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Goal of This Lecture

• How to instantiate abstract interpretation framework 
for languages based on a compositional semantics

• Two instances

• Sign analysis

• Interval analysis 



Language

n 2 V scalar values
x 2 X program variables
� ::= + | � | ⇤ | . . . binary operators
< ::= < |  | == | . . . comparison operators
E ::= scalar expressions

| n scalar constant
| x variable
| E � E binary operation

B ::= boolean expressions
| x < n comparison of a variable with a constant

C ::= commands
| command that ”does nothing”
| C ; C sequence of commands
| x := E assignment command
| (x) command reading of a value
| (B ){C } {C } conditional command
| (B ){C } loop command

Figure 1: Grammar of a simple imperative language
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Step 1: Defining Standard Semantics

• Semantic domains  

                   
     

(Memory) 

                  
                 

(Values = Integers)

• Denotational semantics: 
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3.1 Semantics 63

JE K : M�! V

JnK(s) = n
JxK(s) = s(x)

JE 0 �E 1K(s) = f�(JE 0K(s),JE 1K(s))

Figure 3.2
Semantics of scalar expressions

by the memory state, since its control state is known. As a consequence, in the following,
a state will simply be defined as a memory state.

In our simple language, memory states can be described very simply. Indeed, our simple
language only features a fixed set of variables, which all have the same type (it does not
feature heap allocated regions, structures with multiple fields, and values of different sizes).
Therefore, a memory state boils down to a function s from the (fixed, finite) set of variables
X into the set of values V. Thus, the set of memory states M is defined by:

M def
= X�! V

We write explicit definitions of functions that have a finite domain between double paren-
theses of the form L·M: for instance, if X= {x,y}, we write Lx 7! 7,y 7! 3M for the memory
state that maps x into 7 and y into 3.

In the following paragraphs, we define the way each element of the language gets evalu-
ated. Indeed, to describe the execution of commands, we need to first explain how scalar
and boolean expressions are evaluated.

Semantics of scalar expressions. The evaluation of a scalar expression produces a scalar
value. In the case of a constant n, the result is simply n. In the case of a variable x, the
result is obtained by reading the content of variable x in the current memory state. Last,
the result of the evaluation of an expression composed of an operator applied to two sub-
expressions is obtained by evaluating the sub-expressions and applying to their results the
mathematical function described by the operator. We note f� the function associated to
operator �.

The formalization of this semantics proceeds by induction over the syntax of expressions
and is shown in Figure 3.2. We note JE K(s) the semantics of expression E , evaluated in
the memory state s , so that JE K is a function from memory states to scalar values.

Semantics of boolean expressions. The case of boolean expressions is very similar to
the semantics of scalar expressions, with the only difference that it returns a boolean value.
We note JB K the semantics of a boolean expression B , and define it as a function that inputs
a memory state and returns a boolean value. Its definition is given in Figure 3.3. We note
f< the function associated to a comparison operator <.
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x 2 X program variables
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E ::= scalar expressions
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| x < n comparison of a variable with a constant

C ::= commands
| command that ”does nothing”
| C ; C sequence of commands
| x := E assignment command
| (x) command reading of a value
| (B ){C } {C } conditional command
| (B ){C } loop command

Figure 1: Grammar of a simple imperative language

M def
= X �! V

V def
= Z
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JB K : M�! B

Jx<nK(s) = f<(s(x),n)

Figure 3.3
Semantics of boolean expressions

Semantics of commands. The semantics of a command C is a function noted JC KP that
maps a set of input states into a set of output states, observed after the command. This
choice entails that non terminating executions are not observed at this point: indeed, if an
execution of a command C does not terminate, it does not produce any input state. We note
P(M) the powerset of memory states, and M an element of P(M). The semantics JC KP

is shown in Figure 3.4.
The semantics of the skip command is the identity function. The semantics of a sequence

of commands is the composition of the semantics of each command. The evaluation of an
assignment x := E ; updates the value of x in the memory states with the result produced
by the evaluation of E . The evaluation of (x) replaces the value of variable x with
any possible scalar value.

The evaluation of a conditional command is determined by the result of the condition.
Since our semantics is defined over sets of input states, it should simply filter the states
for which the condition evaluates to true and evaluate the corresponding branch, do the
same for the states for which the condition evaluates to false and return the union of the
two results. The condition expression effectively filters out memory states, thus, for each
boolean expression B , we define a “filtering” function FB :

FB (M) = {s 2 M | JB K(s) = true}

We write ¬B for the negation of boolean expression B . Thus, the set of states that enter
the true (resp., false) branch is defined by FB (M) (resp., F¬B (M)).

The case of loops is more complex and interesting due to unbounded executions. To
determine the set of output states produced by a loop command, we can simply partition
executions based on the number of iterations they spend inside the loop before they exit:
thus, the set of output states is the infinite union of a family of sets M0,M1,Mn, . . ., where
Mi denotes the states produced by program executions that went through the loop body
exactly i times. Intuitively, each of these sets can be described using the same technique
as if we were considering the output of a sequence of conditional commands (where the
condition evaluates to true i times and to false for the last test). Thus, a state is in Mi if
and only if it is in:

Mi = F¬B
⇣
(JC KP �FB )

i (M)
⌘
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by the memory state, since its control state is known. As a consequence, in the following,
a state will simply be defined as a memory state.

In our simple language, memory states can be described very simply. Indeed, our simple
language only features a fixed set of variables, which all have the same type (it does not
feature heap allocated regions, structures with multiple fields, and values of different sizes).
Therefore, a memory state boils down to a function s from the (fixed, finite) set of variables
X into the set of values V. Thus, the set of memory states M is defined by:

M def
= X�! V

We write explicit definitions of functions that have a finite domain between double paren-
theses of the form L·M: for instance, if X= {x,y}, we write Lx 7! 7,y 7! 3M for the memory
state that maps x into 7 and y into 3.

In the following paragraphs, we define the way each element of the language gets evalu-
ated. Indeed, to describe the execution of commands, we need to first explain how scalar
and boolean expressions are evaluated.

Semantics of scalar expressions. The evaluation of a scalar expression produces a scalar
value. In the case of a constant n, the result is simply n. In the case of a variable x, the
result is obtained by reading the content of variable x in the current memory state. Last,
the result of the evaluation of an expression composed of an operator applied to two sub-
expressions is obtained by evaluating the sub-expressions and applying to their results the
mathematical function described by the operator. We note f� the function associated to
operator �.

The formalization of this semantics proceeds by induction over the syntax of expressions
and is shown in Figure 3.2. We note JE K(s) the semantics of expression E , evaluated in
the memory state s , so that JE K is a function from memory states to scalar values.

Semantics of boolean expressions. The case of boolean expressions is very similar to
the semantics of scalar expressions, with the only difference that it returns a boolean value.
We note JB K the semantics of a boolean expression B , and define it as a function that inputs
a memory state and returns a boolean value. Its definition is given in Figure 3.3. We note
f< the function associated to a comparison operator <.

Function associated to the operator

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 July 3, 2018 1:58pm

64 Chapter 3 A General Static Analysis Framework Based on a Compositional Semantics

JB K : M�! B

Jx<nK(s) = f<(s(x),n)

Figure 3.3
Semantics of boolean expressions

Semantics of commands. The semantics of a command C is a function noted JC KP that
maps a set of input states into a set of output states, observed after the command. This
choice entails that non terminating executions are not observed at this point: indeed, if an
execution of a command C does not terminate, it does not produce any input state. We note
P(M) the powerset of memory states, and M an element of P(M). The semantics JC KP

is shown in Figure 3.4.
The semantics of the skip command is the identity function. The semantics of a sequence

of commands is the composition of the semantics of each command. The evaluation of an
assignment x := E ; updates the value of x in the memory states with the result produced
by the evaluation of E . The evaluation of (x) replaces the value of variable x with
any possible scalar value.

The evaluation of a conditional command is determined by the result of the condition.
Since our semantics is defined over sets of input states, it should simply filter the states
for which the condition evaluates to true and evaluate the corresponding branch, do the
same for the states for which the condition evaluates to false and return the union of the
two results. The condition expression effectively filters out memory states, thus, for each
boolean expression B , we define a “filtering” function FB :

FB (M) = {s 2 M | JB K(s) = true}

We write ¬B for the negation of boolean expression B . Thus, the set of states that enter
the true (resp., false) branch is defined by FB (M) (resp., F¬B (M)).

The case of loops is more complex and interesting due to unbounded executions. To
determine the set of output states produced by a loop command, we can simply partition
executions based on the number of iterations they spend inside the loop before they exit:
thus, the set of output states is the infinite union of a family of sets M0,M1,Mn, . . ., where
Mi denotes the states produced by program executions that went through the loop body
exactly i times. Intuitively, each of these sets can be described using the same technique
as if we were considering the output of a sequence of conditional commands (where the
condition evaluates to true i times and to false for the last test). Thus, a state is in Mi if
and only if it is in:

Mi = F¬B
⇣
(JC KP �FB )

i (M)
⌘

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 July 3, 2018 1:58pm

3.2 Abstractions 65

JC KP : P(M)�! P(M)

J KP(M) = M
JC 0; C 1KP(M) = JC 1KP(JC 0KP(M))

Jx := E KP(M) = {s [x 7! JE K(s)] | s 2 M}
J (x)KP(M) = {s [x 7! n] | s 2 M,n 2 V}

J (B ){C 0} {C 1}KP(M) = JC 0KP(FB (M)) [ JC 1KP(F¬B (M))

J (B ){C }KP(M) = F¬B
⇣S

i�0 (JC KP �FB )
i (M)

⌘

Figure 3.4
Semantics of commands

As a result, the set of output states of the loop is computed by:
[

i�0
Mi =

[

i�0
F¬B

⇣
(JC KP �FB )

i (M)
⌘

Moreover, FB commutes with the union, thus:

[

i�0
Mi = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

Remark 3.1 (Alternate definition) As a side remark (that can be skipped in a first read), the above
definition of the semantics of loops can also be written using a least-fixpoint, using Kleene’s fixpoint
theorem (Theorem A.1) F¬B (lfpMF) where F : M0 7�! M[ JC KP �FB (M0) (the application of the
theorem requires to verify the continuity of F).

To conclude, the semantics of a command is defined by induction over the syntax, as
shown in Figure 3.4.

3.2 Abstractions

3.2.1 The Concept of Abstraction
In the following, we make the definition of abstract domains and concretization functions
more formal than Definition 2.1 and Definition 2.2.

Intuitions gathered from the previous chapter. In Chapter 2, we noticed that an abstract
domain should provide:

• a set of abstract elements that stand for logical properties, to be used by the analysis;
• a compact and efficient data-structure to represent abstract elements;
• a relation that fixes the meaning of each abstract element in concrete terms;
• analysis algorithms, to carry out the computation of abstract post-conditions, union,

widening, etc.

<latexit sha1_base64="Jr2wN5yGcQnApduZUTWuadIAEKo=">AAACEXicbVDLSsNAFL2pr1pfUZduphahq5KIqLgqduNGqGAfkIQymU7boZMHMxOhhP6CG3/FjQtF3Lpz5984abPQ1gMDZ865l3vv8WPOpLKsb6Owsrq2vlHcLG1t7+zumfsHbRklgtAWiXgkuj6WlLOQthRTnHZjQXHgc9rxx43M7zxQIVkU3qtJTL0AD0M2YAQrLfXMquOWHdRAnlv20BVyA6xGvp/eTpGrot/fnlmxatYMaJnYOalAjmbP/HL7EUkCGirCsZSObcXKS7FQjHA6LbmJpDEmYzykjqYhDqj00tlFU3SilT4aREK/UKGZ+rsjxYGUk8DXldmKctHLxP88J1GDSy9lYZwoGpL5oEHCkT42iwf1maBE8YkmmAimd0VkhAUmSodY0iHYiycvk/ZpzT6v2Xdnlfp1HkcRjuAYqmDDBdThBprQAgKP8Ayv8GY8GS/Gu/ExLy0Yec8h/IHx+QMqlJtl</latexit>

[[C]] : M ! M

. . .



Step 2: Defining Concrete (Collecting) Semantics
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As a result, the set of output states of the loop is computed by:
[

i�0
Mi =

[

i�0
F¬B

⇣
(JC KP �FB )

i (M)
⌘

Moreover, FB commutes with the union, thus:

[

i�0
Mi = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

Remark 3.1 (Alternate definition) As a side remark (that can be skipped in a first read), the above
definition of the semantics of loops can also be written using a least-fixpoint, using Kleene’s fixpoint
theorem (Theorem A.1) F¬B (lfpMF) where F : M0 7�! M[ JC KP �FB (M0) (the application of the
theorem requires to verify the continuity of F).

To conclude, the semantics of a command is defined by induction over the syntax, as
shown in Figure 3.4.

3.2 Abstractions

3.2.1 The Concept of Abstraction
In the following, we make the definition of abstract domains and concretization functions
more formal than Definition 2.1 and Definition 2.2.

Intuitions gathered from the previous chapter. In Chapter 2, we noticed that an abstract
domain should provide:

• a set of abstract elements that stand for logical properties, to be used by the analysis;
• a compact and efficient data-structure to represent abstract elements;
• a relation that fixes the meaning of each abstract element in concrete terms;
• analysis algorithms, to carry out the computation of abstract post-conditions, union,

widening, etc.

Filtering functions 
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JB K : M�! B

Jx<nK(s) = f<(s(x),n)

Figure 3.3
Semantics of boolean expressions

Semantics of commands. The semantics of a command C is a function noted JC KP that
maps a set of input states into a set of output states, observed after the command. This
choice entails that non terminating executions are not observed at this point: indeed, if an
execution of a command C does not terminate, it does not produce any input state. We note
P(M) the powerset of memory states, and M an element of P(M). The semantics JC KP

is shown in Figure 3.4.
The semantics of the skip command is the identity function. The semantics of a sequence

of commands is the composition of the semantics of each command. The evaluation of an
assignment x := E ; updates the value of x in the memory states with the result produced
by the evaluation of E . The evaluation of (x) replaces the value of variable x with
any possible scalar value.

The evaluation of a conditional command is determined by the result of the condition.
Since our semantics is defined over sets of input states, it should simply filter the states
for which the condition evaluates to true and evaluate the corresponding branch, do the
same for the states for which the condition evaluates to false and return the union of the
two results. The condition expression effectively filters out memory states, thus, for each
boolean expression B , we define a “filtering” function FB :

FB (M) = {s 2 M | JB K(s) = true}

We write ¬B for the negation of boolean expression B . Thus, the set of states that enter
the true (resp., false) branch is defined by FB (M) (resp., F¬B (M)).

The case of loops is more complex and interesting due to unbounded executions. To
determine the set of output states produced by a loop command, we can simply partition
executions based on the number of iterations they spend inside the loop before they exit:
thus, the set of output states is the infinite union of a family of sets M0,M1,Mn, . . ., where
Mi denotes the states produced by program executions that went through the loop body
exactly i times. Intuitively, each of these sets can be described using the same technique
as if we were considering the output of a sequence of conditional commands (where the
condition evaluates to true i times and to false for the last test). Thus, a state is in Mi if
and only if it is in:

Mi = F¬B
⇣
(JC KP �FB )

i (M)
⌘
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n 2 V scalar values
x 2 X program variables
� ::= + | � | ⇤ | . . . binary operators
< ::= < | |== | . . . comparison operators
E ::= scalar expressions

| n scalar constant
| x variable
| E �E binary operation

B ::= boolean expressions
| x<n comparison of a variable with a constant

C ::= commands
| command that ”does nothing”
| C ; C sequence of commands
| x := E assignment command
| (x) command reading of a value
| (B ){C } {C } conditional command
| (B ){C } loop command

Figure 0.1
Grammar of a simple imperative language

M def
= X�! V

V def
= Z

FB (M) = {s 2 M | JB K(s) = true}

F¬B (M) = {s 2 M | JB K(s) = false}

Mi = F¬B
⇣
(JC KP �FB )

i (M)
⌘

As a result, the set of output states of the loop is computed by:
[

i�0
Mi =

[

i�0
F¬B

⇣
(JC KP �FB )

i (M)
⌘



Loops

• The set of output states of a loop: the infinite union of a 
family of sets  

• where  = the output state after running the loop 

body exactly i times 
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JB K : M�! B

Jx<nK(s) = f<(s(x),n)

Figure 3.3
Semantics of boolean expressions

Semantics of commands. The semantics of a command C is a function noted JC KP that
maps a set of input states into a set of output states, observed after the command. This
choice entails that non terminating executions are not observed at this point: indeed, if an
execution of a command C does not terminate, it does not produce any input state. We note
P(M) the powerset of memory states, and M an element of P(M). The semantics JC KP

is shown in Figure 3.4.
The semantics of the skip command is the identity function. The semantics of a sequence

of commands is the composition of the semantics of each command. The evaluation of an
assignment x := E ; updates the value of x in the memory states with the result produced
by the evaluation of E . The evaluation of (x) replaces the value of variable x with
any possible scalar value.

The evaluation of a conditional command is determined by the result of the condition.
Since our semantics is defined over sets of input states, it should simply filter the states
for which the condition evaluates to true and evaluate the corresponding branch, do the
same for the states for which the condition evaluates to false and return the union of the
two results. The condition expression effectively filters out memory states, thus, for each
boolean expression B , we define a “filtering” function FB :

FB (M) = {s 2 M | JB K(s) = true}

We write ¬B for the negation of boolean expression B . Thus, the set of states that enter
the true (resp., false) branch is defined by FB (M) (resp., F¬B (M)).

The case of loops is more complex and interesting due to unbounded executions. To
determine the set of output states produced by a loop command, we can simply partition
executions based on the number of iterations they spend inside the loop before they exit:
thus, the set of output states is the infinite union of a family of sets M0,M1,Mn, . . ., where
Mi denotes the states produced by program executions that went through the loop body
exactly i times. Intuitively, each of these sets can be described using the same technique
as if we were considering the output of a sequence of conditional commands (where the
condition evaluates to true i times and to false for the last test). Thus, a state is in Mi if
and only if it is in:

Mi = F¬B
⇣
(JC KP �FB )

i (M)
⌘
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Semantics of boolean expressions

Semantics of commands. The semantics of a command C is a function noted JC KP that
maps a set of input states into a set of output states, observed after the command. This
choice entails that non terminating executions are not observed at this point: indeed, if an
execution of a command C does not terminate, it does not produce any input state. We note
P(M) the powerset of memory states, and M an element of P(M). The semantics JC KP

is shown in Figure 3.4.
The semantics of the skip command is the identity function. The semantics of a sequence

of commands is the composition of the semantics of each command. The evaluation of an
assignment x := E ; updates the value of x in the memory states with the result produced
by the evaluation of E . The evaluation of (x) replaces the value of variable x with
any possible scalar value.

The evaluation of a conditional command is determined by the result of the condition.
Since our semantics is defined over sets of input states, it should simply filter the states
for which the condition evaluates to true and evaluate the corresponding branch, do the
same for the states for which the condition evaluates to false and return the union of the
two results. The condition expression effectively filters out memory states, thus, for each
boolean expression B , we define a “filtering” function FB :

FB (M) = {s 2 M | JB K(s) = true}

We write ¬B for the negation of boolean expression B . Thus, the set of states that enter
the true (resp., false) branch is defined by FB (M) (resp., F¬B (M)).

The case of loops is more complex and interesting due to unbounded executions. To
determine the set of output states produced by a loop command, we can simply partition
executions based on the number of iterations they spend inside the loop before they exit:
thus, the set of output states is the infinite union of a family of sets M0,M1,Mn, . . ., where
Mi denotes the states produced by program executions that went through the loop body
exactly i times. Intuitively, each of these sets can be described using the same technique
as if we were considering the output of a sequence of conditional commands (where the
condition evaluates to true i times and to false for the last test). Thus, a state is in Mi if
and only if it is in:

Mi = F¬B
⇣
(JC KP �FB )

i (M)
⌘
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Semantics of commands. The semantics of a command C is a function noted JC KP that
maps a set of input states into a set of output states, observed after the command. This
choice entails that non terminating executions are not observed at this point: indeed, if an
execution of a command C does not terminate, it does not produce any input state. We note
P(M) the powerset of memory states, and M an element of P(M). The semantics JC KP

is shown in Figure 3.4.
The semantics of the skip command is the identity function. The semantics of a sequence

of commands is the composition of the semantics of each command. The evaluation of an
assignment x := E ; updates the value of x in the memory states with the result produced
by the evaluation of E . The evaluation of (x) replaces the value of variable x with
any possible scalar value.

The evaluation of a conditional command is determined by the result of the condition.
Since our semantics is defined over sets of input states, it should simply filter the states
for which the condition evaluates to true and evaluate the corresponding branch, do the
same for the states for which the condition evaluates to false and return the union of the
two results. The condition expression effectively filters out memory states, thus, for each
boolean expression B , we define a “filtering” function FB :

FB (M) = {s 2 M | JB K(s) = true}

We write ¬B for the negation of boolean expression B . Thus, the set of states that enter
the true (resp., false) branch is defined by FB (M) (resp., F¬B (M)).

The case of loops is more complex and interesting due to unbounded executions. To
determine the set of output states produced by a loop command, we can simply partition
executions based on the number of iterations they spend inside the loop before they exit:
thus, the set of output states is the infinite union of a family of sets M0,M1,Mn, . . ., where
Mi denotes the states produced by program executions that went through the loop body
exactly i times. Intuitively, each of these sets can be described using the same technique
as if we were considering the output of a sequence of conditional commands (where the
condition evaluates to true i times and to false for the last test). Thus, a state is in Mi if
and only if it is in:

Mi = F¬B
⇣
(JC KP �FB )

i (M)
⌘



Loops

• As a result, the set of output states of the loop is   

             

• Because  is continuous,  
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As a result, the set of output states of the loop is computed by:
[

i�0
Mi =

[

i�0
F¬B

⇣
(JC KP �FB )

i (M)
⌘

Moreover, FB commutes with the union, thus:

[

i�0
Mi = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

Remark 3.1 (Alternate definition) As a side remark (that can be skipped in a first read), the above
definition of the semantics of loops can also be written using a least-fixpoint, using Kleene’s fixpoint
theorem (Theorem A.1) F¬B (lfpMF) where F : M0 7�! M[ JC KP �FB (M0) (the application of the
theorem requires to verify the continuity of F).

