxFHzrZ61fVY9egovgqeyKqMeiF48V3LawXUs2zbah2WRJskJZ+jO8eFDEq7/Gm//GtN2Dtg4Ehpk35L2JM8608bxvZ2V1bX1js7JV3d7Z3duvHRy2tMwVoQGRXKpOjDXlTNDAMMNpJ1MUpzGn7Xh0O/XbT1RpJsWDGWc0SvFAsIQRbKwUBo9dt1fYxAT1aq5X92ZAy8QviQslmr3aV7cvSZ5SYQjHWoe+l5mowMowwumk2s01zTAZ4QENLRU4pToqZitP0KlV+iiRyj5h0Ez9nShwqvU4je1kis1QL3pT8T8vzE1yHRVMZLmhgsw/SnKOjETT+1GfKUoMH1uCiWJ2V0SGWGFibEtVW4K/ePIyaZ3X/cu6f3/hNm7KOipwDCdwBj5cQQPuoAkBEJDwDK/w5hjnxXl3PuajK06ZOYI/cD5/AK8vkN4=</latexit>

U#
pre

A Technique for Scalability: Sparse Analysis

Need for the Second Condition for D]
pre and U ]

pre

⌘ 2 D](a) ⌘ 62 D](c) ⌘ 2 U ](b)

a c b

(d) Original analysis def-use edge for ⌘

⌘ 2 D]
pre(a) ⌘ 2 D]

pre(c) ⌘ 2 U ]
pre(b)

a c b

(e) Missing def-use edge (a to b) for ⌘ because of over-

approximate D]
pre(c)

⌘ 2 D]
pre(a) ⌘ 2 D]

pre(c)
⌘ 2 U ]

pre(c)
⌘ 2 U ]

pre(b)

a c b

(f) Recovered def-use edge (a to b via c) for ⌘ by safe U ]
pre(c)
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A Technique for Scalability: Sparse Analysis

Precision Preserving Sparse Analysis: for Temporal Sparsity
(2/3)

Let
D] : L ! }(X) and U ] : L ! }(X)

be the def and use sets from the original analysis.
Need to safely estimate D] and U ].
Use yet another sound static analysis to compute

D]
pre and U ]

pre

such that
I 8l 2 L : D]

pre(l) ◆ D](l) and U ]
pre(l) ◆ U ](l).

I 8l 2 L : U ]
pre(l) ◆ D]

pre(l) \D](l).
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