To conclude, the semantics of a command is defined by induction over the syntax, as
shown in Figure 3.4.

3.2 Abstractions

3.2.1 The Concept of Abstraction
In the following, we make the definition of abstract domains and concretization functions
more formal than Definition 2.1 and Definition 2.2.

Intuitions gathered from the previous chapter. In Chapter 2, we noticed that an abstract
domain should provide:

• a set of abstract elements that stand for logical properties, to be used by the analysis;
• a compact and efficient data-structure to represent abstract elements;
• a relation that fixes the meaning of each abstract element in concrete terms;
• analysis algorithms, to carry out the computation of abstract post-conditions, union,

widening, etc.
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As for non relational domains, the analysis of a condition test with a relational domain
boils down to the addition of one or several constraints to the abstract state. It is in general
more precise, since condition tests that involve several variables are more likely to be
represented exactly: as an example, condition x  y can be analyzed exactly with the
abstract domain of convex polyhedra (by adding it to the abstract state) whereas analyzing
this test with a non relational abstract domain generally induces a loss of precision.

3.3.3 Abstract Interpretation of Loops
The last program construction left to analyze is the loop command. As in the case of the
other commands, we rely on the concrete semantics in order to design the abstract seman-
tics. In Section 2.3.4, we proposed a loop static analysis algorithm, that iterates the analysis
of the loop body until stabilization. The concrete semantics shown in Section 3.1.2 lends
itself to the design of such an abstract semantics, therefore we indeed expect the analy-
sis of a loop command to proceed by iteration in the general case too. Another takeaway
of Section 2.3.4 is that the termination of the analysis requires special care, either using
abstract domains that naturally guarantee termination, or using a widening operator.

Concrete semantics of loops. To better design an analysis algorithm for loops, we first
study their concrete semantics a bit more. In Section 3.1.2, we set up the following seman-
tics of loops:

J (B ){C }KP(M) = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

As we are defining the abstract semantics by induction over the syntax, we can assume
that we can compute an over-approximation of JC KP . In previous paragraphs, we have
defined over-approximations for FB and F¬B . For example, we have also observed when
defining the analysis of sequences of commands that an over-approximation of function
compositions can be obtained by composing over-approximations of each command.

Therefore, the problem we need to solve is to compute an over approximation for an
infinite union [i�0Fi(M) under the assumption that the function F] over-approximates the
function F (in the sense that F � g(M]) ✓ g �F](M]) for any abstract element M]), where
F = JC KP �FB .
Example 3.16 (Analysis of programs with loops) In the following paragraphs, we use the ex-
ample programs shown in Figure 3.9 so as to demonstrate the computation of loop invariants. The
program of Figure 3.9(a) consists of a simple loop that increments variable x forever (we recall we
are assuming all computations are done with mathematical numbers —and not with machine integer,
so that we are not dealing with wrap around arithmetics). The program of Figure 3.9(b) also con-
sists of a loop that increments variable x, but that also resets x to zero, whenever it reaches a certain
value.
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x := 0;
(x� 0){
x := x+1

}
(a) Incrementation

x := 0;
(x 100){

(x� 50){
x := 10

} {
x := x+1

}
}
(b) Incrementation with reset

Figure 3.9
A couple of programs containing a simple loop

Sequences of concrete and abstract iterates. First, let us consider the executions that
spend at most n iterations in the loop, for a fixed integer value n. Then, the states they
generate at the loop head is:

Mn =
n[

i=0
Fi(M)

We can prove that this set of states can be computed by induction over n. Indeed, let us
consider the first elements of the sequence (Mk)k2N:

• M0 = M;
• M1 = M [ F(M) = M [ F(M0);
• M2 = M [ F(M) [ F(F(M)) = M [ F(M [ F(M)) since F commutes with set union,

so M2 = M [ F(M1);
• for any n greater than 2, we can show in the same manner than Mn+1 = M [ F(Mn).

This implies that the sequence (Mk)k2N can equivalently be defined recursively as follows:

M0 = M
Mk+1 = Mk [ F(Mk)

This observation is of great interest for the purpose of designing an algorithm to analyze
loops, since it is very easy to compute an over-approximation of Mn using the techniques
shown in the previous sub-sections. Indeed, let us assume an element M] of the abstract
domain such that M ✓ g(M]) and define the sequence of abstract iterates (M]

k)k2N as fol-
lows:

M]
0 = M]

M]
k+1 = M]

k t
] F](M]

k)
(3.1)
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8b. �•  b

8a. a +•

f ]+([a,b], [a0,b0]) = [a+a0,b+b0]

F ]
B (M

]) =>]

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M

])) t] JC 1K]P(F ]
¬B (M

]))

F¬B (lfpMF)whereF : M0 7�! M[ JC KP �FB (M0)

J (B ){C }KP(M) = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

J (B ){C }KP(M) = F¬B (lfpMF)

where F , lX . M[ JC KP �FB (X)

J (B ){C }K]P(M]) = F ]
¬B (lfpM]F])

where F] , lX ]. M] t] JC K]P �F ]
B (X

])



Step 3-1: Defining Abstract Domains

• Our goal: 

                        
where  
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Moreover, FB commutes with the union, thus:

[

i�0
Mi = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

As a side remark (that can be skipped in a first read), the above definition of the seman-
tics of loops can also be written using a least-fixpoint, using Kleene’s fixpoint theorem
(Theorem ??) F¬B (lfpMF) where F : M0 7�!M[ JC KP �FB (M0) (the application of the
theorem requires to verify the continuity of F).

P(V)���! ���
aS

gS AS

P(V)���! ���
aI

gI AI

P(M)��! ��a

g
A
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tics of loops can also be written using a least-fixpoint, using Kleene’s fixpoint theorem
(Theorem ??) F¬B (lfpMF) where F : M0 7�!M[ JC KP �FB (M0) (the application of the
theorem requires to verify the continuity of F).

P(V)���! ���
aS

gS AS

P(V)���! ���
aI

gI AI

P(V)���! ���
aV

gV AV

P(M)��! ��a

g
A

A= X! AV

Abstract Memories

Abstract Mem: Var → Abstract Value



• Abstraction proceeds in two steps:

• For each variable, we collect the values that this variable 
may take across a set of states.

• We over-approximate each of these sets of values with one 
abstract element per variable using a value abstraction. 

• Value abstraction: 
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Examples of Value Abstractions

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 April 12, 2021 7:43pm

70 Chapter 3 A General Static Analysis Framework Based on a Compositional Semantics

?

[= 0]

[ 0] [� 0]

>

(a) Signs abstract do-
main

?

[ 0] [� 0]

>

(b) Signs abstract do-
main

/0

[�2,�2] [�1,�1] [0,0] [1,1] [2,2]

[�2,�1] [�1,0] [0,1] [1,2]

[�3,�1] [�2,0] [�1,1] [0,2] [1,3]

[�3,0] [�2,1] [�1,2] [0,3]

(c) Intervals abstract domain

Figure 3.5
Value abstract domains

• the pairs (n0,n1) where n0 is either �• or a value, n1 is either +• or a value, and n0  n1.
For clarity, pairs will often be given using the classical interval notation (for instance, we will write
[8,+•) instead of (8,+•)). Therefore, their concretization is defined by:

gI : ? 7�! /0
[n0,n1] 7�! {n 2 V | n0  n  n1}

[n0,+•) 7�! {n 2 V | n0  n}
(�•,n1] 7�! {n 2 V | n  n1}

(�•,+•) 7�! V

The order relation vI over abstract elements is induced by the concretization and captures the in-
terval inclusion. As in Example 3.5, this abstraction relation also defines a best abstraction function
aI . The Hasse diagram of the abstract domain of intervals is shown in Figure 3.5(c).

Example 3.8 (Congruences) While the instances of value abstractions presented so far all boil
down to inequality constraints, we can cite relevant abstractions that do not follow this structure. A
very useful example is the abstract domain of congruences (Granger, 1997), which describes sets of
values using congruence relations. Abstract values are ? and pairs of the form (n, p) where either
p = 0 or 0  n < p. While ? represents the empty set of values, a pair (n, p) stands for a set of
values that are equal to n modulo p:

gC : ? 7�! /0
(n, p) 7�! {n+ kp | k 2 Z}

We let AC denote the set of abstract elements, and vC be the order relation defined by a0 vC

a1 () gC (a0) ✓ gC (a1). This domain also has a best abstraction function aC . Note that the set
of all integers is described by the pair (0,1), and that a singleton {n} is described by the pair (n,0).
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3.2.2 Non Relational Abstraction
In Chapter 2, we introduced non relational abstractions as abstractions that forget about all
relations among program variables. In this section, we formalize the most common form
of non relational abstraction, where all variables are treated independently, with a similar
abstraction of their values. Intuitively, this abstraction proceeds in two steps:
1. for each variable, it collects the values that this variable may take across a set of states;
2. then, it over-approximates each of these sets of values with one abstract element per

variable; each of these abstract elements consists of numerical constraints over a single
variable.

This second step relies on a value abstraction:
Definition 3.6 (Value abstraction) A value abstraction is an abstraction of (P(V),✓).

Signs and intervals constraints (as used in Chapter 2) define value abstractions.
Example 3.5 (Signs) The elements of the sign value abstract domain AS are [� 0], [ 0], [= 0]
that describe the properties associated to their name, > that describes any set of values and ? that
describes only the empty set of values. Therefore, their concretizations are defined by:

gS : [� 0] 7�! {n 2 V | n � 0}
[ 0] 7�! {n 2 V | n  0}
[= 0] 7�! {0}
> 7�! V
? 7�! /0

This abstraction features a best abstraction function aS : if V is a set of values, aS (V ) is the
smallest element of the signs lattice that over-approximates it. Figure 3.5(a) shows the order relation
in the abstract domain of signs using a Hasse diagram, which consists of a graph where nodes
denote abstract elements, and edges link neighbors in the ordering relation, with the convention that
“smaller” abstract elements are lower than “bigger” abstract elements.

Example 3.6 (A variation on the lattice of signs, with no abstraction function) We can build
many variations over the lattice of signs exposed in Example 3.5, by adding elements to denote
strict inequalities or to denote the predicate “not equal to zero”, or by removing some elements.
For instance, Figure 3.5(b) shows another abstract domain that retains only abstract elements ?, [�
0], [ 0] and >. This new abstraction defines the same concretization function as in Example 3.5,
however, it does not have a best abstraction function aS . Indeed, let us consider the concrete set {0}:
then [ 0], [� 0] and > define valid abstractions of {0}, however, there exists no smaller abstract
element, that over-approximates it, since [ 0] and [� 0] are both incomparable (and smaller than
>). Thus, it would be impossible to define a best abstraction function aS over {0}. The consequence
in static analysis is that it is not possible in general to identify one element as the most precise (in
other words, best sound) possible result. Provided the analysis designer and user are aware of this
fact, it is not a serious limitation however.

Example 3.7 (Intervals) The elements of the intervals value abstract domain (Cousot and Cousot,
1977) AI are:

• the element ? that represents the empty set of values, and

• Signs abstraction
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Moreover, FB commutes with the union, thus:

[

i�0
Mi = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

As a side remark (that can be skipped in a first read), the above definition of the seman-
tics of loops can also be written using a least-fixpoint, using Kleene’s fixpoint theorem
(Theorem ??) F¬B (lfpMF) where F : M0 7�!M[ JC KP �FB (M0) (the application of the
theorem requires to verify the continuity of F).

P(V)���! ���
aS

gS AS

P(V)���! ���
aI

gI AI



Examples of Value Abstractions

• Intervals abstraction
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?

[= 0]

[ 0] [� 0]

>

(a) Signs abstract do-
main

?

[ 0] [� 0]

>

(b) Signs abstract do-
main

/0

[�2,�2] [�1,�1] [0,0] [1,1] [2,2]

[�2,�1] [�1,0] [0,1] [1,2]

[�3,�1] [�2,0] [�1,1] [0,2] [1,3]

[�3,0] [�2,1] [�1,2] [0,3]

(c) Intervals abstract domain

Figure 3.5
Value abstract domains

• the pairs (n0,n1) where n0 is either �• or a value, n1 is either +• or a value, and n0  n1.
For clarity, pairs will often be given using the classical interval notation (for instance, we will write
[8,+•) instead of (8,+•)). Therefore, their concretization is defined by:

gI : ? 7�! /0
[n0,n1] 7�! {n 2 V | n0  n  n1}

[n0,+•) 7�! {n 2 V | n0  n}
(�•,n1] 7�! {n 2 V | n  n1}

(�•,+•) 7�! V

The order relation vI over abstract elements is induced by the concretization and captures the in-
terval inclusion. As in Example 3.5, this abstraction relation also defines a best abstraction function
aI . The Hasse diagram of the abstract domain of intervals is shown in Figure 3.5(c).

Example 3.8 (Congruences) While the instances of value abstractions presented so far all boil
down to inequality constraints, we can cite relevant abstractions that do not follow this structure. A
very useful example is the abstract domain of congruences (Granger, 1997), which describes sets of
values using congruence relations. Abstract values are ? and pairs of the form (n, p) where either
p = 0 or 0  n < p. While ? represents the empty set of values, a pair (n, p) stands for a set of
values that are equal to n modulo p:

gC : ? 7�! /0
(n, p) 7�! {n+ kp | k 2 Z}

We let AC denote the set of abstract elements, and vC be the order relation defined by a0 vC

a1 () gC (a0) ✓ gC (a1). This domain also has a best abstraction function aC . Note that the set
of all integers is described by the pair (0,1), and that a singleton {n} is described by the pair (n,0).
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Moreover, FB commutes with the union, thus:

[

i�0
Mi = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

As a side remark (that can be skipped in a first read), the above definition of the seman-
tics of loops can also be written using a least-fixpoint, using Kleene’s fixpoint theorem
(Theorem ??) F¬B (lfpMF) where F : M0 7�!M[ JC KP �FB (M0) (the application of the
theorem requires to verify the continuity of F).

P(V)���! ���
aS

gS AS

P(V)���! ���
aI

gI AI



Step 3-1: Defining Abstract Domains

• The order relation in  is defined by the point-wise 

extension of  
 

• The least element:  
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!
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P(V)���! ���
aS

gS AS

P(V)���! ���
aI

gI AI

P(V)���! ���
aV

gV AV

P(M)��! ��a

g
A

A= X! AV

8M0
],M1

] 2 A. M0
] vM1

] () (8x 2 X. M0
](x)vV M1

](x))

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 April 13, 2021 10:48am

ii

JC KP : P(M)�!P(M)

J KP(M) = M
JC 0; C 1KP(M) = JC 1KP(JC 0KP(M))

Jx := E KP(M) = {s [x 7! JE K(s)] | s 2M}
J (x)KP(M) = {s [x 7! n] | s 2M,n 2 V}

J (B ){C 0} {C 1}KP(M) = JC 0KP(FB (M)) [ JC 1KP(F¬B (M))

J (B ){C }KP(M) = F¬B
⇣S

i�0 (JC KP �FB )
i (M)

⌘

Figure 0.2
Semantics of commands

Moreover, FB commutes with the union, thus:

[

i�0
Mi = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

As a side remark (that can be skipped in a first read), the above definition of the seman-
tics of loops can also be written using a least-fixpoint, using Kleene’s fixpoint theorem
(Theorem ??) F¬B (lfpMF) where F : M0 7�!M[ JC KP �FB (M0) (the application of the
theorem requires to verify the continuity of F).

P(V)���! ���
aS

gS AS

P(V)���! ���
aI

gI AI

P(V)���! ���
aV

gV AV

P(M)��! ��a

g
A

A= X! AV

8M0
],M1

] 2 A. M0
] vM1

] () (8x 2 X. M0
](x)vV M1

](x))

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 April 13, 2021 11:03am

ii

JC KP : P(M)�!P(M)

J KP(M) = M
JC 0; C 1KP(M) = JC 1KP(JC 0KP(M))

Jx := E KP(M) = {s [x 7! JE K(s)] | s 2M}
J (x)KP(M) = {s [x 7! n] | s 2M,n 2 V}

J (B ){C 0} {C 1}KP(M) = JC 0KP(FB (M)) [ JC 1KP(F¬B (M))

J (B ){C }KP(M) = F¬B
⇣S

i�0 (JC KP �FB )
i (M)

⌘

Figure 0.2
Semantics of commands

Moreover, FB commutes with the union, thus:

[

i�0
Mi = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

As a side remark (that can be skipped in a first read), the above definition of the seman-
tics of loops can also be written using a least-fixpoint, using Kleene’s fixpoint theorem
(Theorem ??) F¬B (lfpMF) where F : M0 7�!M[ JC KP �FB (M0) (the application of the
theorem requires to verify the continuity of F).

P(V)���! ���
aS

gS AS

P(V)���! ���
aI

gI AI

P(V)���! ���
aV

gV AV

P(M)��! ��a

g
A

A= X! AV

8M0
],M1

] 2 A. M0
] vM1

] () (8x 2 X. M0
](x)vV M1

](x))

8x 2 X. ?A(x) =?V

Theorem 1 If P(V)���! ���
aV

gV AV then P(M)��! ��a

g
A.



Step 3-1: Defining Abstract Domains

• Then, 
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As remarked above, a non relational abstraction collects separately the values each vari-
able may take, and applies the value abstraction to each component:
Definition 3.7 (Non relational abstraction) We assume a value abstraction (AV ,vV ) is given,
with a concretization function gV : AV �! P(V), a least element ?V and a greatest element >V .
Then, the non relational abstraction based on it is defined by:

• the set of abstract elements AN = X�! AV ;
• the order relation vN defined by the point-wise extension of vV (which means that M]

0 vN M]
1

if and only if 8x 2 X, M]
0(x)vV M]

1(x));
• the concretization function gN defined by

gN : M] 7�! {s 2M | 8x 2 X, s(x) 2 gV (M](x))}

Intuitively, this abstraction treats each variable independently, and applies the value ab-
straction to each variable separately from the others. The order relation is the pointwise
extension of vV : indeed, in the logical point of view, M]

0 describes a property that is
stronger than that of M]

1 if and only if it does so for each variable. The machine representa-
tion of non relational abstract values boils down to a data-structure for tuples (with record
types in small dimensions or arrays / functional arrays when the number of variables is
high). When defining such an abstract element explicitly, we use the same notation {·} as
before: for instance, if X = {x,y}, and if the AV is the signs abstract domain, we write
{x 7! [= 0],y 7! [� 0]} for the non relational abstract state that maps x into [= 0] (i.e., it
expresses that x is equal to zero) and y into [� 0] (i.e., it expresses that x is positive).

The least element of the non relational abstract domain is the function that maps each
variable to the least element ?V of the value abstract domain:

8x 2 X, ?N (x) =?V

The greatest element >N can be defined similarly.
When the value abstraction also has an abstraction function aV , the non relational ab-

straction also has one that is defined as follows (note that it maps a set of states into a
function from variables into elements of the value abstract domain):

aN : M 7�! (x 2 X) 7�! aV ({s(x) | s 2 M})

We remark that ?N is the best approximation of /0.
Chapter 2 already introduced particular instances of this non relational abstraction, in

the case where X contains only two elements, so that a concrete memory is a point in the
two-dimensional space, and an abstract element is a pair of value abstract elements (e.g.,
sign or interval predicate). Definition 3.7 extends this construction to the cases where the
set of variables may have any size.
Example 3.9 (Non relational abstraction) We assume X = {x,y,z} and consider the memory
states defined as follows:
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Examples of Memory Abstractions

• The best abstraction of :

• With the signs abstraction: 

• With the intervals abstraction: 

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 April 13, 2021 9:18am

72 Chapter 3 A General Static Analysis Framework Based on a Compositional Semantics

s0 : x 7! 25 y 7! 7 z 7! �12
s1 : x 7! 28 y 7! �7 z 7! �11
s2 : x 7! 20 y 7! 0 z 7! �10
s3 : x 7! 35 y 7! 8 z 7! �9

The best abstractions of {s0,s1,s2,s3} can be defined as follows:
• with the signs abstraction:

M] : x 7! [� 0] y 7! > z 7! [ 0]

• with the intervals abstraction:

M] : x 7! [25,35] y 7! [�7,8] z 7! [�12,�9]

3.2.3 Relational Abstraction
We call relational abstraction any abstraction of sets of memory states that allows to main-
tain at least some constraints that bind several variables. Non relational abstractions handle
each variable separately from the others, thus cannot express precisely any constraints such
as x+y 3 or x2 �y 0. If we were trying to represents such constraints with non rela-
tional abstractions, we would have to first approximate them in a very coarse manner, that
would first drop any relationship between x and y.

Many relational abstract domains have been proposed in the literature. We give a few ex-
amples in the rest of this section, some of which were informally discussed in Section 2.2.

We start with linear equalities (Karr, 1976):
Definition 3.8 (Linear equalities) The elements of the abstract domain of linear equalities are the
? value denoting the empty set and the conjunctions of linear equality constraints over the program
variables to constrain sets of memory states.

In the geometrical point of view, abstract elements boil down to affine spaces in VN where
N is the number of variables. For instance, in dimension three (i.e., if the program has
three variables), this includes the empty set, points, lines, planes, and the whole space. The
resulting abstraction features both a concretization and an abstraction function (the best
abstraction of a set of points is the smallest enclosing affine space). The best abstraction
of any set M of memory states is the smallest affine space that contains all the memories in
M. An example is shown in Figure 3.6(a).

As observed in Chapter 2, linear inequalities also provide a good basis to build an abstract
domain.
Definition 3.9 (Convex polyedra) The elements of the abstract domain of linear inequalities (Cousot
and Halbwachs, 1978) are the ? value denoting the empty set and the conjunctions of linear inequal-
ity constraints over the program variables to constrain sets of memory states.

In the geometrical point of view, abstract elements correspond to convex polyhedra of
all dimensions in VN where N is the number of variables. An example is shown in Fig-
ure 3.6(b).
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Figure 3.7
Sound static analysis

domains. Therefore, we refer the reader to, e.g., (Cousot and Halbwachs, 1978; Miné,
2006) and do not discuss this issue further in this book.

3.3 Computable Abstract Semantics

In this section, we formalize the static analysis algorithms for the basic language intro-
duced in Section 3.1. It follows similar principles as the analysis for a graphical language
that was presented in Chapter 2. We fully describe the analysis based on the non relational
abstract domain defined in Section 3.2.2. We also detail the analysis modifications that
would be required in order to use a relational domain (Section 3.2.3) instead, and show
that these are minimal, in the same way as we observed in Chapter 2. The analysis takes
the form of a mathematical function that inputs a program and an abstract pre-condition
and computes an abstract post-condition, that covers all the output states of the program
when run from any state that satisfies the pre-condition. This setup is similar to that of
Section 2.3.

We let A denote the state abstract domain, and we write g for the associated concretiza-
tion function. We write AV for the underlying value abstraction and gV for its concretiza-
tion. The design of the analysis is aimed at ensuring soundness in the sense of Defini-
tion 2.6, which we recall in Figure 3.7 in the present setup. In this figure, we let JpK]

P

denote the static analysis function, that we also call abstract semantics. It states that, when
(1) s is a concrete memory that can be described by the abstract pre-condition apre (i.e.,
s 2 g(apre)) and (2) we can observe output memory state s 0 after running the program
from s (i.e., s 0 2 JpK({s})), then s 0 can be described by the result of the analysis applied
to p and apre (i.e., s 0 2 g(JpK]

P
(apre)).

While we use the concretization function g , we could also use the best abstraction func-
tion a , if it exists. Then, soundness statements are similar, but expressed in terms of
abstraction rather than concretization.

Our Goal:  
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The consequence of this remark is twofold.
First, the concrete semantics of a loop can be expressed using the least fixpoint of a

function that calculates the effect of “either starting from a memory state in M, or running
one iteration of the loop”:

J (B ){C }KP(M) = F¬B (lfp G) where G : X 7! M [ JC KP �FB (X)

Secondly, the abstract semantics of a loop relies on the over-approximation of a concrete
least-fixpoint, and can benefit from many techniques to compute over-approximations of
least fixpoints. We have already seen two such techniques:

• when the abstract lattice has finite height, we have proposed an iteration technique that
relies on abstract union;

• in the case where the abstract lattice may have infinite height, we have proposed another
technique that relies on a widening operator in order to enforce convergence.

Compared to the state of the art in static analysis these techniques are fairly basic though,
and we will present several improvements in Section 5.2.

3.3.4 Putting Everything Together
We can now summarize the analysis definition in Figure 3.11. This definition assumes
several elements that we have defined in the course of this chapter, including:

• the function fV for the abstraction of constants and the abstract counterpart f ]� of the
operator � are specific to the underlying value abstraction;

• the abstract condition F
]
B is also specific to the value abstraction;

• the abstract union operation t], that is defined based on the value abstract union t]
V

;
• the general abstract iteration function abs iter for the analysis of loops, and which

relies on the widening operator O.
We have designed this abstract semantics step by step, in a way that ensures that it is sound,
i.e., that it never leaves out any concrete behavior of the program being analyzed:
Theorem 3.6 (Soundness) For all command C and all abstract state M], JC K]

P
(M]) terminates,

and:
JC KP (g(M]))✓ g(JC K]

P
(M]))

The proof of this theorem proceeds by induction over the syntax of commands: for each
kind of command, we ensured that the definition of its abstract semantics would lead to
a sound result, assuming that its components had a sound abstract semantics. We provide
the full proof of correctness of the analysis in Appendix B.1.5.

Additionally, the analysis of Figure 3.11 can easily be extended with a global accumu-
lator per program location so as to compute an over-approximation of all reachable states
(and not just output states).

We remark that the use of a relational domain actually changes little to the analysis of
statements as it is defined in Figure 3.11. The analysis of assignments in Figure 3.11 is



Skip

• Bottom element

•

•

• Skip command

•
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As in Chapter 2, we are going to construct the definition of J·K]
P

by induction over
the syntax. First, this will result in a definition of the analysis that is very close to the
concrete semantics (likewise, it would also be very similar to an implementation as we will
observe in Chapter 7). Moreover, this process allows for a straightforward step by step
proof that the soundness property of Figure 3.7 holds. Indeed, when considering any sort
of command that includes some sub-commands (like sequences, conditions, and loops),
we will simply assume that the abstract semantics of the sub-commands has been defined,
and build a definition of the abstract semantics of the command itself. Therefore, both the
definition of the analysis and its proof of soundness proceed by induction over the syntax
of programs: indeed, to analyze (resp., prove the analysis of) a program, we will simply
rely on the analysis of (resp., on the proof of the analysis of) its components.

We start with a few easy cases, before considering more complex commands.

Bottom element. For any command C , JC KP( /0) = /0, since the set of states reachable
when running a program from an empty set of states is empty. Therefore:

JC K]
P
(?) =?

Skip commands. The concrete semantics of the command returns its input unmod-
ified, therefore, the following definition ensures soundness:

J K]
P
(M]) = M]

Sequences of commands. The soundness property of Figure 3.7 is stable under compo-
sition, and Jp0;p1KP(M) = Jp1KP(Jp0KP(M)), thus the following definition ensures that
we can prove soundness by induction over the syntax:

JC 0;C 1K]P(M]) = JC 1K]P(JC 0K]P(M]))

We can informally justify the soundness of this definition: to compute a sound post-
condition for C 0;C 1, starting from a pre-condition M], we can simply compute a sound
post-condition for C 0 from this pre-condition M], and then use this post-condition as a
pre-condition for C 1 and finally, compute a sound post-condition for C 1.

This principles generalizes to any composition of functions:
Theorem 3.1 (Approximation of compositions) Let F0,F1 : P(M)�!P(M) be two monotone
functions, and F]

0 ,F
]
1 :A�!A be two functions that over-approximate them, that is such that F0�g ✓

g �F]
0 and F1 � g ✓ g �F]

1 . Then, F0 �F1 can be over-approximated by F]
0 �F]

1 .

Indeed, if M] 2 A, then F1 � g(M]) ✓ g �F]
1 (A) (by the soundness assumption on F1) so,

since F0 is monotone, F0 �F1 � g(M]) ✓ F0 � g �F]
1 (M

]), and by the soundness hypothesis
on F0, F0 �F1 � g(M])✓ g �F]

0 �F]
1 (M

]). Theorem 3.1 is of fundamental interest, since the
concrete semantics heavily relies on the composition of functions, and this theorem means
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Sequences of commands. The soundness property of Figure 3.7 is stable under compo-
sition, and Jp0;p1KP(M) = Jp1KP(Jp0KP(M)), thus the following definition ensures that
we can prove soundness by induction over the syntax:

JC 0;C 1K]P(M]) = JC 1K]P(JC 0K]P(M]))

We can informally justify the soundness of this definition: to compute a sound post-
condition for C 0;C 1, starting from a pre-condition M], we can simply compute a sound
post-condition for C 0 from this pre-condition M], and then use this post-condition as a
pre-condition for C 1 and finally, compute a sound post-condition for C 1.

This principles generalizes to any composition of functions:
Theorem 3.1 (Approximation of compositions) Let F0,F1 : P(M)�!P(M) be two monotone
functions, and F]

0 ,F
]
1 :A�!A be two functions that over-approximate them, that is such that F0�g ✓

g �F]
0 and F1 � g ✓ g �F]

1 . Then, F0 �F1 can be over-approximated by F]
0 �F]

1 .

Indeed, if M] 2 A, then F1 � g(M]) ✓ g �F]
1 (A) (by the soundness assumption on F1) so,

since F0 is monotone, F0 �F1 � g(M]) ✓ F0 � g �F]
1 (M

]), and by the soundness hypothesis
on F0, F0 �F1 � g(M])✓ g �F]

0 �F]
1 (M

]). Theorem 3.1 is of fundamental interest, since the
concrete semantics heavily relies on the composition of functions, and this theorem means
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JE K] : A�! AV

JnK](M]) = fV (n)
JxK](M]) = M](x)

JE 0 �E 1K](M]) = f ]�(JE 0K](M]),JE 1K](M]))

Figure 3.8
Abstract semantics of expressions

then f ]+ should compute an over-approximation for the addition of intervals:

f ]+([a,b], [a0,b0]) = [a+a0,b+b0]
f ]+([a,b], [a0,+•)) = [a+a0,+•)

Other arithmetic operations have similar counterparts, although sometimes more compli-
cated (for instance, multiplication requires a number of case splits to handle positive and
negative inputs).

The full definition of the abstract semantics of scalar expressions is shown in Figure 3.8.

Example 3.10 (Abstract semantics of expressions) We assume that we use the interval abstract
domain, that we consider x+2⇤y�6, and that M] is defined by M](x) = [10,20] and M](y) = [8,9].
For short, we note operations over intervals just like the conventional arithmetic operations. Then:

Jx+2⇤y�6K](M]) = f ]�(Jx+2⇤yK](M]),J6K](M]))

= f ]+(JxK](M]),J2⇤yK](M]))� [6,6]
= M](x)+ f ]⇤(J2K](M]),JyK](M]))� [6,6]
= [10,20]+ [2,2]⇤ [8,9]� [6,6]
= [20,32]

We can prove by induction over the structure of expressions that this semantics is sound
(the proof is provided in Appendix B.1.1):
Theorem 3.2 (Soundness of the abstract interpretation of expressions) For all expression E ,
for all non relational abstract element M] and for all memory state s such that s 2 g(M]), then:

JE K(s) 2 g(JE K](M]))

Analysis of assignments. We now define the analysis function for an assignment com-
mand x := E . We recall that Jx := E KP(M) = {s [x 7! JE K(s)] | s 2 M}. Intuitively, an
assignment is the composition of the evaluation of the expression into a value n, and of the
update of the variable x with this value n. By Theorem 3.1, this composition can be over-
approximated piece by piece. We have seen in the previous paragraph how to compute an
over-approximation of the right hand side of the assignment. The abstract counterpart of
a write into a concrete memory is a write in the abstract store. Therefore, the following

• : a function that returns an abstraction for 

a given value  (e.g., )

• : approximation of the operator 
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that we can decompose the over-approximation of a composition of operations into the
composition of over-approximations of each operation.

We remark that the analysis functions for both skip commands and sequences of com-
mands proceed in the same way as in Chapter 2. Moreover, the definition of the analysis
for these commands does not depend at all on the abstract domain.

3.3.1 Abstract Interpretation of Assignment
In the graphical language of Chapter 2, state updates boil down to translation and rotation
statements. We observed that the analysis of these statements boils down to the application
of a similar transformation in the abstract level.

In the language considered in this chapter, updates to memory states are performed by
assignment commands. However the principles of Chapter 2 still apply here: the analysis
should update the abstract memory states so as to mimic any update that may occur in the
concrete level.

To develop this idea, we will first present an algorithm for the abstract interpretation of
expressions, that characterizes the values they may evaluate to, and then, we will show how
abstract updates can be performed.

Abstract interpretation of expressions. The algorithm for the abstract interpretation of
an expression should input an abstract pre-condition and return an abstraction of the values
the expression may take. We note JE K] for the abstract interpretation of the expression E .

Since the semantics of scalar expressions is defined by induction over the syntax (Fig-
ure 3.2), their abstract interpretation also proceeds by induction over the syntax. First,
when the expression is a constant n, its abstract semantics should return any abstract ele-
ment that over-approximates {n}. If the value abstraction has a best-abstraction aV , then
aV ({n}) obviously provides such an over-approximation. Otherwise, we simply need to
use a function fV : V�!AV that returns an abstraction (that may not be the most precise
one): this function should simply be such that n 2 gV (fV (n)) for all value n. Second,
when the expression consists of a variable, the analysis should simply return the value ab-
straction associated to this variable in the non relational abstract pre-condition. Last, to
over-approximate the result of a binary operation E 0 �E 1 assuming over-approximations
of the results of E 0 and E 1, the analysis simply needs to apply a conservative approxima-
tion of the operator f� in the non relational lattice. Such an approximation should consist
of an operator f ]� : AV ⇥AV �! AV , such that:

for all n]0,n
]
1 2 AV , { f�(n0,n1) | n0 2 gV (n]0) and n1 2 gV (n]1)}✓ gV ( f ]�(n

]
0,n

]
1))

Intuitively, this operator should over-approximate the effect of the operation on concrete
values. For instance, if we consider addition and assume that AV is the domain of intervals,
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Moreover, FB commutes with the union, thus:

[

i�0
Mi = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

As a side remark (that can be skipped in a first read), the above definition of the seman-
tics of loops can also be written using a least-fixpoint, using Kleene’s fixpoint theorem
(Theorem ??) F¬B (lfpMF) where F : M0 7�!M[ JC KP �FB (M0) (the application of the
theorem requires to verify the continuity of F).

P(V)���! ���
aS

gS AS

P(V)���! ���
aI

gI AI

P(V)���! ���
aV

gV AV

P(M)��! ��a

g
A

A= X! AV

8M0
],M1

] 2 A. M0
] vM1

] () (8x 2 X. M0
](x)vV M1

](x))

8x 2 X. ?A(x) =?V

Theorem 1 If P(V)���! ���
aV

gV AV then P(M)��! ��a

g
A.

Find J·K]P : A! A such that

8C. JCKP � g v g � JCK]P

aS (3) = [> 0]
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that we can decompose the over-approximation of a composition of operations into the
composition of over-approximations of each operation.

We remark that the analysis functions for both skip commands and sequences of com-
mands proceed in the same way as in Chapter 2. Moreover, the definition of the analysis
for these commands does not depend at all on the abstract domain.

3.3.1 Abstract Interpretation of Assignment
In the graphical language of Chapter 2, state updates boil down to translation and rotation
statements. We observed that the analysis of these statements boils down to the application
of a similar transformation in the abstract level.

In the language considered in this chapter, updates to memory states are performed by
assignment commands. However the principles of Chapter 2 still apply here: the analysis
should update the abstract memory states so as to mimic any update that may occur in the
concrete level.

To develop this idea, we will first present an algorithm for the abstract interpretation of
expressions, that characterizes the values they may evaluate to, and then, we will show how
abstract updates can be performed.

Abstract interpretation of expressions. The algorithm for the abstract interpretation of
an expression should input an abstract pre-condition and return an abstraction of the values
the expression may take. We note JE K] for the abstract interpretation of the expression E .

Since the semantics of scalar expressions is defined by induction over the syntax (Fig-
ure 3.2), their abstract interpretation also proceeds by induction over the syntax. First,
when the expression is a constant n, its abstract semantics should return any abstract ele-
ment that over-approximates {n}. If the value abstraction has a best-abstraction aV , then
aV ({n}) obviously provides such an over-approximation. Otherwise, we simply need to
use a function fV : V�!AV that returns an abstraction (that may not be the most precise
one): this function should simply be such that n 2 gV (fV (n)) for all value n. Second,
when the expression consists of a variable, the analysis should simply return the value ab-
straction associated to this variable in the non relational abstract pre-condition. Last, to
over-approximate the result of a binary operation E 0 �E 1 assuming over-approximations
of the results of E 0 and E 1, the analysis simply needs to apply a conservative approxima-
tion of the operator f� in the non relational lattice. Such an approximation should consist
of an operator f ]� : AV ⇥AV �! AV , such that:

for all n]0,n
]
1 2 AV , { f�(n0,n1) | n0 2 gV (n]0) and n1 2 gV (n]1)}✓ gV ( f ]�(n

]
0,n

]
1))

Intuitively, this operator should over-approximate the effect of the operation on concrete
values. For instance, if we consider addition and assume that AV is the domain of intervals,
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that we can decompose the over-approximation of a composition of operations into the
composition of over-approximations of each operation.

We remark that the analysis functions for both skip commands and sequences of com-
mands proceed in the same way as in Chapter 2. Moreover, the definition of the analysis
for these commands does not depend at all on the abstract domain.

3.3.1 Abstract Interpretation of Assignment
In the graphical language of Chapter 2, state updates boil down to translation and rotation
statements. We observed that the analysis of these statements boils down to the application
of a similar transformation in the abstract level.

In the language considered in this chapter, updates to memory states are performed by
assignment commands. However the principles of Chapter 2 still apply here: the analysis
should update the abstract memory states so as to mimic any update that may occur in the
concrete level.

To develop this idea, we will first present an algorithm for the abstract interpretation of
expressions, that characterizes the values they may evaluate to, and then, we will show how
abstract updates can be performed.

Abstract interpretation of expressions. The algorithm for the abstract interpretation of
an expression should input an abstract pre-condition and return an abstraction of the values
the expression may take. We note JE K] for the abstract interpretation of the expression E .

Since the semantics of scalar expressions is defined by induction over the syntax (Fig-
ure 3.2), their abstract interpretation also proceeds by induction over the syntax. First,
when the expression is a constant n, its abstract semantics should return any abstract ele-
ment that over-approximates {n}. If the value abstraction has a best-abstraction aV , then
aV ({n}) obviously provides such an over-approximation. Otherwise, we simply need to
use a function fV : V�!AV that returns an abstraction (that may not be the most precise
one): this function should simply be such that n 2 gV (fV (n)) for all value n. Second,
when the expression consists of a variable, the analysis should simply return the value ab-
straction associated to this variable in the non relational abstract pre-condition. Last, to
over-approximate the result of a binary operation E 0 �E 1 assuming over-approximations
of the results of E 0 and E 1, the analysis simply needs to apply a conservative approxima-
tion of the operator f� in the non relational lattice. Such an approximation should consist
of an operator f ]� : AV ⇥AV �! AV , such that:

for all n]0,n
]
1 2 AV , { f�(n0,n1) | n0 2 gV (n]0) and n1 2 gV (n]1)}✓ gV ( f ]�(n

]
0,n

]
1))

Intuitively, this operator should over-approximate the effect of the operation on concrete
values. For instance, if we consider addition and assume that AV is the domain of intervals,
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that we can decompose the over-approximation of a composition of operations into the
composition of over-approximations of each operation.

We remark that the analysis functions for both skip commands and sequences of com-
mands proceed in the same way as in Chapter 2. Moreover, the definition of the analysis
for these commands does not depend at all on the abstract domain.

3.3.1 Abstract Interpretation of Assignment
In the graphical language of Chapter 2, state updates boil down to translation and rotation
statements. We observed that the analysis of these statements boils down to the application
of a similar transformation in the abstract level.

In the language considered in this chapter, updates to memory states are performed by
assignment commands. However the principles of Chapter 2 still apply here: the analysis
should update the abstract memory states so as to mimic any update that may occur in the
concrete level.

To develop this idea, we will first present an algorithm for the abstract interpretation of
expressions, that characterizes the values they may evaluate to, and then, we will show how
abstract updates can be performed.

Abstract interpretation of expressions. The algorithm for the abstract interpretation of
an expression should input an abstract pre-condition and return an abstraction of the values
the expression may take. We note JE K] for the abstract interpretation of the expression E .

Since the semantics of scalar expressions is defined by induction over the syntax (Fig-
ure 3.2), their abstract interpretation also proceeds by induction over the syntax. First,
when the expression is a constant n, its abstract semantics should return any abstract ele-
ment that over-approximates {n}. If the value abstraction has a best-abstraction aV , then
aV ({n}) obviously provides such an over-approximation. Otherwise, we simply need to
use a function fV : V�!AV that returns an abstraction (that may not be the most precise
one): this function should simply be such that n 2 gV (fV (n)) for all value n. Second,
when the expression consists of a variable, the analysis should simply return the value ab-
straction associated to this variable in the non relational abstract pre-condition. Last, to
over-approximate the result of a binary operation E 0 �E 1 assuming over-approximations
of the results of E 0 and E 1, the analysis simply needs to apply a conservative approxima-
tion of the operator f� in the non relational lattice. Such an approximation should consist
of an operator f ]� : AV ⇥AV �! AV , such that:

for all n]0,n
]
1 2 AV , { f�(n0,n1) | n0 2 gV (n]0) and n1 2 gV (n]1)}✓ gV ( f ]�(n

]
0,n

]
1))

Intuitively, this operator should over-approximate the effect of the operation on concrete
values. For instance, if we consider addition and assume that AV is the domain of intervals,

• Soundness condition:



Addition for Signs Abstraction

⊥ ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊤ ⊤

⊥ ⊤

⊥ ⊤ ⊤

⊤ ⊤ ⊤ ⊤ ⊤ ⊤

<latexit sha1_base64="ognojEKK8q7AblEC9dAjss5Vy50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxgrGFNJTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMizLBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWaK4Y+S0Wq2hHVKLhE33AjsJ0ppEkksBUNb6d+6wmV5ql8MKMMw4T2JY85o8ZKfnBN3LBbrbl1dwayTLyC1KBAs1v96vRSlicoDRNU68BzMxOOqTKcCZxUOrnGjLIh7WNgqaQJ6nA8O3ZCTqzSI3GqbElDZurviTFNtB4lke1MqBnoRW8q/ucFuYmvwjGXWW5QsvmiOBfEpGT6OelxhcyIkSWUKW5vJWxAFWXG5lOxIXiLLy+Tx7O6d1H37s9rjZsijjIcwTGcggeX0IA7aIIPDDg8wyu8OdJ5cd6dj3lrySlmDuEPnM8ftTKN9w==</latexit>

[= 0]
<latexit sha1_base64="ognojEKK8q7AblEC9dAjss5Vy50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxgrGFNJTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMizLBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWaK4Y+S0Wq2hHVKLhE33AjsJ0ppEkksBUNb6d+6wmV5ql8MKMMw4T2JY85o8ZKfnBN3LBbrbl1dwayTLyC1KBAs1v96vRSlicoDRNU68BzMxOOqTKcCZxUOrnGjLIh7WNgqaQJ6nA8O3ZCTqzSI3GqbElDZurviTFNtB4lke1MqBnoRW8q/ucFuYmvwjGXWW5QsvmiOBfEpGT6OelxhcyIkSWUKW5vJWxAFWXG5lOxIXiLLy+Tx7O6d1H37s9rjZsijjIcwTGcggeX0IA7aIIPDDg8wyu8OdJ5cd6dj3lrySlmDuEPnM8ftTKN9w==</latexit>

[= 0]

<latexit sha1_base64="ognojEKK8q7AblEC9dAjss5Vy50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxgrGFNJTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMizLBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWaK4Y+S0Wq2hHVKLhE33AjsJ0ppEkksBUNb6d+6wmV5ql8MKMMw4T2JY85o8ZKfnBN3LBbrbl1dwayTLyC1KBAs1v96vRSlicoDRNU68BzMxOOqTKcCZxUOrnGjLIh7WNgqaQJ6nA8O3ZCTqzSI3GqbElDZurviTFNtB4lke1MqBnoRW8q/ucFuYmvwjGXWW5QsvmiOBfEpGT6OelxhcyIkSWUKW5vJWxAFWXG5lOxIXiLLy+Tx7O6d1H37s9rjZsijjIcwTGcggeX0IA7aIIPDDg8wyu8OdJ5cd6dj3lrySlmDuEPnM8ftTKN9w==</latexit>

[= 0]

<latexit sha1_base64="oncoQrf/5c+6QMWvXYxJXwCs8os=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQHOCau3ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5vfOyVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhDd+xmWSGpRssShMBTExmT1P+lwhM2JiCWWK21sJG1JFmbERlWwI3vLLq6R5UfWuqt7DZaV2m8dRhBM4hXPw4BpqcA91aAADAc/wCm/O2Hlx3p2PRWvByWeO4Q+czx87BY9x</latexit>

[� 0]
<latexit sha1_base64="oncoQrf/5c+6QMWvXYxJXwCs8os=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQHOCau3ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5vfOyVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhDd+xmWSGpRssShMBTExmT1P+lwhM2JiCWWK21sJG1JFmbERlWwI3vLLq6R5UfWuqt7DZaV2m8dRhBM4hXPw4BpqcA91aAADAc/wCm/O2Hlx3p2PRWvByWeO4Q+czx87BY9x</latexit>

[� 0]
<latexit sha1_base64="oncoQrf/5c+6QMWvXYxJXwCs8os=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQHOCau3ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5vfOyVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhDd+xmWSGpRssShMBTExmT1P+lwhM2JiCWWK21sJG1JFmbERlWwI3vLLq6R5UfWuqt7DZaV2m8dRhBM4hXPw4BpqcA91aAADAc/wCm/O2Hlx3p2PRWvByWeO4Q+czx87BY9x</latexit>

[� 0]

<latexit sha1_base64="oncoQrf/5c+6QMWvXYxJXwCs8os=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQHOCau3ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5vfOyVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhDd+xmWSGpRssShMBTExmT1P+lwhM2JiCWWK21sJG1JFmbERlWwI3vLLq6R5UfWuqt7DZaV2m8dRhBM4hXPw4BpqcA91aAADAc/wCm/O2Hlx3p2PRWvByWeO4Q+czx87BY9x</latexit>

[� 0]

<latexit sha1_base64="oncoQrf/5c+6QMWvXYxJXwCs8os=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQHOCau3ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5vfOyVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhDd+xmWSGpRssShMBTExmT1P+lwhM2JiCWWK21sJG1JFmbERlWwI3vLLq6R5UfWuqt7DZaV2m8dRhBM4hXPw4BpqcA91aAADAc/wCm/O2Hlx3p2PRWvByWeO4Q+czx87BY9x</latexit>

[� 0]

<latexit sha1_base64="+QaCKDZNTCFHQl2QVGgi1FN7MUk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQFjonr98oVt+rOQVaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOB01I31ZhQNqID7FgqaYTaz+b3TsmZVfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14Y2fcZmkBiVbLApTQUxMZs+TPlfIjJhYQpni9lbChlRRZmxEJRuCt/zyKmleVL2rqvdwWand5nEU4QRO4Rw8uIYa3EMdGsBAwDO8wpszdl6cd+dj0Vpw8plj+APn8wdCso92</latexit>

[ 0]
<latexit sha1_base64="+QaCKDZNTCFHQl2QVGgi1FN7MUk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQFjonr98oVt+rOQVaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOB01I31ZhQNqID7FgqaYTaz+b3TsmZVfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14Y2fcZmkBiVbLApTQUxMZs+TPlfIjJhYQpni9lbChlRRZmxEJRuCt/zyKmleVL2rqvdwWand5nEU4QRO4Rw8uIYa3EMdGsBAwDO8wpszdl6cd+dj0Vpw8plj+APn8wdCso92</latexit>

[ 0]
<latexit sha1_base64="+QaCKDZNTCFHQl2QVGgi1FN7MUk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQFjonr98oVt+rOQVaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOB01I31ZhQNqID7FgqaYTaz+b3TsmZVfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14Y2fcZmkBiVbLApTQUxMZs+TPlfIjJhYQpni9lbChlRRZmxEJRuCt/zyKmleVL2rqvdwWand5nEU4QRO4Rw8uIYa3EMdGsBAwDO8wpszdl6cd+dj0Vpw8plj+APn8wdCso92</latexit>

[ 0]

<latexit sha1_base64="+QaCKDZNTCFHQl2QVGgi1FN7MUk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQFjonr98oVt+rOQVaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOB01I31ZhQNqID7FgqaYTaz+b3TsmZVfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14Y2fcZmkBiVbLApTQUxMZs+TPlfIjJhYQpni9lbChlRRZmxEJRuCt/zyKmleVL2rqvdwWand5nEU4QRO4Rw8uIYa3EMdGsBAwDO8wpszdl6cd+dj0Vpw8plj+APn8wdCso92</latexit>

[ 0]

<latexit sha1_base64="+QaCKDZNTCFHQl2QVGgi1FN7MUk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQFjonr98oVt+rOQVaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOB01I31ZhQNqID7FgqaYTaz+b3TsmZVfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14Y2fcZmkBiVbLApTQUxMZs+TPlfIjJhYQpni9lbChlRRZmxEJRuCt/zyKmleVL2rqvdwWand5nEU4QRO4Rw8uIYa3EMdGsBAwDO8wpszdl6cd+dj0Vpw8plj+APn8wdCso92</latexit>

[ 0]
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Moreover, FB commutes with the union, thus:

[

i�0
Mi = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

As a side remark (that can be skipped in a first read), the above definition of the seman-
tics of loops can also be written using a least-fixpoint, using Kleene’s fixpoint theorem
(Theorem ??) F¬B (lfpMF) where F : M0 7�!M[ JC KP �FB (M0) (the application of the
theorem requires to verify the continuity of F).

P(V)���! ���
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P(V)���! ���
aI

gI AI

P(V)���! ���
aV

gV AV

P(M)��! ��a

g
A

A= X! AV
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] vM1

] () (8x 2 X. M0
](x)vV M1

](x))

8x 2 X. ?A(x) =?V

Theorem 1 If P(V)���! ���
aV

gV AV then P(M)��! ��a

g
A.

Find J·K]P : A! A such that

8C. JCKP � g v g � JCK]P

aS (3) = [> 0]

f ]+

f ]�



Subtraction for Signs Abstraction

⊥ ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊤ ⊤

⊥ ⊤

⊥ ⊤ ⊤

⊤ ⊤ ⊤ ⊤ ⊤ ⊤

<latexit sha1_base64="oncoQrf/5c+6QMWvXYxJXwCs8os=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQHOCau3ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5vfOyVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhDd+xmWSGpRssShMBTExmT1P+lwhM2JiCWWK21sJG1JFmbERlWwI3vLLq6R5UfWuqt7DZaV2m8dRhBM4hXPw4BpqcA91aAADAc/wCm/O2Hlx3p2PRWvByWeO4Q+czx87BY9x</latexit>

[� 0]
<latexit sha1_base64="oncoQrf/5c+6QMWvXYxJXwCs8os=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQHOCau3ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5vfOyVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhDd+xmWSGpRssShMBTExmT1P+lwhM2JiCWWK21sJG1JFmbERlWwI3vLLq6R5UfWuqt7DZaV2m8dRhBM4hXPw4BpqcA91aAADAc/wCm/O2Hlx3p2PRWvByWeO4Q+czx87BY9x</latexit>

[� 0]

<latexit sha1_base64="oncoQrf/5c+6QMWvXYxJXwCs8os=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQHOCau3ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5vfOyVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhDd+xmWSGpRssShMBTExmT1P+lwhM2JiCWWK21sJG1JFmbERlWwI3vLLq6R5UfWuqt7DZaV2m8dRhBM4hXPw4BpqcA91aAADAc/wCm/O2Hlx3p2PRWvByWeO4Q+czx87BY9x</latexit>

[� 0]

<latexit sha1_base64="oncoQrf/5c+6QMWvXYxJXwCs8os=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQHOCau3ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5vfOyVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhDd+xmWSGpRssShMBTExmT1P+lwhM2JiCWWK21sJG1JFmbERlWwI3vLLq6R5UfWuqt7DZaV2m8dRhBM4hXPw4BpqcA91aAADAc/wCm/O2Hlx3p2PRWvByWeO4Q+czx87BY9x</latexit>

[� 0]

<latexit sha1_base64="oncoQrf/5c+6QMWvXYxJXwCs8os=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQHOCau3ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5vfOyVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhDd+xmWSGpRssShMBTExmT1P+lwhM2JiCWWK21sJG1JFmbERlWwI3vLLq6R5UfWuqt7DZaV2m8dRhBM4hXPw4BpqcA91aAADAc/wCm/O2Hlx3p2PRWvByWeO4Q+czx87BY9x</latexit>

[� 0]
<latexit sha1_base64="ognojEKK8q7AblEC9dAjss5Vy50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxgrGFNJTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMizLBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWaK4Y+S0Wq2hHVKLhE33AjsJ0ppEkksBUNb6d+6wmV5ql8MKMMw4T2JY85o8ZKfnBN3LBbrbl1dwayTLyC1KBAs1v96vRSlicoDRNU68BzMxOOqTKcCZxUOrnGjLIh7WNgqaQJ6nA8O3ZCTqzSI3GqbElDZurviTFNtB4lke1MqBnoRW8q/ucFuYmvwjGXWW5QsvmiOBfEpGT6OelxhcyIkSWUKW5vJWxAFWXG5lOxIXiLLy+Tx7O6d1H37s9rjZsijjIcwTGcggeX0IA7aIIPDDg8wyu8OdJ5cd6dj3lrySlmDuEPnM8ftTKN9w==</latexit>

[= 0]

<latexit sha1_base64="ognojEKK8q7AblEC9dAjss5Vy50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxgrGFNJTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMizLBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWaK4Y+S0Wq2hHVKLhE33AjsJ0ppEkksBUNb6d+6wmV5ql8MKMMw4T2JY85o8ZKfnBN3LBbrbl1dwayTLyC1KBAs1v96vRSlicoDRNU68BzMxOOqTKcCZxUOrnGjLIh7WNgqaQJ6nA8O3ZCTqzSI3GqbElDZurviTFNtB4lke1MqBnoRW8q/ucFuYmvwjGXWW5QsvmiOBfEpGT6OelxhcyIkSWUKW5vJWxAFWXG5lOxIXiLLy+Tx7O6d1H37s9rjZsijjIcwTGcggeX0IA7aIIPDDg8wyu8OdJ5cd6dj3lrySlmDuEPnM8ftTKN9w==</latexit>

[= 0]

<latexit sha1_base64="ognojEKK8q7AblEC9dAjss5Vy50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxgrGFNJTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMizLBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWaK4Y+S0Wq2hHVKLhE33AjsJ0ppEkksBUNb6d+6wmV5ql8MKMMw4T2JY85o8ZKfnBN3LBbrbl1dwayTLyC1KBAs1v96vRSlicoDRNU68BzMxOOqTKcCZxUOrnGjLIh7WNgqaQJ6nA8O3ZCTqzSI3GqbElDZurviTFNtB4lke1MqBnoRW8q/ucFuYmvwjGXWW5QsvmiOBfEpGT6OelxhcyIkSWUKW5vJWxAFWXG5lOxIXiLLy+Tx7O6d1H37s9rjZsijjIcwTGcggeX0IA7aIIPDDg8wyu8OdJ5cd6dj3lrySlmDuEPnM8ftTKN9w==</latexit>

[= 0]

<latexit sha1_base64="+QaCKDZNTCFHQl2QVGgi1FN7MUk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQFjonr98oVt+rOQVaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOB01I31ZhQNqID7FgqaYTaz+b3TsmZVfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14Y2fcZmkBiVbLApTQUxMZs+TPlfIjJhYQpni9lbChlRRZmxEJRuCt/zyKmleVL2rqvdwWand5nEU4QRO4Rw8uIYa3EMdGsBAwDO8wpszdl6cd+dj0Vpw8plj+APn8wdCso92</latexit>

[ 0]
<latexit sha1_base64="+QaCKDZNTCFHQl2QVGgi1FN7MUk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQFjonr98oVt+rOQVaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOB01I31ZhQNqID7FgqaYTaz+b3TsmZVfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14Y2fcZmkBiVbLApTQUxMZs+TPlfIjJhYQpni9lbChlRRZmxEJRuCt/zyKmleVL2rqvdwWand5nEU4QRO4Rw8uIYa3EMdGsBAwDO8wpszdl6cd+dj0Vpw8plj+APn8wdCso92</latexit>

[ 0]
<latexit sha1_base64="+QaCKDZNTCFHQl2QVGgi1FN7MUk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQFjonr98oVt+rOQVaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOB01I31ZhQNqID7FgqaYTaz+b3TsmZVfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14Y2fcZmkBiVbLApTQUxMZs+TPlfIjJhYQpni9lbChlRRZmxEJRuCt/zyKmleVL2rqvdwWand5nEU4QRO4Rw8uIYa3EMdGsBAwDO8wpszdl6cd+dj0Vpw8plj+APn8wdCso92</latexit>

[ 0]

<latexit sha1_base64="+QaCKDZNTCFHQl2QVGgi1FN7MUk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQFjonr98oVt+rOQVaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOB01I31ZhQNqID7FgqaYTaz+b3TsmZVfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14Y2fcZmkBiVbLApTQUxMZs+TPlfIjJhYQpni9lbChlRRZmxEJRuCt/zyKmleVL2rqvdwWand5nEU4QRO4Rw8uIYa3EMdGsBAwDO8wpszdl6cd+dj0Vpw8plj+APn8wdCso92</latexit>

[ 0]

<latexit sha1_base64="+QaCKDZNTCFHQl2QVGgi1FN7MUk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7nQFjonr98oVt+rOQVaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOB01I31ZhQNqID7FgqaYTaz+b3TsmZVfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14Y2fcZmkBiVbLApTQUxMZs+TPlfIjJhYQpni9lbChlRRZmxEJRuCt/zyKmleVL2rqvdwWand5nEU4QRO4Rw8uIYa3EMdGsBAwDO8wpszdl6cd+dj0Vpw8plj+APn8wdCso92</latexit>

[ 0]
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Moreover, FB commutes with the union, thus:

[

i�0
Mi = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

As a side remark (that can be skipped in a first read), the above definition of the seman-
tics of loops can also be written using a least-fixpoint, using Kleene’s fixpoint theorem
(Theorem ??) F¬B (lfpMF) where F : M0 7�!M[ JC KP �FB (M0) (the application of the
theorem requires to verify the continuity of F).
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More cases involving positive/negative infinity …



Example (Interval Operations)

• Suppose we have an abstract memory     such that 
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JE K] : A�! AV

JnK](M]) = fV (n)
JxK](M]) = M](x)

JE 0 �E 1K](M]) = f ]�(JE 0K](M]),JE 1K](M]))

Figure 3.8
Abstract semantics of expressions

then f ]+ should compute an over-approximation for the addition of intervals:

f ]+([a,b], [a0,b0]) = [a+a0,b+b0]
f ]+([a,b], [a0,+•)) = [a+a0,+•)

Other arithmetic operations have similar counterparts, although sometimes more compli-
cated (for instance, multiplication requires a number of case splits to handle positive and
negative inputs).

The full definition of the abstract semantics of scalar expressions is shown in Figure 3.8.

Example 3.10 (Abstract semantics of expressions) We assume that we use the interval abstract
domain, that we consider x+2⇤y�6, and that M] is defined by M](x) = [10,20] and M](y) = [8,9].
For short, we note operations over intervals just like the conventional arithmetic operations. Then:

Jx+2⇤y�6K](M]) = f ]�(Jx+2⇤yK](M]),J6K](M]))

= f ]+(JxK](M]),J2⇤yK](M]))� [6,6]
= M](x)+ f ]⇤(J2K](M]),JyK](M]))� [6,6]
= [10,20]+ [2,2]⇤ [8,9]� [6,6]
= [20,32]

We can prove by induction over the structure of expressions that this semantics is sound
(the proof is provided in Appendix B.1.1):
Theorem 3.2 (Soundness of the abstract interpretation of expressions) For all expression E ,
for all non relational abstract element M] and for all memory state s such that s 2 g(M]), then:

JE K(s) 2 g(JE K](M]))

Analysis of assignments. We now define the analysis function for an assignment com-
mand x := E . We recall that Jx := E KP(M) = {s [x 7! JE K(s)] | s 2 M}. Intuitively, an
assignment is the composition of the evaluation of the expression into a value n, and of the
update of the variable x with this value n. By Theorem 3.1, this composition can be over-
approximated piece by piece. We have seen in the previous paragraph how to compute an
over-approximation of the right hand side of the assignment. The abstract counterpart of
a write into a concrete memory is a write in the abstract store. Therefore, the following
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definition provides a sound over-approximation for the concrete semantics of assignments:

Jx := E K]
P
(M]) = M][x 7! JE K](M])]

We can also define a sound analysis function for the statement; indeed, the only
change is that a value chosen in a non-deterministic way is written into the variable, so in
the abstract level, we should replace its value with >V :

J (x)K]
P
(M]) = M][x 7! >V ]

Example 3.11 (Analysis of an assignment command) We consider the assignment x := x+2⇤
y�6, and the abstract pre-condition M] defined in Example 3.10. Then, the abstract post-condition
is:

Jx := x+2⇤y�6K](M]) = {x 7! [20,32],y 7! [8,9]}

Analysis of assignments using a relational abstract domain. The analysis presented in
the previous paragraphs is intrinsically non relational, since it first evaluates the right hand
side expression in the value abstract domain (Figure 3.8) and then updates the abstraction
of the left hand side variable. Such separate steps prevent the inference of relations. As
an example, let us consider assignment x := y+ 1 with the abstract domain of convex
polyhedra: then, we expect the analysis to infer the post-condition x y+1 ^ x� y+1,
which involves both the left hand side variable x and the right hand side expression y+1.

For this reason, relational abstract domains implement specific algorithms for the analy-
sis of assignments. A common way of analyzing x := E in a relational domain proceeds as
follows:
1. add a temporary dimension x0, that is meant to describe the value of the expression;
2. represent as precisely as possible the constraint x0 = E ;
3. project out dimension x, and rename x0 into x.

The following example shows this technique:
Example 3.12 (Relational analysis of an assignment) We use the abstract domain of convex poly-
hedra, and assume the abstract pre-condition 2  x  3 ^ 1� x  y. We consider the assignment
x := y+x+2. After introducing temporary x0, we can represent the assignment effect exactly:

2  x 3 ^ 1�x y ^ x0 = y+x+2

The last term allows to rewrite all occurrences of x into x0 � y� 2, so that we get the conjunction
of constraints 2  x0 � y� 2  3 ^ 3� x0 + y  y. After projection and renaming, we finally get
4  x�y 5 ^ 3  x.

3.3.2 Abstract Interpretation of Conditional Branching
To design a static analysis algorithm for conditional commands, we follow the same prin-
ciple as in the previous paragraphs, and we over-approximate the definition of the concrete
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assignment is the composition of the evaluation of the expression into a value n, and of the
update of the variable x with this value n. By Theorem 3.1, this composition can be over-
approximated piece by piece. We have seen in the previous paragraph how to compute an
over-approximation of the right hand side of the assignment. The abstract counterpart of
a write into a concrete memory is a write in the abstract store. Therefore, the following
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definition provides a sound over-approximation for the concrete semantics of assignments:

Jx := E K]
P
(M]) = M][x 7! JE K](M])]

We can also define a sound analysis function for the statement; indeed, the only
change is that a value chosen in a non-deterministic way is written into the variable, so in
the abstract level, we should replace its value with >V :

J (x)K]
P
(M]) = M][x 7! >V ]

Example 3.11 (Analysis of an assignment command) We consider the assignment x := x+2⇤
y�6, and the abstract pre-condition M] defined in Example 3.10. Then, the abstract post-condition
is:

Jx := x+2⇤y�6K](M]) = {x 7! [20,32],y 7! [8,9]}

Analysis of assignments using a relational abstract domain. The analysis presented in
the previous paragraphs is intrinsically non relational, since it first evaluates the right hand
side expression in the value abstract domain (Figure 3.8) and then updates the abstraction
of the left hand side variable. Such separate steps prevent the inference of relations. As
an example, let us consider assignment x := y+ 1 with the abstract domain of convex
polyhedra: then, we expect the analysis to infer the post-condition x y+1 ^ x� y+1,
which involves both the left hand side variable x and the right hand side expression y+1.

For this reason, relational abstract domains implement specific algorithms for the analy-
sis of assignments. A common way of analyzing x := E in a relational domain proceeds as
follows:
1. add a temporary dimension x0, that is meant to describe the value of the expression;
2. represent as precisely as possible the constraint x0 = E ;
3. project out dimension x, and rename x0 into x.

The following example shows this technique:
Example 3.12 (Relational analysis of an assignment) We use the abstract domain of convex poly-
hedra, and assume the abstract pre-condition 2  x  3 ^ 1� x  y. We consider the assignment
x := y+x+2. After introducing temporary x0, we can represent the assignment effect exactly:

2  x 3 ^ 1�x y ^ x0 = y+x+2

The last term allows to rewrite all occurrences of x into x0 � y� 2, so that we get the conjunction
of constraints 2  x0 � y� 2  3 ^ 3� x0 + y  y. After projection and renaming, we finally get
4  x�y 5 ^ 3  x.

3.3.2 Abstract Interpretation of Conditional Branching
To design a static analysis algorithm for conditional commands, we follow the same prin-
ciple as in the previous paragraphs, and we over-approximate the definition of the concrete



Conditionals

• Concrete semantics:

•

• Abstract semantics:

•
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semantics step by step. The semantics of a command (B ){C 0} {C 1} is defined by:

J (B ){C 0} {C 1}KP(M) = JE 0KP(FB (M)) [ JE 1KP(F¬B (M))

This formula guides the design of the analysis. To construct the analysis function of this
statement, we will first design an operation to over-approximate FB and F¬B , then, we
will use the abstract semantics of both branches (as part of the definition of the analysis by
induction over the syntax), and finally, we will apply an over-approximation of the union
of concrete sets. The non-deterministic choice construction of Chapter 2 does not have a
condition and was thus simpler (the analysis of non-deterministic choice in Section 2.3.3
does not require any abstract filtering operation).

Analysis of conditions. To analyze conditions, we first construct an abstraction of the
concrete filtering function, that we note F

]
B . In the concrete level, FB (M) returns the

memory states in M such that the condition B evaluates to true. In the abstract level,
F

]
B should thus input an abstract state and refine it so as to take into account that B should

evaluate to true. Therefore, this operator should satisfy the following soundness condition:

for all condition B , and for all abstract state M], FB (g(M]))✓ g(F ]
B (M

]))

Boolean expressions are of the form x<n, where x is a variable, < a comparison operator
and n a scalar value. Therefore, a sound and precise F

]
B simply adds novel constraints

to the abstract state, as shown in the following cases (we show only a few representative
cases).

• With the signs abstract domain {?,>, [= 0], [� 0], [ 0]}:

F
]
x<0(M

]) =

(
(y 2 X) 7�! ? if M](x) = [� 0] or [= 0] or ?
M][x 7! [ 0]] if M](x) = [ 0] or >

The first case occurs when M] contains information that entails the condition will al-
ways evaluate to false. The second case occurs when the condition may evaluate to
true, and the information about x gets refined so as to take this into account. Similar
rules handle conditions with other comparison operators and constants.

• With the intervals abstract domain, and if M](x) = [a,b], then:

F
]
x<n(M]) =

8
>><

>>:

(y 2 X) 7�! ? if a > n
M][x 7! [a,n]] if a  n  b
M] if b  n

The first case occurs when M] contains information that entails the condition will al-
ways evaluate to false. The second case occurs when the abstract information can be
refined by tightening the right bound, and the third case occurs when all stores repre-
sented by M] satisfy the condition x< n.
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The abstract union operator defined for the non-relational domain is sound in the following
sense (the proof is given in Appendix B.1.3):
Theorem 3.4 (Soundness of abstract join) Let M]

0 and M]
1 be two abstract states. Then:

g(M]
0) [ g(M]

1)✓ g(M]
0 t

] M]
1)

We now show how this operator works on an example:
Example 3.14 (Analysis of flow joins) Let us consider the following abstract states:

M]
0 = [x 7! [0,3];y 7! [6,7];z 7! [4,8]]

M]
1 = [x 7! [5,6];y 7! [0,2];z 7! [6,9]]

Then:
M]

0 t
] M]

1 = [x 7! [0,6];y 7! [0,7];z 7! [4,9]]

Analysis of a conditional command. We can now put together the definitions of all the
elements defined in the previous paragraphs, and obtain a definition for the abstract seman-
tics of conditional commands:

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M

])) t] JC 1K]P(F ]
¬B (M

]))

Intuitively, this analysis definition is very similar to that of Section 2.3.3, except for the
F

]
B calls, which is not surprising, since the language of Chapter 2 featured only non-

deterministic choice (no condition formula).
Example 3.15 (Analysis of a conditional command) We demonstrate the analysis of the pro-
gram of Example 3.13, starting from the abstract pre-condition M] = {x 7! >,y 7! >}. Then, the
analysis proceeds as follows:
1. First, the analysis of the true branch applies the filtering function, and then computes a post-

condition for the assignment command y := x�7; it produces:

{x 7! [8,+•),y 7! [1,+•)}

2. In the same way, the analysis of the false branch produces the abstract state:

{x 7! (�•,7],y 7! [0,+•)}

3. Last, the abstract join of these two abstract states yields:

{x 7! >,y 7! [0,+•)}

Analysis of conditional commands with a relational abstract domain. So far, we have
considered the analysis of conditional commands under the assumption that the abstract
domain is non relational. Switching to a relational abstract domain would let us still use the
same method, but with different algorithms for the analysis of tests and for the computation
of abstract join.

Abstract filtering

Join operator



Abstract Filtering

• Abstract filtering function should satisfy the following 
soundness condition:
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semantics step by step. The semantics of a command (B ){C 0} {C 1} is defined by:

J (B ){C 0} {C 1}KP(M) = JE 0KP(FB (M)) [ JE 1KP(F¬B (M))

This formula guides the design of the analysis. To construct the analysis function of this
statement, we will first design an operation to over-approximate FB and F¬B , then, we
will use the abstract semantics of both branches (as part of the definition of the analysis by
induction over the syntax), and finally, we will apply an over-approximation of the union
of concrete sets. The non-deterministic choice construction of Chapter 2 does not have a
condition and was thus simpler (the analysis of non-deterministic choice in Section 2.3.3
does not require any abstract filtering operation).

Analysis of conditions. To analyze conditions, we first construct an abstraction of the
concrete filtering function, that we note F

]
B . In the concrete level, FB (M) returns the

memory states in M such that the condition B evaluates to true. In the abstract level,
F

]
B should thus input an abstract state and refine it so as to take into account that B should

evaluate to true. Therefore, this operator should satisfy the following soundness condition:

for all condition B , and for all abstract state M], FB (g(M]))✓ g(F ]
B (M

]))

Boolean expressions are of the form x<n, where x is a variable, < a comparison operator
and n a scalar value. Therefore, a sound and precise F

]
B simply adds novel constraints

to the abstract state, as shown in the following cases (we show only a few representative
cases).

• With the signs abstract domain {?,>, [= 0], [� 0], [ 0]}:

F
]
x<0(M

]) =

(
(y 2 X) 7�! ? if M](x) = [� 0] or [= 0] or ?
M][x 7! [ 0]] if M](x) = [ 0] or >

The first case occurs when M] contains information that entails the condition will al-
ways evaluate to false. The second case occurs when the condition may evaluate to
true, and the information about x gets refined so as to take this into account. Similar
rules handle conditions with other comparison operators and constants.

• With the intervals abstract domain, and if M](x) = [a,b], then:

F
]
x<n(M]) =

8
>><

>>:

(y 2 X) 7�! ? if a > n
M][x 7! [a,n]] if a  n  b
M] if b  n

The first case occurs when M] contains information that entails the condition will al-
ways evaluate to false. The second case occurs when the abstract information can be
refined by tightening the right bound, and the third case occurs when all stores repre-
sented by M] satisfy the condition x< n.

• A trivial example: 
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JC KP : P(M)�! P(M)

J KP(M) = M
JC 0; C 1KP(M) = JC 1KP(JC 0KP(M))

Jx := E KP(M) = {s [x 7! JE K(s)] | s 2 M}
J (x)KP(M) = {s [x 7! n] | s 2 M,n 2 V}

J (B ){C 0} {C 1}KP(M) = JC 0KP(FB (M)) [ JC 1KP(F¬B (M))

J (B ){C }KP(M) = F¬B
⇣S

i�0 (JC KP �FB )
i (M)

⌘

Figure 0.2
Semantics of commands

8b. �•  b

8a. a +•

f ]+([a,b], [a0,b0]) = [a+a0,b+b0]

F ]
B (M

]) =>]

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M

])) t] JC 1K]P(F ]
¬B (M

]))



Examples of Abstract Filtering

• With the signs abstract domain

• With the intervals abstract domain
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semantics step by step. The semantics of a command (B ){C 0} {C 1} is defined by:

J (B ){C 0} {C 1}KP(M) = JE 0KP(FB (M)) [ JE 1KP(F¬B (M))

This formula guides the design of the analysis. To construct the analysis function of this
statement, we will first design an operation to over-approximate FB and F¬B , then, we
will use the abstract semantics of both branches (as part of the definition of the analysis by
induction over the syntax), and finally, we will apply an over-approximation of the union
of concrete sets. The non-deterministic choice construction of Chapter 2 does not have a
condition and was thus simpler (the analysis of non-deterministic choice in Section 2.3.3
does not require any abstract filtering operation).

Analysis of conditions. To analyze conditions, we first construct an abstraction of the
concrete filtering function, that we note F

]
B . In the concrete level, FB (M) returns the

memory states in M such that the condition B evaluates to true. In the abstract level,
F

]
B should thus input an abstract state and refine it so as to take into account that B should

evaluate to true. Therefore, this operator should satisfy the following soundness condition:

for all condition B , and for all abstract state M], FB (g(M]))✓ g(F ]
B (M

]))

Boolean expressions are of the form x<n, where x is a variable, < a comparison operator
and n a scalar value. Therefore, a sound and precise F

]
B simply adds novel constraints

to the abstract state, as shown in the following cases (we show only a few representative
cases).

• With the signs abstract domain {?,>, [= 0], [� 0], [ 0]}:

F
]
x<0(M

]) =

(
(y 2 X) 7�! ? if M](x) = [� 0] or [= 0] or ?
M][x 7! [ 0]] if M](x) = [ 0] or >

The first case occurs when M] contains information that entails the condition will al-
ways evaluate to false. The second case occurs when the condition may evaluate to
true, and the information about x gets refined so as to take this into account. Similar
rules handle conditions with other comparison operators and constants.

• With the intervals abstract domain, and if M](x) = [a,b], then:

F
]
x<n(M]) =

8
>><

>>:

(y 2 X) 7�! ? if a > n
M][x 7! [a,n]] if a  n  b
M] if b  n

The first case occurs when M] contains information that entails the condition will al-
ways evaluate to false. The second case occurs when the abstract information can be
refined by tightening the right bound, and the third case occurs when all stores repre-
sented by M] satisfy the condition x< n.
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semantics step by step. The semantics of a command (B ){C 0} {C 1} is defined by:

J (B ){C 0} {C 1}KP(M) = JE 0KP(FB (M)) [ JE 1KP(F¬B (M))

This formula guides the design of the analysis. To construct the analysis function of this
statement, we will first design an operation to over-approximate FB and F¬B , then, we
will use the abstract semantics of both branches (as part of the definition of the analysis by
induction over the syntax), and finally, we will apply an over-approximation of the union
of concrete sets. The non-deterministic choice construction of Chapter 2 does not have a
condition and was thus simpler (the analysis of non-deterministic choice in Section 2.3.3
does not require any abstract filtering operation).

Analysis of conditions. To analyze conditions, we first construct an abstraction of the
concrete filtering function, that we note F

]
B . In the concrete level, FB (M) returns the

memory states in M such that the condition B evaluates to true. In the abstract level,
F

]
B should thus input an abstract state and refine it so as to take into account that B should

evaluate to true. Therefore, this operator should satisfy the following soundness condition:

for all condition B , and for all abstract state M], FB (g(M]))✓ g(F ]
B (M

]))

Boolean expressions are of the form x<n, where x is a variable, < a comparison operator
and n a scalar value. Therefore, a sound and precise F

]
B simply adds novel constraints

to the abstract state, as shown in the following cases (we show only a few representative
cases).

• With the signs abstract domain {?,>, [= 0], [� 0], [ 0]}:

F
]
x<0(M

]) =

(
(y 2 X) 7�! ? if M](x) = [� 0] or [= 0] or ?
M][x 7! [ 0]] if M](x) = [ 0] or >

The first case occurs when M] contains information that entails the condition will al-
ways evaluate to false. The second case occurs when the condition may evaluate to
true, and the information about x gets refined so as to take this into account. Similar
rules handle conditions with other comparison operators and constants.

• With the intervals abstract domain, and if M](x) = [a,b], then:

F
]
x<n(M]) =

8
>><

>>:

(y 2 X) 7�! ? if a > n
M][x 7! [a,n]] if a  n  b
M] if b  n

The first case occurs when M] contains information that entails the condition will al-
ways evaluate to false. The second case occurs when the abstract information can be
refined by tightening the right bound, and the third case occurs when all stores repre-
sented by M] satisfy the condition x< n.
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semantics step by step. The semantics of a command (B ){C 0} {C 1} is defined by:

J (B ){C 0} {C 1}KP(M) = JE 0KP(FB (M)) [ JE 1KP(F¬B (M))

This formula guides the design of the analysis. To construct the analysis function of this
statement, we will first design an operation to over-approximate FB and F¬B , then, we
will use the abstract semantics of both branches (as part of the definition of the analysis by
induction over the syntax), and finally, we will apply an over-approximation of the union
of concrete sets. The non-deterministic choice construction of Chapter 2 does not have a
condition and was thus simpler (the analysis of non-deterministic choice in Section 2.3.3
does not require any abstract filtering operation).

Analysis of conditions. To analyze conditions, we first construct an abstraction of the
concrete filtering function, that we note F

]
B . In the concrete level, FB (M) returns the

memory states in M such that the condition B evaluates to true. In the abstract level,
F

]
B should thus input an abstract state and refine it so as to take into account that B should

evaluate to true. Therefore, this operator should satisfy the following soundness condition:

for all condition B , and for all abstract state M], FB (g(M]))✓ g(F ]
B (M

]))

Boolean expressions are of the form x<n, where x is a variable, < a comparison operator
and n a scalar value. Therefore, a sound and precise F

]
B simply adds novel constraints

to the abstract state, as shown in the following cases (we show only a few representative
cases).

• With the signs abstract domain {?,>, [= 0], [� 0], [ 0]}:

F
]
x<0(M

]) =

(
(y 2 X) 7�! ? if M](x) = [� 0] or [= 0] or ?
M][x 7! [ 0]] if M](x) = [ 0] or >

The first case occurs when M] contains information that entails the condition will al-
ways evaluate to false. The second case occurs when the condition may evaluate to
true, and the information about x gets refined so as to take this into account. Similar
rules handle conditions with other comparison operators and constants.

• With the intervals abstract domain, and if M](x) = [a,b], then:

F
]
x<n(M]) =

8
>><

>>:

(y 2 X) 7�! ? if a > n
M][x 7! [a,n]] if a  n  b
M] if b  n

The first case occurs when M] contains information that entails the condition will al-
ways evaluate to false. The second case occurs when the abstract information can be
refined by tightening the right bound, and the third case occurs when all stores repre-
sented by M] satisfy the condition x< n.



Analysis of Flow Joins

• The concrete semantics computes the union of the results of 
both branches.  

• The analysis should over-approximate unions of concrete states. 

                 

• Given the join operator  in the value abstract domain, we 
define the join operator for abstract memories as follows:
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semantics step by step. The semantics of a command (B ){C 0} {C 1} is defined by:

J (B ){C 0} {C 1}KP(M) = JE 0KP(FB (M)) [ JE 1KP(F¬B (M))

This formula guides the design of the analysis. To construct the analysis function of this
statement, we will first design an operation to over-approximate FB and F¬B , then, we
will use the abstract semantics of both branches (as part of the definition of the analysis by
induction over the syntax), and finally, we will apply an over-approximation of the union
of concrete sets. The non-deterministic choice construction of Chapter 2 does not have a
condition and was thus simpler (the analysis of non-deterministic choice in Section 2.3.3
does not require any abstract filtering operation).

Analysis of conditions. To analyze conditions, we first construct an abstraction of the
concrete filtering function, that we note F

]
B . In the concrete level, FB (M) returns the

memory states in M such that the condition B evaluates to true. In the abstract level,
F

]
B should thus input an abstract state and refine it so as to take into account that B should

evaluate to true. Therefore, this operator should satisfy the following soundness condition:

for all condition B , and for all abstract state M], FB (g(M]))✓ g(F ]
B (M

]))

Boolean expressions are of the form x<n, where x is a variable, < a comparison operator
and n a scalar value. Therefore, a sound and precise F

]
B simply adds novel constraints

to the abstract state, as shown in the following cases (we show only a few representative
cases).

• With the signs abstract domain {?,>, [= 0], [� 0], [ 0]}:

F
]
x<0(M

]) =

(
(y 2 X) 7�! ? if M](x) = [� 0] or [= 0] or ?
M][x 7! [ 0]] if M](x) = [ 0] or >

The first case occurs when M] contains information that entails the condition will al-
ways evaluate to false. The second case occurs when the condition may evaluate to
true, and the information about x gets refined so as to take this into account. Similar
rules handle conditions with other comparison operators and constants.

• With the intervals abstract domain, and if M](x) = [a,b], then:

F
]
x<n(M]) =

8
>><

>>:

(y 2 X) 7�! ? if a > n
M][x 7! [a,n]] if a  n  b
M] if b  n

The first case occurs when M] contains information that entails the condition will al-
ways evaluate to false. The second case occurs when the abstract information can be
refined by tightening the right bound, and the third case occurs when all stores repre-
sented by M] satisfy the condition x< n.
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Example 3.13 (Analysis of a condition) We consider the code fragment below that computes the
absolute value of x�7 into variable y:

(x 7){
y := x�7

} {
y := 7�x

}

We assume the abstract pre-condition M] defined by x 7! >,y 7! >. Then, by the rules shown above
(assuming the scalar values are of integer type):

F
]
x7(M

]) = M][x 7! (�•,7]]
F

]
x>7(M

]) = M][x 7! [8,+•)]

Although we do not provide the full definition of the condition analysis operator, we note
that it should be proved sound (the proof is given in Appendix B.1.2):
Theorem 3.3 (Soundness of the abstract interpretation of conditions) For all expression B ,
for all non relational abstract element M] and for all memory state s such that s 2 g(M]), then:

if JB K(s) = true, then s 2 g(F ]
B (M

]))

In particular, the cases that we have shown above for the condition tests analysis in the
signs and intervals abstract domain trivially meet the soundness condition of Theorem 3.3.

Analysis of flow joins. The concrete semantics computes the union of the results of
both branches, thus the analysis should over-approximate unions of sets of concrete states.
Therefore, the abstract join operator t] should satisfy the following soundness property:

g(M]
0) [ g(M]

1)✓ g(M]
0 t

] M]
1)

In Section 2.3.3, this was achieved by computing a weaker set of constraints (that define
the convex hull in the geometrical point of view). Likewise, to define an abstract union
operator in the non relational abstract domain, we can simply:

• define a join operator t]
V

in the value abstract domain, that satisfies a similar soundness
condition (we remark that both for signs and intervals, the least upper bound in the
abstract domain —in the sense of Figure 3.5— provides a sound choice for t]

V
);

• apply operator t]
V

in a point-wise manner:

for all variable x, (M]
0 t

] M]
1)(x) = M]

0(x) t
]
V

M]
1(x)

The definition of t]
V

depends on the abstract domain. For instance, for the interval domain:

[a0,b0] t]
V
[a1,b1] = [min(a0,a1),max(b0,b1)]

[a0,b0] t]
V
[a1,+•) = [min(a0,a1),+•)
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Example 3.13 (Analysis of a condition) We consider the code fragment below that computes the
absolute value of x�7 into variable y:

(x 7){
y := x�7

} {
y := 7�x

}

We assume the abstract pre-condition M] defined by x 7! >,y 7! >. Then, by the rules shown above
(assuming the scalar values are of integer type):

F
]
x7(M
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Although we do not provide the full definition of the condition analysis operator, we note
that it should be proved sound (the proof is given in Appendix B.1.2):
Theorem 3.3 (Soundness of the abstract interpretation of conditions) For all expression B ,
for all non relational abstract element M] and for all memory state s such that s 2 g(M]), then:

if JB K(s) = true, then s 2 g(F ]
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]))

In particular, the cases that we have shown above for the condition tests analysis in the
signs and intervals abstract domain trivially meet the soundness condition of Theorem 3.3.

Analysis of flow joins. The concrete semantics computes the union of the results of
both branches, thus the analysis should over-approximate unions of sets of concrete states.
Therefore, the abstract join operator t] should satisfy the following soundness property:
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0) [ g(M]

1)✓ g(M]
0 t

] M]
1)

In Section 2.3.3, this was achieved by computing a weaker set of constraints (that define
the convex hull in the geometrical point of view). Likewise, to define an abstract union
operator in the non relational abstract domain, we can simply:

• define a join operator t]
V

in the value abstract domain, that satisfies a similar soundness
condition (we remark that both for signs and intervals, the least upper bound in the
abstract domain —in the sense of Figure 3.5— provides a sound choice for t]

V
);

• apply operator t]
V

in a point-wise manner:

for all variable x, (M]
0 t

] M]
1)(x) = M]

0(x) t
]
V

M]
1(x)

The definition of t]
V

depends on the abstract domain. For instance, for the interval domain:
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Example 3.13 (Analysis of a condition) We consider the code fragment below that computes the
absolute value of x�7 into variable y:

(x 7){
y := x�7

} {
y := 7�x

}

We assume the abstract pre-condition M] defined by x 7! >,y 7! >. Then, by the rules shown above
(assuming the scalar values are of integer type):
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Although we do not provide the full definition of the condition analysis operator, we note
that it should be proved sound (the proof is given in Appendix B.1.2):
Theorem 3.3 (Soundness of the abstract interpretation of conditions) For all expression B ,
for all non relational abstract element M] and for all memory state s such that s 2 g(M]), then:

if JB K(s) = true, then s 2 g(F ]
B (M

]))

In particular, the cases that we have shown above for the condition tests analysis in the
signs and intervals abstract domain trivially meet the soundness condition of Theorem 3.3.

Analysis of flow joins. The concrete semantics computes the union of the results of
both branches, thus the analysis should over-approximate unions of sets of concrete states.
Therefore, the abstract join operator t] should satisfy the following soundness property:
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] M]
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In Section 2.3.3, this was achieved by computing a weaker set of constraints (that define
the convex hull in the geometrical point of view). Likewise, to define an abstract union
operator in the non relational abstract domain, we can simply:

• define a join operator t]
V

in the value abstract domain, that satisfies a similar soundness
condition (we remark that both for signs and intervals, the least upper bound in the
abstract domain —in the sense of Figure 3.5— provides a sound choice for t]

V
);

• apply operator t]
V

in a point-wise manner:

for all variable x, (M]
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The definition of t]
V

depends on the abstract domain. For instance, for the interval domain:
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V
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The abstract union operator defined for the non-relational domain is sound in the following
sense (the proof is given in Appendix B.1.3):
Theorem 3.4 (Soundness of abstract join) Let M]

0 and M]
1 be two abstract states. Then:

g(M]
0) [ g(M]

1)✓ g(M]
0 t

] M]
1)

We now show how this operator works on an example:
Example 3.14 (Analysis of flow joins) Let us consider the following abstract states:

M]
0 = [x 7! [0,3];y 7! [6,7];z 7! [4,8]]

M]
1 = [x 7! [5,6];y 7! [0,2];z 7! [6,9]]

Then:
M]

0 t
] M]

1 = [x 7! [0,6];y 7! [0,7];z 7! [4,9]]

Analysis of a conditional command. We can now put together the definitions of all the
elements defined in the previous paragraphs, and obtain a definition for the abstract seman-
tics of conditional commands:

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M

])) t] JC 1K]P(F ]
¬B (M

]))

Intuitively, this analysis definition is very similar to that of Section 2.3.3, except for the
F

]
B calls, which is not surprising, since the language of Chapter 2 featured only non-

deterministic choice (no condition formula).
Example 3.15 (Analysis of a conditional command) We demonstrate the analysis of the pro-
gram of Example 3.13, starting from the abstract pre-condition M] = {x 7! >,y 7! >}. Then, the
analysis proceeds as follows:
1. First, the analysis of the true branch applies the filtering function, and then computes a post-

condition for the assignment command y := x�7; it produces:

{x 7! [8,+•),y 7! [1,+•)}

2. In the same way, the analysis of the false branch produces the abstract state:

{x 7! (�•,7],y 7! [0,+•)}

3. Last, the abstract join of these two abstract states yields:

{x 7! >,y 7! [0,+•)}

Analysis of conditional commands with a relational abstract domain. So far, we have
considered the analysis of conditional commands under the assumption that the abstract
domain is non relational. Switching to a relational abstract domain would let us still use the
same method, but with different algorithms for the analysis of tests and for the computation
of abstract join.
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3. Last, the abstract join of these two abstract states yields:

{x 7! >,y 7! [0,+•)}

Analysis of conditional commands with a relational abstract domain. So far, we have
considered the analysis of conditional commands under the assumption that the abstract
domain is non relational. Switching to a relational abstract domain would let us still use the
same method, but with different algorithms for the analysis of tests and for the computation
of abstract join.
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Example 3.13 (Analysis of a condition) We consider the code fragment below that computes the
absolute value of x�7 into variable y:

(x 7){
y := x�7

} {
y := 7�x

}

We assume the abstract pre-condition M] defined by x 7! >,y 7! >. Then, by the rules shown above
(assuming the scalar values are of integer type):

F
]
x7(M

]) = M][x 7! (�•,7]]
F

]
x>7(M

]) = M][x 7! [8,+•)]

Although we do not provide the full definition of the condition analysis operator, we note
that it should be proved sound (the proof is given in Appendix B.1.2):
Theorem 3.3 (Soundness of the abstract interpretation of conditions) For all expression B ,
for all non relational abstract element M] and for all memory state s such that s 2 g(M]), then:

if JB K(s) = true, then s 2 g(F ]
B (M

]))

In particular, the cases that we have shown above for the condition tests analysis in the
signs and intervals abstract domain trivially meet the soundness condition of Theorem 3.3.

Analysis of flow joins. The concrete semantics computes the union of the results of
both branches, thus the analysis should over-approximate unions of sets of concrete states.
Therefore, the abstract join operator t] should satisfy the following soundness property:

g(M]
0) [ g(M]

1)✓ g(M]
0 t

] M]
1)

In Section 2.3.3, this was achieved by computing a weaker set of constraints (that define
the convex hull in the geometrical point of view). Likewise, to define an abstract union
operator in the non relational abstract domain, we can simply:

• define a join operator t]
V

in the value abstract domain, that satisfies a similar soundness
condition (we remark that both for signs and intervals, the least upper bound in the
abstract domain —in the sense of Figure 3.5— provides a sound choice for t]

V
);

• apply operator t]
V

in a point-wise manner:

for all variable x, (M]
0 t

] M]
1)(x) = M]

0(x) t
]
V

M]
1(x)

The definition of t]
V

depends on the abstract domain. For instance, for the interval domain:

[a0,b0] t]
V
[a1,b1] = [min(a0,a1),max(b0,b1)]

[a0,b0] t]
V
[a1,+•) = [min(a0,a1),+•)

: 
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In particular, the cases that we have shown above for the condition tests analysis in the
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in the value abstract domain, that satisfies a similar soundness
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in a point-wise manner:
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absolute value of x�7 into variable y:
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In particular, the cases that we have shown above for the condition tests analysis in the
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Analysis of flow joins. The concrete semantics computes the union of the results of
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Example 3.13 (Analysis of a condition) We consider the code fragment below that computes the
absolute value of x�7 into variable y:
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absolute value of x�7 into variable y:
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The abstract union operator defined for the non-relational domain is sound in the following
sense (the proof is given in Appendix B.1.3):
Theorem 3.4 (Soundness of abstract join) Let M]

0 and M]
1 be two abstract states. Then:
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We now show how this operator works on an example:
Example 3.14 (Analysis of flow joins) Let us consider the following abstract states:

M]
0 = [x 7! [0,3];y 7! [6,7];z 7! [4,8]]

M]
1 = [x 7! [5,6];y 7! [0,2];z 7! [6,9]]

Then:
M]
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Analysis of a conditional command. We can now put together the definitions of all the
elements defined in the previous paragraphs, and obtain a definition for the abstract seman-
tics of conditional commands:

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M

])) t] JC 1K]P(F ]
¬B (M

]))

Intuitively, this analysis definition is very similar to that of Section 2.3.3, except for the
F

]
B calls, which is not surprising, since the language of Chapter 2 featured only non-

deterministic choice (no condition formula).
Example 3.15 (Analysis of a conditional command) We demonstrate the analysis of the pro-
gram of Example 3.13, starting from the abstract pre-condition M] = {x 7! >,y 7! >}. Then, the
analysis proceeds as follows:
1. First, the analysis of the true branch applies the filtering function, and then computes a post-

condition for the assignment command y := x�7; it produces:

{x 7! [8,+•),y 7! [1,+•)}

2. In the same way, the analysis of the false branch produces the abstract state:

{x 7! (�•,7],y 7! [0,+•)}

3. Last, the abstract join of these two abstract states yields:

{x 7! >,y 7! [0,+•)}

Analysis of conditional commands with a relational abstract domain. So far, we have
considered the analysis of conditional commands under the assumption that the abstract
domain is non relational. Switching to a relational abstract domain would let us still use the
same method, but with different algorithms for the analysis of tests and for the computation
of abstract join.
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The abstract union operator defined for the non-relational domain is sound in the following
sense (the proof is given in Appendix B.1.3):
Theorem 3.4 (Soundness of abstract join) Let M]

0 and M]
1 be two abstract states. Then:

g(M]
0) [ g(M]

1)✓ g(M]
0 t

] M]
1)

We now show how this operator works on an example:
Example 3.14 (Analysis of flow joins) Let us consider the following abstract states:
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0 = [x 7! [0,3];y 7! [6,7];z 7! [4,8]]

M]
1 = [x 7! [5,6];y 7! [0,2];z 7! [6,9]]

Then:
M]

0 t
] M]

1 = [x 7! [0,6];y 7! [0,7];z 7! [4,9]]

Analysis of a conditional command. We can now put together the definitions of all the
elements defined in the previous paragraphs, and obtain a definition for the abstract seman-
tics of conditional commands:

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M

])) t] JC 1K]P(F ]
¬B (M

]))

Intuitively, this analysis definition is very similar to that of Section 2.3.3, except for the
F

]
B calls, which is not surprising, since the language of Chapter 2 featured only non-

deterministic choice (no condition formula).
Example 3.15 (Analysis of a conditional command) We demonstrate the analysis of the pro-
gram of Example 3.13, starting from the abstract pre-condition M] = {x 7! >,y 7! >}. Then, the
analysis proceeds as follows:
1. First, the analysis of the true branch applies the filtering function, and then computes a post-

condition for the assignment command y := x�7; it produces:

{x 7! [8,+•),y 7! [1,+•)}

2. In the same way, the analysis of the false branch produces the abstract state:

{x 7! (�•,7],y 7! [0,+•)}

3. Last, the abstract join of these two abstract states yields:

{x 7! >,y 7! [0,+•)}

Analysis of conditional commands with a relational abstract domain. So far, we have
considered the analysis of conditional commands under the assumption that the abstract
domain is non relational. Switching to a relational abstract domain would let us still use the
same method, but with different algorithms for the analysis of tests and for the computation
of abstract join.
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Final abstract state:
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Loops

• Concrete semantics: 

       

• Alternatively,  

               

• Abstract semantics: 
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JC KP : P(M)�! P(M)

J KP(M) = M
JC 0; C 1KP(M) = JC 1KP(JC 0KP(M))

Jx := E KP(M) = {s [x 7! JE K(s)] | s 2 M}
J (x)KP(M) = {s [x 7! n] | s 2 M,n 2 V}

J (B ){C 0} {C 1}KP(M) = JC 0KP(FB (M)) [ JC 1KP(F¬B (M))

J (B ){C }KP(M) = F¬B
⇣S

i�0 (JC KP �FB )
i (M)

⌘

Figure 0.2
Semantics of commands

8b. �•  b

8a. a +•

f ]+([a,b], [a0,b0]) = [a+a0,b+b0]

F ]
B (M

]) =>]

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M

])) t] JC 1K]P(F ]
¬B (M

]))

F¬B (lfpMF)whereF : M0 7�! M[ JC KP �FB (M0)

J (B ){C }KP(M) = F¬B

 
[

i�0
(JC KP �FB )

i (M)

!

J (B ){C }KP(M) = F¬B (lfpMF)

where F : M0 7�! M[ JC KP �FB (M0)
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x := 0;
(x� 0){
x := x+1

}
(a) Incrementation

x := 0;
(x 100){

(x� 50){
x := 10

} {
x := x+1

}
}
(b) Incrementation with reset

Figure 3.9
A couple of programs containing a simple loop

Sequences of concrete and abstract iterates. First, let us consider the executions that
spend at most n iterations in the loop, for a fixed integer value n. Then, the states they
generate at the loop head is:

Mn =
n[

i=0
Fi(M)

We can prove that this set of states can be computed by induction over n. Indeed, let us
consider the first elements of the sequence (Mk)k2N:

• M0 = M;
• M1 = M [ F(M) = M [ F(M0);
• M2 = M [ F(M) [ F(F(M)) = M [ F(M [ F(M)) since F commutes with set union,

so M2 = M [ F(M1);
• for any n greater than 2, we can show in the same manner than Mn+1 = M [ F(Mn).

This implies that the sequence (Mk)k2N can equivalently be defined recursively as follows:

M0 = M
Mk+1 = Mk [ F(Mk)

This observation is of great interest for the purpose of designing an algorithm to analyze
loops, since it is very easy to compute an over-approximation of Mn using the techniques
shown in the previous sub-sections. Indeed, let us assume an element M] of the abstract
domain such that M ✓ g(M]) and define the sequence of abstract iterates (M]

k)k2N as fol-
lows:

M]
0 = M]

M]
k+1 = M]

k t
] F](M]

k)
(3.1)
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Then, we can prove by induction that, for all integer n:

Mn ✓ g(M]
n)

Example 3.17 (Abstract iterates) We assume that the analysis uses the abstract domain of inter-
vals, and we show the abstract iterates for the two example programs shown in Figure 3.9. In both
cases, the analysis of the command x := 0 produces the abstract state {x 7! [0,0]}.

• In the case of the program of Figure 3.9(a), we observe:

M]
0 = {x 7! [0,0]}

M]
1 = {x 7! [0,1]}

M]
2 = {x 7! [0,2]}
... =

...
M]

n = {x 7! [0,n]}
... =

...

• In the case of the program of Figure 3.9(b), we obtain:

M]
0 = {x 7! [0,0]}

M]
1 = {x 7! [0,1]}

M]
2 = {x 7! [0,2]}
... =

...
M]

49 = {x 7! [0,49]}
M]

50 = {x 7! [0,50]}
M]

51 = {x 7! [0,50]}
M]

52 = {x 7! [0,50]}
... =

...

Convergence of iterates. The recursive formula (3.1) shows how to over-approximate
any fixed number of iterates, but does not settle the case of unbounded iteration and the
termination problem, therefore we consider these issues now. We observe that the sequence
(g(M]

k))k2N is increasing, that is g(M]
k)v g(M]

k+1), since M]
k+1 = M]

k t
] F](M]

k), and since
t] is a sound over-approximation of concrete unions (Theorem 3.4). Intuitively, the ele-
ments of this sequence over-approximate larger and larger sets of concrete states, which is
expected since the k-th term describes all states observed in at most k iterations of the loop.

Let us assume that the abstract iteration stabilizes at some rank n, which means that
M]

n = M]
n+1. A first consequence is that, for all rank k � n, we also have M]

k = M]
n. This

also entails that Mk ✓ g(M]
n). Since this holds for all rank k � n, we can also derive that:

Mloop ✓ g(M]
n) where Mloop =

[

i�0
Mi
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JnK](M]) = fV (n)
JxK](M]) = M](x)

JE 0 �E 1K](M]) = f ]�(JE 0K](M]),JE 1K](M]))

JC K]P(?) = ?
J K]P(M]) = M]

JC 0;C 1K]P(M]) = JC 1K]P(JC 0K]P(M]))

Jx := E K]P(M]) = M][x 7! JE K](M])]

J (x)K]P(M]) = M][x 7! >V ]

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M])) t] JC 1K]P(F ]

¬B (M]))

J (B ){C }K]P(M]) = F ]
¬B (lfpM]F]) where F] , lX ]. M] t] JC K]P �F ]

B (X ])
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As in Chapter 2, we are going to construct the definition of J·K]
P

by induction over
the syntax. First, this will result in a definition of the analysis that is very close to the
concrete semantics (likewise, it would also be very similar to an implementation as we will
observe in Chapter 7). Moreover, this process allows for a straightforward step by step
proof that the soundness property of Figure 3.7 holds. Indeed, when considering any sort
of command that includes some sub-commands (like sequences, conditions, and loops),
we will simply assume that the abstract semantics of the sub-commands has been defined,
and build a definition of the abstract semantics of the command itself. Therefore, both the
definition of the analysis and its proof of soundness proceed by induction over the syntax
of programs: indeed, to analyze (resp., prove the analysis of) a program, we will simply
rely on the analysis of (resp., on the proof of the analysis of) its components.

We start with a few easy cases, before considering more complex commands.

Bottom element. For any command C , JC KP( /0) = /0, since the set of states reachable
when running a program from an empty set of states is empty. Therefore:

JC K]
P
(?) =?

Skip commands. The concrete semantics of the command returns its input unmod-
ified, therefore, the following definition ensures soundness:

J K]
P
(M]) = M]

Sequences of commands. The soundness property of Figure 3.7 is stable under compo-
sition, and Jp0;p1KP(M) = Jp1KP(Jp0KP(M)), thus the following definition ensures that
we can prove soundness by induction over the syntax:

JC 0;C 1K]P(M]) = JC 1K]P(JC 0K]P(M]))

We can informally justify the soundness of this definition: to compute a sound post-
condition for C 0;C 1, starting from a pre-condition M], we can simply compute a sound
post-condition for C 0 from this pre-condition M], and then use this post-condition as a
pre-condition for C 1 and finally, compute a sound post-condition for C 1.

This principles generalizes to any composition of functions:
Theorem 3.1 (Approximation of compositions) Let F0,F1 : P(M)�!P(M) be two monotone
functions, and F]

0 ,F
]
1 :A�!A be two functions that over-approximate them, that is such that F0�g ✓

g �F]
0 and F1 � g ✓ g �F]

1 . Then, F0 �F1 can be over-approximated by F]
0 �F]

1 .

Indeed, if M] 2 A, then F1 � g(M]) ✓ g �F]
1 (A) (by the soundness assumption on F1) so,

since F0 is monotone, F0 �F1 � g(M]) ✓ F0 � g �F]
1 (M

]), and by the soundness hypothesis
on F0, F0 �F1 � g(M])✓ g �F]

0 �F]
1 (M

]). Theorem 3.1 is of fundamental interest, since the
concrete semantics heavily relies on the composition of functions, and this theorem means



Proof. 

 

           ( ) 

     ( )
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1 . Then, F0 �F1 can be over-approximated by F]
0 �F]

1 .

Indeed, if M] 2 A, then F1 � g(M]) ✓ g �F]
1 (A) (by the soundness assumption on F1) so,

since F0 is monotone, F0 �F1 � g(M]) ✓ F0 � g �F]
1 (M

]), and by the soundness hypothesis
on F0, F0 �F1 � g(M])✓ g �F]

0 �F]
1 (M

]). Theorem 3.1 is of fundamental interest, since the
concrete semantics heavily relies on the composition of functions, and this theorem means
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concrete semantics (likewise, it would also be very similar to an implementation as we will
observe in Chapter 7). Moreover, this process allows for a straightforward step by step
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JE K] : A�! AV

JnK](M]) = fV (n)
JxK](M]) = M](x)

JE 0 �E 1K](M]) = f ]�(JE 0K](M]),JE 1K](M]))

Figure 3.8
Abstract semantics of expressions

then f ]+ should compute an over-approximation for the addition of intervals:

f ]+([a,b], [a0,b0]) = [a+a0,b+b0]
f ]+([a,b], [a0,+•)) = [a+a0,+•)

Other arithmetic operations have similar counterparts, although sometimes more compli-
cated (for instance, multiplication requires a number of case splits to handle positive and
negative inputs).

The full definition of the abstract semantics of scalar expressions is shown in Figure 3.8.

Example 3.10 (Abstract semantics of expressions) We assume that we use the interval abstract
domain, that we consider x+2⇤y�6, and that M] is defined by M](x) = [10,20] and M](y) = [8,9].
For short, we note operations over intervals just like the conventional arithmetic operations. Then:

Jx+2⇤y�6K](M]) = f ]�(Jx+2⇤yK](M]),J6K](M]))

= f ]+(JxK](M]),J2⇤yK](M]))� [6,6]
= M](x)+ f ]⇤(J2K](M]),JyK](M]))� [6,6]
= [10,20]+ [2,2]⇤ [8,9]� [6,6]
= [20,32]

We can prove by induction over the structure of expressions that this semantics is sound
(the proof is provided in Appendix B.1.1):
Theorem 3.2 (Soundness of the abstract interpretation of expressions) For all expression E ,
for all non relational abstract element M] and for all memory state s such that s 2 g(M]), then:

JE K(s) 2 g(JE K](M]))

Analysis of assignments. We now define the analysis function for an assignment com-
mand x := E . We recall that Jx := E KP(M) = {s [x 7! JE K(s)] | s 2 M}. Intuitively, an
assignment is the composition of the evaluation of the expression into a value n, and of the
update of the variable x with this value n. By Theorem 3.1, this composition can be over-
approximated piece by piece. We have seen in the previous paragraph how to compute an
over-approximation of the right hand side of the assignment. The abstract counterpart of
a write into a concrete memory is a write in the abstract store. Therefore, the following
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B Proofs of Soundness

This appendix presents proofs for the theorems of Chapter 3 and Chapter 4, that were not proved there.

B.1 Proofs of Soundness for Chapter 3

It shows how to establish the soundness of the basic abstract interpreter, such as the analysis presented in Chap-
ter 3, and the principles of this proof extend to many other static analyzers. Each of the following subsections
formalizes the proof of one of the main theorems of Chapter 3. All together, these theorems demonstrate the
soundness of a non-relational abstract interpreter of the compositional style, under the assumption that the oper-
ations of the value domain are sound.

B.1.1 Soundness of the Abstract Interpretation of Expressions
In this section, we consider Theorem 3.2, that we recall first:

Theorem B.1 (Soundness of the abstract interpretation of expressions) For all expression E ,
for all non relational abstract element M] and for all memory state s such that s 2 g(M]), then:

JE K(s) 2 g(JE K](M]))

Proof. The proof proceeds by induction over the structure of expressions. Indeed, expressions were defined by
induction, so we can apply the induction proof principle shown in Appendix A.3, in order to prove this property
for all expressions. For this, we consider each kind of expressions, and prove each case under the assumption that
the property holds for all sub-expressions:

• Case of constant expressions:
We assume E is the constant expression defined by the value n. Then, JE K(s) = n, and JE K](M]) = fV (n).
By definition of the operation fV of the value abstract domain (as stated in Section 3.3.1), n 2 g(fV (n)),
which concludes this case.

• Case of expressions made of a variable:
We assume E is the expression made of the reading of variable x. Then, JE K(s) = s(x), and JE K](M]) =
M](x). By assumption, s 2 g(M]), thus, s(x) 2 g(M](x)), which concludes this case.

• Case of expressions made of a binary operator applied to two sub-expressions: We assume that E is of the
form E 0 � E 1, where E 0 and E 1 are sub-expressions and � is a binary operator. We assume the theorem
holds for E 0 and E 1 since we are carrying out the proof by induction over the structure of expressions.
Therefore the inductive hypothesis entails that for all i 2 {0,1}, JE iK(s) 2 g(JE iK](M])). Then, JE K(s) =
f�(JE 0K(s),JE 1K(s)) and JE K](M]) = f ]�(JE 0K](M]),JE 1K](M])). By the induction hypothesis and by
definition of the soundness of the operation of the value abstract domain f ]� (as stated in Section 3.3.1), we
have f�(JE 0K(s),JE 1K(s)) 2 g( f ]�(JE 0K](M]),JE 1K](M]))). This concludes the proof of this case.
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Example 3.13 (Analysis of a condition) We consider the code fragment below that computes the
absolute value of x�7 into variable y:

(x 7){
y := x�7

} {
y := 7�x

}

We assume the abstract pre-condition M] defined by x 7! >,y 7! >. Then, by the rules shown above
(assuming the scalar values are of integer type):

F
]
x7(M

]) = M][x 7! (�•,7]]
F

]
x>7(M

]) = M][x 7! [8,+•)]

Although we do not provide the full definition of the condition analysis operator, we note
that it should be proved sound (the proof is given in Appendix B.1.2):
Theorem 3.3 (Soundness of the abstract interpretation of conditions) For all expression B ,
for all non relational abstract element M] and for all memory state s such that s 2 g(M]), then:

if JB K(s) = true, then s 2 g(F ]
B (M

]))

In particular, the cases that we have shown above for the condition tests analysis in the
signs and intervals abstract domain trivially meet the soundness condition of Theorem 3.3.

Analysis of flow joins. The concrete semantics computes the union of the results of
both branches, thus the analysis should over-approximate unions of sets of concrete states.
Therefore, the abstract join operator t] should satisfy the following soundness property:

g(M]
0) [ g(M]

1)✓ g(M]
0 t

] M]
1)

In Section 2.3.3, this was achieved by computing a weaker set of constraints (that define
the convex hull in the geometrical point of view). Likewise, to define an abstract union
operator in the non relational abstract domain, we can simply:

• define a join operator t]
V

in the value abstract domain, that satisfies a similar soundness
condition (we remark that both for signs and intervals, the least upper bound in the
abstract domain —in the sense of Figure 3.5— provides a sound choice for t]

V
);

• apply operator t]
V

in a point-wise manner:

for all variable x, (M]
0 t

] M]
1)(x) = M]

0(x) t
]
V

M]
1(x)

The definition of t]
V

depends on the abstract domain. For instance, for the interval domain:

[a0,b0] t]
V
[a1,b1] = [min(a0,a1),max(b0,b1)]

[a0,b0] t]
V
[a1,+•) = [min(a0,a1),+•)
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Comments. This proof actually tells a lot about how the analysis progresses, and maintains soundness step by
step over the course of the analysis of expressions: the inductive cases rely on operations that over-approximate
the effect of each concrete program execution step; moreover, the base cases are also designed so as to start with
a sound over-approximation. For the representation of constants and for unary operations, we have relied on the
soundness of operations in the underlying value absract domain. This is actually a key feature of the approach
followed in Chapter 3 and Chapter 4: the soundness of these operations can be proved separately for each value
domain that we may use in the actual analysis, thus we get the same benefit in terms of proof modularity as we
did for the modularity of the implementation in Chapter 7.

Because of this dependency, one may argue that a large part of the proof needs to be done at the value abstract
domain level. This is indeed correct, and this part of the proof heavily depends on the representation of the abstract
values and the algorithms to manipulate them. We simply provide a few examples, and general guidelines:

• when the abstract lattice of the value abstract domain is finite, the operations can be proved correct by
straightforward case analysis;

• when there are several kinds of abstract values, case analysis is often helpful and / or necessary; for instance,
in the case of the interval domain, the soundness of binary operations can be proved by considering separately
the case of ? and non-? abstract values;

• basic cases can often be proved by simple arithmetic arguments, e.g., based on interval arithmetics.

B.1.2 Soundness of the Abstract Interpretation of Conditions
We now consider the soundness theorem for the analysis of condition expressions (Theorem 3.3):

Theorem B.2 (Soundness of the abstract interpretation of conditions) For all expression B ,
for all non relational abstract element M] and for all memory state s such that s 2 g(M]), then:

if JB K(s) = true, then s 2 g(F ]
B (M

]))

Proof. Let B be a condition expression. Let M] be an abstract state and s 2 g(M]), such that JB K(s) =
true. By definition, the operation F

]
B of the value abstract domain is assumed to be sound, thus, FB (g(M])) ✓

g(F ]
B (M

])), where FB (M) = {s 2 M | JB K(s) = true}. Since JB K(s) = true, s belongs to FB (M). This
concludes the proof.

Comments. The proof heavily relies on the soundness of the filter operation, just like the proof of the sound-
ness of the abstract interpretation of expressions in Appendix B.1.1 relies on the operations of the underlying
value abstract domain.

B.1.3 Soundness of the Abstract Join Operator
In this section, we show the proof of Theorem 3.4, that we recall here:

Theorem B.3 (Soundness of abstract join) Let M]
0 and M]

1 be two abstract states. Then:

g(M]
0) [ g(M]

1)✓ g(M]
0 t

] M]
1)

Proof. We take advantage of the symmetry of both [ and t] so that we simply prove that g(M]
0) ✓ g(M]

0 t]

M]
1). Let s 2 g(M]

0). To prove that s 2 g(M]
0 t] M]

1), we need to establish that, for all variable x, we have
s(x) 2 gV ((M]

0 t] M]
1)(x)). By definition of t], (M]

0 t] M]
1)(x) = M]

0(x) t
]
V

M]
1(x). The soundness of t]

V

guarantees that s(x) 2 g(M]
0(x) t

]
V

M]
1(x)), which concludes the proof.

Comments. As in the previous sections, the soundness of the operation in the non-relational domain follows
from that of the operation t]

V
in the value abstract domain. This operation can usually be proved sound by case

analysis over the elements of the value abstract domain and / or basic arithmetic reasoning.
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Example 3.13 (Analysis of a condition) We consider the code fragment below that computes the
absolute value of x�7 into variable y:

(x 7){
y := x�7

} {
y := 7�x

}

We assume the abstract pre-condition M] defined by x 7! >,y 7! >. Then, by the rules shown above
(assuming the scalar values are of integer type):

F
]
x7(M

]) = M][x 7! (�•,7]]
F

]
x>7(M

]) = M][x 7! [8,+•)]

Although we do not provide the full definition of the condition analysis operator, we note
that it should be proved sound (the proof is given in Appendix B.1.2):
Theorem 3.3 (Soundness of the abstract interpretation of conditions) For all expression B ,
for all non relational abstract element M] and for all memory state s such that s 2 g(M]), then:

if JB K(s) = true, then s 2 g(F ]
B (M

]))

In particular, the cases that we have shown above for the condition tests analysis in the
signs and intervals abstract domain trivially meet the soundness condition of Theorem 3.3.

Analysis of flow joins. The concrete semantics computes the union of the results of
both branches, thus the analysis should over-approximate unions of sets of concrete states.
Therefore, the abstract join operator t] should satisfy the following soundness property:

g(M]
0) [ g(M]

1)✓ g(M]
0 t

] M]
1)

In Section 2.3.3, this was achieved by computing a weaker set of constraints (that define
the convex hull in the geometrical point of view). Likewise, to define an abstract union
operator in the non relational abstract domain, we can simply:

• define a join operator t]
V

in the value abstract domain, that satisfies a similar soundness
condition (we remark that both for signs and intervals, the least upper bound in the
abstract domain —in the sense of Figure 3.5— provides a sound choice for t]

V
);

• apply operator t]
V

in a point-wise manner:

for all variable x, (M]
0 t

] M]
1)(x) = M]

0(x) t
]
V

M]
1(x)

The definition of t]
V

depends on the abstract domain. For instance, for the interval domain:

[a0,b0] t]
V
[a1,b1] = [min(a0,a1),max(b0,b1)]

[a0,b0] t]
V
[a1,+•) = [min(a0,a1),+•)
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The abstract union operator defined for the non-relational domain is sound in the following
sense (the proof is given in Appendix B.1.3):
Theorem 3.4 (Soundness of abstract join) Let M]

0 and M]
1 be two abstract states. Then:

g(M]
0) [ g(M]

1)✓ g(M]
0 t

] M]
1)

We now show how this operator works on an example:
Example 3.14 (Analysis of flow joins) Let us consider the following abstract states:

M]
0 = [x 7! [0,3];y 7! [6,7];z 7! [4,8]]

M]
1 = [x 7! [5,6];y 7! [0,2];z 7! [6,9]]

Then:
M]

0 t
] M]

1 = [x 7! [0,6];y 7! [0,7];z 7! [4,9]]

Analysis of a conditional command. We can now put together the definitions of all the
elements defined in the previous paragraphs, and obtain a definition for the abstract seman-
tics of conditional commands:

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M

])) t] JC 1K]P(F ]
¬B (M

]))

Intuitively, this analysis definition is very similar to that of Section 2.3.3, except for the
F

]
B calls, which is not surprising, since the language of Chapter 2 featured only non-

deterministic choice (no condition formula).
Example 3.15 (Analysis of a conditional command) We demonstrate the analysis of the pro-
gram of Example 3.13, starting from the abstract pre-condition M] = {x 7! >,y 7! >}. Then, the
analysis proceeds as follows:
1. First, the analysis of the true branch applies the filtering function, and then computes a post-

condition for the assignment command y := x�7; it produces:

{x 7! [8,+•),y 7! [1,+•)}

2. In the same way, the analysis of the false branch produces the abstract state:

{x 7! (�•,7],y 7! [0,+•)}

3. Last, the abstract join of these two abstract states yields:

{x 7! >,y 7! [0,+•)}

Analysis of conditional commands with a relational abstract domain. So far, we have
considered the analysis of conditional commands under the assumption that the abstract
domain is non relational. Switching to a relational abstract domain would let us still use the
same method, but with different algorithms for the analysis of tests and for the computation
of abstract join.
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Comments. This proof actually tells a lot about how the analysis progresses, and maintains soundness step by
step over the course of the analysis of expressions: the inductive cases rely on operations that over-approximate
the effect of each concrete program execution step; moreover, the base cases are also designed so as to start with
a sound over-approximation. For the representation of constants and for unary operations, we have relied on the
soundness of operations in the underlying value absract domain. This is actually a key feature of the approach
followed in Chapter 3 and Chapter 4: the soundness of these operations can be proved separately for each value
domain that we may use in the actual analysis, thus we get the same benefit in terms of proof modularity as we
did for the modularity of the implementation in Chapter 7.

Because of this dependency, one may argue that a large part of the proof needs to be done at the value abstract
domain level. This is indeed correct, and this part of the proof heavily depends on the representation of the abstract
values and the algorithms to manipulate them. We simply provide a few examples, and general guidelines:

• when the abstract lattice of the value abstract domain is finite, the operations can be proved correct by
straightforward case analysis;

• when there are several kinds of abstract values, case analysis is often helpful and / or necessary; for instance,
in the case of the interval domain, the soundness of binary operations can be proved by considering separately
the case of ? and non-? abstract values;

• basic cases can often be proved by simple arithmetic arguments, e.g., based on interval arithmetics.

B.1.2 Soundness of the Abstract Interpretation of Conditions
We now consider the soundness theorem for the analysis of condition expressions (Theorem 3.3):

Theorem B.2 (Soundness of the abstract interpretation of conditions) For all expression B ,
for all non relational abstract element M] and for all memory state s such that s 2 g(M]), then:

if JB K(s) = true, then s 2 g(F ]
B (M

]))

Proof. Let B be a condition expression. Let M] be an abstract state and s 2 g(M]), such that JB K(s) =
true. By definition, the operation F

]
B of the value abstract domain is assumed to be sound, thus, FB (g(M])) ✓

g(F ]
B (M

])), where FB (M) = {s 2 M | JB K(s) = true}. Since JB K(s) = true, s belongs to FB (M). This
concludes the proof.

Comments. The proof heavily relies on the soundness of the filter operation, just like the proof of the sound-
ness of the abstract interpretation of expressions in Appendix B.1.1 relies on the operations of the underlying
value abstract domain.

B.1.3 Soundness of the Abstract Join Operator
In this section, we show the proof of Theorem 3.4, that we recall here:

Theorem B.3 (Soundness of abstract join) Let M]
0 and M]

1 be two abstract states. Then:

g(M]
0) [ g(M]

1)✓ g(M]
0 t

] M]
1)

Proof. We take advantage of the symmetry of both [ and t] so that we simply prove that g(M]
0) ✓ g(M]

0 t]

M]
1). Let s 2 g(M]

0). To prove that s 2 g(M]
0 t] M]

1), we need to establish that, for all variable x, we have
s(x) 2 gV ((M]

0 t] M]
1)(x)). By definition of t], (M]

0 t] M]
1)(x) = M]

0(x) t
]
V

M]
1(x). The soundness of t]

V

guarantees that s(x) 2 g(M]
0(x) t

]
V

M]
1(x)), which concludes the proof.

Comments. As in the previous sections, the soundness of the operation in the non-relational domain follows
from that of the operation t]

V
in the value abstract domain. This operation can usually be proved sound by case

analysis over the elements of the value abstract domain and / or basic arithmetic reasoning.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 April 13, 2021 9:18am

3.3 Computable Abstract Semantics 81

The abstract union operator defined for the non-relational domain is sound in the following
sense (the proof is given in Appendix B.1.3):
Theorem 3.4 (Soundness of abstract join) Let M]

0 and M]
1 be two abstract states. Then:

g(M]
0) [ g(M]

1)✓ g(M]
0 t

] M]
1)

We now show how this operator works on an example:
Example 3.14 (Analysis of flow joins) Let us consider the following abstract states:

M]
0 = [x 7! [0,3];y 7! [6,7];z 7! [4,8]]

M]
1 = [x 7! [5,6];y 7! [0,2];z 7! [6,9]]

Then:
M]

0 t
] M]

1 = [x 7! [0,6];y 7! [0,7];z 7! [4,9]]

Analysis of a conditional command. We can now put together the definitions of all the
elements defined in the previous paragraphs, and obtain a definition for the abstract seman-
tics of conditional commands:

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M

])) t] JC 1K]P(F ]
¬B (M

]))

Intuitively, this analysis definition is very similar to that of Section 2.3.3, except for the
F

]
B calls, which is not surprising, since the language of Chapter 2 featured only non-

deterministic choice (no condition formula).
Example 3.15 (Analysis of a conditional command) We demonstrate the analysis of the pro-
gram of Example 3.13, starting from the abstract pre-condition M] = {x 7! >,y 7! >}. Then, the
analysis proceeds as follows:
1. First, the analysis of the true branch applies the filtering function, and then computes a post-

condition for the assignment command y := x�7; it produces:

{x 7! [8,+•),y 7! [1,+•)}

2. In the same way, the analysis of the false branch produces the abstract state:

{x 7! (�•,7],y 7! [0,+•)}

3. Last, the abstract join of these two abstract states yields:

{x 7! >,y 7! [0,+•)}

Analysis of conditional commands with a relational abstract domain. So far, we have
considered the analysis of conditional commands under the assumption that the abstract
domain is non relational. Switching to a relational abstract domain would let us still use the
same method, but with different algorithms for the analysis of tests and for the computation
of abstract join.
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JnK](M]) = fV (n)
JxK](M]) = M](x)

JE 0 �E 1K](M]) = f ]�(JE 0K](M]),JE 1K](M]))

JC K]P(?) = ?
J K]P(M]) = M]

JC 0;C 1K]P(M]) = JC 1K]P(JC 0K]P(M]))

Jx := E K]P(M]) = M][x 7! JE K](M])]

J (x)K]P(M]) = M][x 7! >V ]

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M])) t] JC 1K]P(F ]

¬B (M]))

J (B ){C }K]P(M]) = F ]
¬B (lfpM]F]) where F] , lX ]. M] t] JC K]P �F ]

B (X ])

Theorem 2 (Soundness) For all command C and all abstract state M],

JC KP (g(M]))✓ g(JC K]P (M]))

Proof: Base case 1) C = :

J KP(g(M])) = g(M])

✓ g(J K]P(M])) = g(M])

Base case 2) C = x := E :

Jx := E KP(g(M])) = g(M])

✓ g(J K]P(M])) = g(M])

⇤
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Thus: [

i�0
Fi(g(M]))✓ g(M]

lim)

This concludes the proof.

Comments. This proof is quite representative of termination and soundness proofs for abstract iteration
sequences: first, it establishes the convergence and the existence of the limit, based on the properties of widening;
second, it ties the computation performed in the abstract level to the definition of the concrete semantics so as to
prove soundness. The second part is actually quite similar to the other soundness proofs shown in this appendix,
in the sense that it relies on the soundness of the operations it applies, namely F] and O.

B.1.5 Soundness of the Abstract Interpretation of Commands
Finally, we prove the main soundness theorem, that states that the analysis of a program will always produce an
over-approximation of the behaviors of the program (Theorem 3.6):

Theorem B.5 (Soundness) For all command C and all abstract state M], JC K]
P
(M]) terminates,

and:
JC KP (g(M]))✓ g(JC K]

P
(M]))

Proof. Program commands are defined inductively, thus the proof is also unsurprisingly carried out by induc-
tion over the syntax, and follows the structure of the definitions of the concrete semantics (Figure 3.4) and of the
abstract semantics (Figure 3.11). The case where M] =? is handled separately, and the analysis then returns ?;
this is obviously sound since the concrete semantics also maps g(?) = /0 to itself.

Let us now consider each case of command.
• Case where C is a statement.

Then JC KP (g(M])) = g(M]) = g(JC K]
P
(M])), so the property trivially holds.

• Case where C is a sequence. We assume the property holds for C 0 and C 1 and prove it for C . Under this
assumption Theorem 3.1 applies and proves the property.

• Case where C is an assignment x := E :
Let s 2 g(M]). We need to prove that s [x 7! JE K(s)] 2 Jx := E K]

P
(M]) = M][x 7! JE K](M])]. By sound-

ness of the analysis of expressions (Theorem 3.2), we obtain that JE K(s) 2 gV (JE K](M])). By definition of
g , that implies the result of the analysis of the assignment is sound.

• Case where C is an input statement (x):
This case is similar to that of a standard assignment; indeed, the only difference is that, in the concrete, x
may get assigned any value, whereas in the abstract, it gets mapped to >V . We observe that >V describes
any possible value, so that the argument provided for regular assignment commands applies here in the same
way.

• Case where C is the condition statement (B ){C 0} {C 1}:
We assume the property holds for C 0 and C 1 and prove it for C :

JC KP (g(M])) = JC 0KP (FB (g(M]))) [ JC 1KP (F¬B (g(M])))

✓ JC 0KP (g(F ]
B (M

]))) [ JC 1KP (g(F ]
¬B (M

])))

by soundness of F
]
. and monotonicity of J.KP

✓ g(JC 0K]P (F ]
B (M

]))) [ g(JC 1K]P (F ]
¬B (M

])))

by soundness of JC 0K]P and JC 1KP (induction hypothesis)
✓ g(JC 0K]P (F ]

B (M
]))) t] g(JC 1K]P (F ]

¬B (M
])))

by soundness of t]

= g(JC K](M]))
• Case where C is the loop statement (B ){C 0}:

We assuem them property holds for C 0 and prove that it also holds for C . To do this, we prove the following
inclusion (we remark that it entails the soundness of the analysis of C because we already know that F

]
¬B is
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iv

JnK](M]) = fV (n)
JxK](M]) = M](x)

JE 0 �E 1K](M]) = f ]�(JE 0K](M]),JE 1K](M]))

JC K]P(?) = ?
J K]P(M]) = M]

JC 0;C 1K]P(M]) = JC 1K]P(JC 0K]P(M]))

Jx := E K]P(M]) = M][x 7! JE K](M])]

J (x)K]P(M]) = M][x 7! >V ]

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M])) t] JC 1K]P(F ]

¬B (M]))

J (B ){C }K]P(M]) = F ]
¬B (lfpM]F]) where F] , lX ]. M] t] JC K]P �F ]

B (X ])

J (B ){C }KP(M) = F¬B (lfpMF)

where F , lX . M[ JC KP �FB (X)

J (B ){C }K]P(M]) = F ]
¬B (lfpM]F])

where F] , lX ]. M] t] JC K]P �F ]
B (X

])

Theorem 2 (Soundness) For all command C and all abstract state M],

JC KP (g(M]))✓ g(JC K]P (M]))

Proof:
Case where C is the while loop (B ){C }:

J (B ){C }KP(g(M])) = F¬B (lfpg(M])F)

where F , lX . g(M])[ JC KP �FB (X). And,

J (B ){C }K]P(M]) = F ]
¬B (lfpM]F])

where F] , lX ]. M] t] JC K]P �F ]
B (X ]).

For any M], F(g(M]))✓ g(F](M])) because

F(g(M])) = g(M])[ JC KP �FB (g(M]))

g(F](M])) = g(M] t] JC K]P �F ]
B (M]))

◆ g(M])[ g(JC K]P �F ]
B (M])) (By Theorem 3.4 (Soundness of join))

By induction hypothesis F ]
B and JC K]P are sound. By Theorem 3.1 (Approximation of

compositions),
JC KP �FB � g ✓ g � JC K]P �F ]

B .
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Therefore, JC KP �FB (g(M]))✓ g(JC K]P �F ]
B (M])) and F(g(M]))✓ g(F](M])).

From the fixpoint transfer theorem,

lfpF ✓ g(lfpF])

Because F ]
¬B is sound (i.e., F¬B � g ✓ g �F ]

¬B ), F¬B (lfpg(M])F) ✓ g �F ]
¬B (lfpM]F])

which concludes the proof.
⇤
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x := 0;
(x� 0){
x := x+1

}
(a) Incrementation

x := 0;
(x 100){

(x� 50){
x := 10

} {
x := x+1

}
}
(b) Incrementation with reset

Figure 3.9
A couple of programs containing a simple loop

Sequences of concrete and abstract iterates. First, let us consider the executions that
spend at most n iterations in the loop, for a fixed integer value n. Then, the states they
generate at the loop head is:

Mn =
n[

i=0
Fi(M)

We can prove that this set of states can be computed by induction over n. Indeed, let us
consider the first elements of the sequence (Mk)k2N:

• M0 = M;
• M1 = M [ F(M) = M [ F(M0);
• M2 = M [ F(M) [ F(F(M)) = M [ F(M [ F(M)) since F commutes with set union,

so M2 = M [ F(M1);
• for any n greater than 2, we can show in the same manner than Mn+1 = M [ F(Mn).

This implies that the sequence (Mk)k2N can equivalently be defined recursively as follows:

M0 = M
Mk+1 = Mk [ F(Mk)

This observation is of great interest for the purpose of designing an algorithm to analyze
loops, since it is very easy to compute an over-approximation of Mn using the techniques
shown in the previous sub-sections. Indeed, let us assume an element M] of the abstract
domain such that M ✓ g(M]) and define the sequence of abstract iterates (M]

k)k2N as fol-
lows:

M]
0 = M]

M]
k+1 = M]

k t
] F](M]

k)
(3.1)
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Then, we can prove by induction that, for all integer n:

Mn ✓ g(M]
n)

Example 3.17 (Abstract iterates) We assume that the analysis uses the abstract domain of inter-
vals, and we show the abstract iterates for the two example programs shown in Figure 3.9. In both
cases, the analysis of the command x := 0 produces the abstract state {x 7! [0,0]}.

• In the case of the program of Figure 3.9(a), we observe:

M]
0 = {x 7! [0,0]}

M]
1 = {x 7! [0,1]}

M]
2 = {x 7! [0,2]}
... =

...
M]

n = {x 7! [0,n]}
... =

...

• In the case of the program of Figure 3.9(b), we obtain:

M]
0 = {x 7! [0,0]}

M]
1 = {x 7! [0,1]}

M]
2 = {x 7! [0,2]}
... =

...
M]

49 = {x 7! [0,49]}
M]

50 = {x 7! [0,50]}
M]

51 = {x 7! [0,50]}
M]

52 = {x 7! [0,50]}
... =

...

Convergence of iterates. The recursive formula (3.1) shows how to over-approximate
any fixed number of iterates, but does not settle the case of unbounded iteration and the
termination problem, therefore we consider these issues now. We observe that the sequence
(g(M]

k))k2N is increasing, that is g(M]
k)v g(M]

k+1), since M]
k+1 = M]

k t
] F](M]

k), and since
t] is a sound over-approximation of concrete unions (Theorem 3.4). Intuitively, the ele-
ments of this sequence over-approximate larger and larger sets of concrete states, which is
expected since the k-th term describes all states observed in at most k iterations of the loop.

Let us assume that the abstract iteration stabilizes at some rank n, which means that
M]

n = M]
n+1. A first consequence is that, for all rank k � n, we also have M]

k = M]
n. This

also entails that Mk ✓ g(M]
n). Since this holds for all rank k � n, we can also derive that:

Mloop ✓ g(M]
n) where Mloop =

[

i�0
Mi
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abs iter(F],M])

R M];
repeat

T R;
R R t] F](R);

until R= T

return M]
lim = T;

(a) Iteration with a finite height domain

abs iter(F],M])

R M];
repeat

T R;
R R O F](R);

until R= T

return M]
lim = T;

(b) Iteration with widening and a domain
with possibly infinite height

Figure 3.10
Loop analysis algorithms

we now consider a more realistic language. This iteration technique is actually general
and can be utilized whenever analyzing programs that contain iterative constructions that
resemble loops (for instance, it also adapts to recursive procedures).

Another observation is that the exit condition here boils down to a mere equality com-
parison. It is often possible to use v instead, and to let the analysis of the loop terminate
when R is “included” into T, in the abstract level, that is, when the abstract iteration does
not discover any new behavior.
Example 3.19 (Convergence of abstract iterates in the signs abstract domain) We demons-
trate the analysis using the signs abstract domain in the cases of the two programs of Example 3.16:

• In the case of the program of Figure 3.9(a), we obtain the following iteration sequence:

M]
0 = {x 7! [= 0]}

M]
1 = {x 7! [� 0]}

M]
2 = {x 7! [� 0]}

We observe that the analysis terminates after only two iterations.
• In the case of the program of Figure 3.9(b), we obtain the same iteration sequence, and the

analysis of the loop also converges after only two iterations.

Widening operators. As we noticed in the previous paragraph, the abstract domain of
intervals has infinite chains. In particular, the chain below would be computed by the
analysis of the program of Figure 3.9(a), if we were using the above algorithm:

[0,0] < [0,1] < . . . < [0,n] < [0,n+1] < . . .

In Example 3.17, the analysis of the program of Figure 3.9(b) was found to terminate,
although only after a very long sequence of abstract iterates. In both examples, the issue is
that the abstract domain does not enforce a quick convergence of the iteration sequence.

Signs

Intervals



What If Bounded Loops Require Too Many Iterations?

x : = 0; 

while (x < 1000000) { 

  x := x + 1 

}

Needs 1 million iterations to reach a fixpoint for 
the intervals abstract domain



Widening

• A widening operator over an abstract domain  is a 

binary operator  such that 

• For all abstract elements  ,  we have  

• For all sequence   of abstract elements, the 

sequence  defined below is ultimately stationary
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Therefore, we now propose a second technique to bound the length of abstract iteration,
using a notion of widening (Cousot and Cousot, 1977), as we did in Section 2.3.4. Essen-
tially, a widening operator is a binary operator that over-approximates concrete unions and
also enforces termination of all sequences of iterates:
Definition 3.11 (Widening operator) A widening operator over an abstract domain A is a binary
operator O, such that:
1. For all abstract elements a0,a1, we have

g(a0) [ g(a1)✓ g(a0 O a1)

2. For all sequence (an)n2N of abstract elements, the sequence (a0n)n2N defined below is ultimately
stationary: (

a00 = a0

a0n+1 = a0n O an

Assuming such an operator O for the non relational domain, we can turn the sequence of
abstract iterates into a terminating sequence:
Theorem 3.5 (Abstract iterates with widening) We assume that O is a widening operator over
the non relational abstract A domain and that F] is a function from A to itself. Then, the algorithm
shown in Figure 3.10(b) terminates, and returns an abstract element M]

lim.
Moreover, if we assume that F : M ! M is continuous and is such that F � g ✓ g �F] for the

pointwise inclusion (which means that, for all abstract element M]
0, F � g(M]

0)✓ g �F](M]
0)), then:

[

i�0
Fi(g(M]))✓ g(M]

lim)

We observe that this result derives from the continuity property mentioned in Remark 3.1.
This theorem not only guarantees the termination of the loop analysis but also its sound-

ness: indeed, it shows that M]
lim over-approximates the concrete semantics of the loop.

We now discuss the construction of a widening operator for the abstract domain of inter-
vals. In Section 2.3.4, we noticed that such an operator could in some cases, be built by
dropping constraints that are not stable. This can be achieved very easily with intervals,
by simply removing unstable bounds. For instance the widening of two intervals with the
same left bound boils down to:

[n, p] OV [n,q] =

(
[n, p] if p � q
[n,+•) if p < q

The case of disequal left bounds is symmetric.
Example 3.20 (Widening operator for the abstract domain of intervals) We now study the anal-
ysis of the examples of Example 3.16. In both cases, we obtain the following iteration sequence:

M]
0 = {x 7! [0,0]}

M]
1 = {x 7! [0,+•)}

M]
2 = {x 7! [0,+•)}
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Abstract Iterations with Widening
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iv

JnK](M]) = fV (n)
JxK](M]) = M](x)

JE 0 �E 1K](M]) = f ]�(JE 0K](M]),JE 1K](M]))

JC K]P(?) = ?
J K]P(M]) = M]

JC 0;C 1K]P(M]) = JC 1K]P(JC 0K]P(M]))

Jx := E K]P(M]) = M][x 7! JE K](M])]

J (x)K]P(M]) = M][x 7! >V ]

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M])) t] JC 1K]P(F ]

¬B (M]))

J (B ){C }K]P(M]) = F ]
¬B (lfpM]F]) where F] , lX ]. M] t] JC K]P �F ]

B (X ])

F ]
¬B (abs iter(JC K]P �F ]

B ,M]))

J (B ){C }KP(M) = F¬B (lfpMF)

where F , lX . M[ JC KP �FB (X)

J (B ){C }K]P(M]) = F ]
¬B (lfpM]F])

where F] , lX ]. M] t] JC K]P �F ]
B (X

])

Theorem 2 (Soundness) For all command C and all abstract state M],

JC KP (g(M]))✓ g(JC K]P (M]))

Proof:
Case where C is the while loop (B ){C }:

J (B ){C }KP(g(M])) = F¬B (lfpg(M])F)

where F , lX . g(M])[ JC KP �FB (X). And,

J (B ){C }K]P(M]) = F ]
¬B (lfpM]F])

where F] , lX ]. M] t] JC K]P �F ]
B (X ]).

For any M], F(g(M]))✓ g(F](M])) because

F(g(M])) = g(M])[ JC KP �FB (g(M]))

g(F](M])) = g(M] t] JC K]P �F ]
B (M]))

◆ g(M])[ g(JC K]P �F ]
B (M])) (By Theorem 3.4 (Soundness of join))
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abs iter(F],M])

R M];
repeat

T R;
R R t] F](R);

until R= T

return T;

(a) Iteration with a finite height domain

abs iter(F],M])

R M];
repeat

T R;
R R O F](R);

until R= T

return T;

(b) Iteration with widening and a domain
with possibly infinite height

Figure 0.3
Loop analysis algorithms

By induction hypothesis F ]
B and JC K]P are sound. By Theorem 3.1 (Approximation of

compositions),
JC KP �FB � g ✓ g � JC K]P �F

]
B .

Therefore, JC KP �FB (g(M]))✓ g(JC K]P �F
]
B (M])) and F(g(M]))✓ g(F](M])).

From the fixpoint transfer theorem,

lfpF ✓ g(lfpF])

Because F ]
¬B is sound (i.e., F¬B � g ✓ g �F ]

¬B ), F¬B (lfpg(M])F) ✓ g �F ]
¬B (lfpM]F])

which concludes the proof.
⇤



Widening for Intervals
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• Essence: widening and narrowing for the interval domain

Widening and Narrowing

• Widening and narrowing for domains      and      are defined as point-wise 
lifted ones (label-wise and variable-wise)

39
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• A simple widening operator for the interval domain:

• A simple narrowing operator for the interval domain:
[a, b] 4 ? = ?

? 4 [c, d] = ?
[a, b] 4 [c, d] = [(a = �1?c : a), (b = +1?d : b)]

<latexit sha1_base64="P/OxnQZaEzjpX+ANpEnMdTdxPzs="></latexit>

[a, b] 5 ? = [a, b]
? 5 [c, d] = [c, d]

[a, b] 5 [c, d] = [(c < a?�1 : a), (b < d? +1 : b)]

<latexit sha1_base64="8/vQrk+FYsm5yXYKBlgklqKrDI0="></latexit>

Check: Safety conditions 
for widening

Check: Safety conditions 
for narrowing
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x := 0;
(x� 0){
x := x+1

}
(a) Incrementation

x := 0;
(x 100){

(x� 50){
x := 10

} {
x := x+1

}
}
(b) Incrementation with reset

Figure 3.9
A couple of programs containing a simple loop

Sequences of concrete and abstract iterates. First, let us consider the executions that
spend at most n iterations in the loop, for a fixed integer value n. Then, the states they
generate at the loop head is:

Mn =
n[

i=0
Fi(M)

We can prove that this set of states can be computed by induction over n. Indeed, let us
consider the first elements of the sequence (Mk)k2N:

• M0 = M;
• M1 = M [ F(M) = M [ F(M0);
• M2 = M [ F(M) [ F(F(M)) = M [ F(M [ F(M)) since F commutes with set union,

so M2 = M [ F(M1);
• for any n greater than 2, we can show in the same manner than Mn+1 = M [ F(Mn).

This implies that the sequence (Mk)k2N can equivalently be defined recursively as follows:

M0 = M
Mk+1 = Mk [ F(Mk)

This observation is of great interest for the purpose of designing an algorithm to analyze
loops, since it is very easy to compute an over-approximation of Mn using the techniques
shown in the previous sub-sections. Indeed, let us assume an element M] of the abstract
domain such that M ✓ g(M]) and define the sequence of abstract iterates (M]

k)k2N as fol-
lows:

M]
0 = M]

M]
k+1 = M]

k t
] F](M]

k)
(3.1)

Intervals
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Therefore, we now propose a second technique to bound the length of abstract iteration,
using a notion of widening (Cousot and Cousot, 1977), as we did in Section 2.3.4. Essen-
tially, a widening operator is a binary operator that over-approximates concrete unions and
also enforces termination of all sequences of iterates:
Definition 3.11 (Widening operator) A widening operator over an abstract domain A is a binary
operator O, such that:
1. For all abstract elements a0,a1, we have

g(a0) [ g(a1)✓ g(a0 O a1)

2. For all sequence (an)n2N of abstract elements, the sequence (a0n)n2N defined below is ultimately
stationary: (

a00 = a0

a0n+1 = a0n O an

Assuming such an operator O for the non relational domain, we can turn the sequence of
abstract iterates into a terminating sequence:
Theorem 3.5 (Abstract iterates with widening) We assume that O is a widening operator over
the non relational abstract A domain and that F] is a function from A to itself. Then, the algorithm
shown in Figure 3.10(b) terminates, and returns an abstract element M]

lim.
Moreover, if we assume that F : M ! M is continuous and is such that F � g ✓ g �F] for the

pointwise inclusion (which means that, for all abstract element M]
0, F � g(M]

0)✓ g �F](M]
0)), then:

[

i�0
Fi(g(M]))✓ g(M]

lim)

We observe that this result derives from the continuity property mentioned in Remark 3.1.
This theorem not only guarantees the termination of the loop analysis but also its sound-

ness: indeed, it shows that M]
lim over-approximates the concrete semantics of the loop.

We now discuss the construction of a widening operator for the abstract domain of inter-
vals. In Section 2.3.4, we noticed that such an operator could in some cases, be built by
dropping constraints that are not stable. This can be achieved very easily with intervals,
by simply removing unstable bounds. For instance the widening of two intervals with the
same left bound boils down to:

[n, p] OV [n,q] =

(
[n, p] if p � q
[n,+•) if p < q

The case of disequal left bounds is symmetric.
Example 3.20 (Widening operator for the abstract domain of intervals) We now study the anal-
ysis of the examples of Example 3.16. In both cases, we obtain the following iteration sequence:

M]
0 = {x 7! [0,0]}

M]
1 = {x 7! [0,+•)}

M]
2 = {x 7! [0,+•)}

{ x ⟼ [0, 0] } ▽ { x ⟼ [1, 1] } 

= { x ⟼ [0,  +∞] } 

How  was computed?
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same left bound boils down to:

[n, p] OV [n,q] =

(
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Therefore, we now propose a second technique to bound the length of abstract iteration,
using a notion of widening (Cousot and Cousot, 1977), as we did in Section 2.3.4. Essen-
tially, a widening operator is a binary operator that over-approximates concrete unions and
also enforces termination of all sequences of iterates:
Definition 3.11 (Widening operator) A widening operator over an abstract domain A is a binary
operator O, such that:
1. For all abstract elements a0,a1, we have

g(a0) [ g(a1)✓ g(a0 O a1)

2. For all sequence (an)n2N of abstract elements, the sequence (a0n)n2N defined below is ultimately
stationary: (

a00 = a0

a0n+1 = a0n O an

Assuming such an operator O for the non relational domain, we can turn the sequence of
abstract iterates into a terminating sequence:
Theorem 3.5 (Abstract iterates with widening) We assume that O is a widening operator over
the non relational abstract A domain and that F] is a function from A to itself. Then, the algorithm
shown in Figure 3.10(b) terminates, and returns an abstract element M]

lim.
Moreover, if we assume that F : M ! M is continuous and is such that F � g ✓ g �F] for the

pointwise inclusion (which means that, for all abstract element M]
0, F � g(M]

0)✓ g �F](M]
0)), then:

[

i�0
Fi(g(M]))✓ g(M]

lim)

We observe that this result derives from the continuity property mentioned in Remark 3.1.
This theorem not only guarantees the termination of the loop analysis but also its sound-

ness: indeed, it shows that M]
lim over-approximates the concrete semantics of the loop.

We now discuss the construction of a widening operator for the abstract domain of inter-
vals. In Section 2.3.4, we noticed that such an operator could in some cases, be built by
dropping constraints that are not stable. This can be achieved very easily with intervals,
by simply removing unstable bounds. For instance the widening of two intervals with the
same left bound boils down to:

[n, p] OV [n,q] =

(
[n, p] if p � q
[n,+•) if p < q

The case of disequal left bounds is symmetric.
Example 3.20 (Widening operator for the abstract domain of intervals) We now study the anal-
ysis of the examples of Example 3.16. In both cases, we obtain the following iteration sequence:

M]
0 = {x 7! [0,0]}

M]
1 = {x 7! [0,+•)}

M]
2 = {x 7! [0,+•)}

x : = 0; 

while (x < 1000000) { 

  x := x + 1 

}

• Imprecision occurs:   the desirable result is   
                 

                    { x ⟼ [0, 1000000]}

• Need to refine the widened result
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• Essence: widening and narrowing for the interval domain

Widening and Narrowing

• Widening and narrowing for domains      and      are defined as point-wise 
lifted ones (label-wise and variable-wise)

39

D]
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• A simple widening operator for the interval domain:

• A simple narrowing operator for the interval domain:
[a, b] 4 ? = ?

? 4 [c, d] = ?
[a, b] 4 [c, d] = [(a = �1?c : a), (b = +1?d : b)]

<latexit sha1_base64="P/OxnQZaEzjpX+ANpEnMdTdxPzs="></latexit>

[a, b] 5 ? = [a, b]
? 5 [c, d] = [c, d]

[a, b] 5 [c, d] = [(c < a?�1 : a), (b < d? +1 : b)]

<latexit sha1_base64="8/vQrk+FYsm5yXYKBlgklqKrDI0="></latexit>

Check: Safety conditions 
for widening

Check: Safety conditions 
for narrowing
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x : = 0; 

while (x < 1000000) { 

  x := x + 1 

}
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abs iter(F],M])

R M];
repeat

T R;
R R t] F](R);

until R= T

return T;

(a) Iteration with a finite height domain

abs iter(F],M])

R M];
repeat

T R;
R R O F](R);

until R= T

return T;

(b) Iteration with widening and a domain
with possibly infinite height

Figure 0.3
Loop analysis algorithms

By induction hypothesis F ]
B and JC K]P are sound. By Theorem 3.1 (Approximation of

compositions),
JC KP �FB � g ✓ g � JC K]P �F

]
B .

Therefore, JC KP �FB (g(M]))✓ g(JC K]P �F
]
B (M])) and F(g(M]))✓ g(F](M])).

From the fixpoint transfer theorem,

lfpF ✓ g(lfpF])

Because F ]
¬B is sound (i.e., F¬B � g ✓ g �F ]

¬B ), F¬B (lfpg(M])F) ✓ g �F ]
¬B (lfpM]F])

which concludes the proof.
⇤

M3
] = {x 7! [0,+•]}

M4
] = {x 7! [0,1000000]}

M5
] = {x 7! [0,1000000]}
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JnK](M]) = fV (n)
JxK](M]) = M](x)

JE 0 �E 1K](M]) = f ]�(JE 0K](M]),JE 1K](M]))

JC K]P(?) = ?
J K]P(M]) = M]

JC 0;C 1K]P(M]) = JC 1K]P(JC 0K]P(M]))

Jx := E K]P(M]) = M][x 7! JE K](M])]

J (x)K]P(M]) = M][x 7! >V ]

J (B ){C 0} {C 1}K]P(M]) = JC 0K]P(F ]
B (M])) t] JC 1K]P(F ]

¬B (M]))

J (B ){C }K]P(M]) = F ]
¬B (lfpM]F]) where F] , lX ]. M] t] JC K]P �F ]

B (X ])

F ]
¬B (abs iter(JC K]P �F ]

B ,M]))

J (B ){C }KP(M) = F¬B (lfpMF)

where F , lX . M[ JC KP �FB (X)

J (B ){C }K]P(M]) = F ]
¬B (lfpM]F])

where F] , lX ]. M] t] JC K]P �F ]
B (X

])

Theorem 2 (Soundness) For all command C and all abstract state M],

JC KP (g(M]))✓ g(JC K]P (M]))

Proof:
Case where C is the while loop (B ){C }:

J (B ){C }KP(g(M])) = F¬B (lfpg(M])F)

where F , lX . g(M])[ JC KP �FB (X). And,

J (B ){C }K]P(M]) = F ]
¬B (lfpM]F])

where F] , lX ]. M] t] JC K]P �F ]
B (X ]).

For any M], F(g(M]))✓ g(F](M])) because

F(g(M])) = g(M])[ JC KP �FB (g(M]))

g(F](M])) = g(M] t] JC K]P �F ]
B (M]))

◆ g(M])[ g(JC K]P �F ]
B (M])) (By Theorem 3.4 (Soundness of join))
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abs iter(F],M])

R M];
repeat

T R;
R R t] F](R);

until R= T

return T;

(a) Iteration with a finite height domain

abs iter(F],M])

R M];
repeat

T R;
R R O F](R);

until R= T

repeat
T R;
R R4 F](R);

until R= T

return T;

(b) Iteration with widening & narrowing
and a domain with possibly infinite height

Figure 0.3
Loop analysis algorithms

By induction hypothesis F ]
B and JC K]P are sound. By Theorem 3.1 (Approximation of

compositions),
JC KP �FB � g ✓ g � JC K]P �F

]
B .

Therefore, JC KP �FB (g(M]))✓ g(JC K]P �F
]
B (M])) and F(g(M]))✓ g(F](M])).

From the fixpoint transfer theorem,

lfpF ✓ g(lfpF])

Because F ]
¬B is sound (i.e., F¬B � g ✓ g �F ]

¬B ), F¬B (lfpg(M])F) ✓ g �F ]
¬B (lfpM]F])

which concludes the proof.
⇤

M3
] = {x 7! [0,+•]}

M4
] = {x 7! [0,1000000]}

M5
] = {x 7! [0,1000000]}



Soundness

• The widening and narrowing operators for intervals 
satisfy the safety conditions for widening and narrowing.

• By the theorems [Widen’s safety] and [Narrow’s safety], 
the soundness is guaranteed.


