
A Gentle Introduction to
Static Analysis (2)

Woosuk Lee

CSE 6049 Program Analysis

To appear at POPL’21
Hanyang University, Korea

Some slides are borrowed from http://ropas.snu.ac.kr/~kwang/4541.664A/21/0-overview.pdf

http://ropas.snu.ac.kr/~kwang/4541.664A/21/0-overview.pdf

Static AnalysisStatic Program Analysis

A general method for
automatic and sound approximation of

sw run-time behaviors
before the execution

“before”: statically, without running sw

“automatic”: sw analyzes sw

“sound”: all possibilities into account

“approximation”: cannot be exact

“general”: for any source language and property
I C, C++, C#, F#, Java, JavaScript, ML, Scala, Python, JVM, Dalvik,

x86, Excel, etc
I “bu↵er-overrun?”, “memory leak?”, “type errors?”, “x = y at line 2?”,

“memory use  2K?”, etc

Hakjoo Oh AAA616 2016 Fall, Lecture 3 October 3, 2016 2 / 44

Abstract Interpretation

• A powerful framework for designing correct static analysis

• “framework” : correct static analysis comes out, reusable

• “powerful” : all static analyses are understood in this framework

• “simple” : prescription is simple

• “eye-opening” : any static analysis is an abstract interpretation

Why Abstraction?

• Without abstraction,

• can’t capture all possible executions

• can’t terminate

• Abstraction ≠ omission

• reality: {2, 4, 6, 8, … }

• “even number” (abstraction) vs “multiple of 4” (omission)

/ 50

Examples

• Does the program have memory errors? (such as
buffer overrun or memory leaks)!

• Does the program always terminate?

5

Impossible

Alan Turing

Example

• Q: What are the possible output values?

• Concrete interpretation: 2,4, … infinitely many possible values

• Abstract interpretation 1: “integers” (coarse)

• Abstract interpretation 2: “positive integers” (precise)

• Abstract interpretation 3: “positive even integers” (more precise)

 x = 3;
 while (*) {
 x += 2;
 }
 x -= 1;
 print(x);

Abstraction

/ 50

Abstract Interpretation
The static analysis game

*0

*a++ = MAX++

20

7

Abstraction

/ 50

Abstract Interpretation
The static analysis game

*0

*a++ = MAX++

20

8

Abstraction

/ 50

Abstract Interpretation
The static analysis game

*0

*a++ = MAX++

20

9

An Intuitive Explanation
of Abstract Interpretation

Example Language
Static Analysis: a Gentle Introduction

Example Language

p ::= init(R) initialization, with a state in R
| translation(u, v) translation by vector (u, v)
| rotation(u, v, ✓) rotation by center (u, v) and angle ✓
| p ; p sequence of operations
| {p}or{p} non-deterministic choice
| iter{p} non-deterministic iterations

Kwangkeun Yi (Seoul National U) Program Analysis 25 / 51

Initialization with a point that is non-deterministically
chosen in a fixed region (e.g., [0,1] x [0,1] square)

All programs start with an initialization statement.

Semantics
Static Analysis: a Gentle Introduction

Example (Semantics)

init([0, 1]⇥ [0, 1]);
translation(1, 0);
iter{

{
translation(1, 0)

}or{
rotation(0, 0, 90�)

}
}

x

y

x

y

x

y

Kwangkeun Yi (Seoul National U) Program Analysis 26 / 51

Static Analysis: a Gentle Introduction

Example (Semantics)

init([0, 1]⇥ [0, 1]);
translation(1, 0);
iter{

{
translation(1, 0)

}or{
rotation(0, 0, 90�)

}
}

x

y

x

y

x

y

Kwangkeun Yi (Seoul National U) Program Analysis 26 / 51

Static Analysis: a Gentle Introduction

Example (Semantics)

init([0, 1]⇥ [0, 1]);
translation(1, 0);
iter{

{
translation(1, 0)

}or{
rotation(0, 0, 90�)

}
}

x

y

x

y

x

y

Kwangkeun Yi (Seoul National U) Program Analysis 26 / 51

Analysis Goal Is Safety Property:
Reachability

Analyze the set of reachable points, to check if the set
intersects with a hypothetical error zone:

Static Analysis: a Gentle Introduction

Analysis Goal Is Safety Property: Reachability

Analyze the set of reachable points, to check if the set intersects with a
no-fly zone. Suppose that the no-fly zone is:

x

y

Kwangkeun Yi (Seoul National U) Program Analysis 27 / 51

<latexit sha1_base64="8h5f9DgAkWpANTXr4iB7o7iOJ48=">AAACDXicbVDLSsNAFJ3UV62vqEs3g1WoICURURcKRV24rGAf0IQymUzaoZMHMxNpCPkBN/6KGxeKuHXvzr9x0mah1QMXDufcy733OBGjQhrGl1aam19YXCovV1ZW19Y39M2ttghjjkkLhyzkXQcJwmhAWpJKRroRJ8h3GOk4o6vc79wTLmgY3MkkIraPBgH1KEZSSX19z/KRHGLE0usMXkArhbXxYXIALZ+6cAzPoQGtrK9XjboxAfxLzIJUQYFmX/+03BDHPgkkZkiInmlE0k4RlxQzklWsWJAI4REakJ6iAfKJsNPJNxncV4oLvZCrCiScqD8nUuQLkfiO6sxvF7NeLv7n9WLpndkpDaJYkgBPF3kxgzKEeTTQpZxgyRJFEOZU3QrxEHGEpQqwokIwZ1/+S9pHdfOkbt4eVxuXRRxlsAN2QQ2Y4BQ0wA1oghbA4AE8gRfwqj1qz9qb9j5tLWnFzDb4Be3jG6o5mWA=</latexit>

D = {(x, y) | x < 0}

Error!

Correct / Incorrect Executions

Static Analysis: a Gentle Introduction

Correct or Incorrect Executions

x

y

(a) An incorrect execution

x

y

(b) Correct executions

Kwangkeun Yi (Seoul National U) Program Analysis 28 / 51

• Our goal: prove
<latexit sha1_base64="R7IvKF/zjlQCH3w5dTrFGSYsFSc=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZdFXbisYB/QGUomvW1DM5khyRTK0D9x40IRt/6JO//G9LHQ1gOBwzn3ck9OlAqujed9O4W19Y3NreJ2aWd3b//APTxq6CRTDOssEYlqRVSj4BLrhhuBrVQhjSOBzWh4N/WbI1SaJ/LJjFMMY9qXvMcZNVbquG4gsU+CmJoBoyK/n3TcslfxZiCrxF+QMixQ67hfQTdhWYzSMEG1bvteasKcKsOZwEkpyDSmlA1pH9uWShqjDvNZ8gk5s0qX9BJlnzRkpv7eyGms9TiO7OQ0ol72puJ/XjszvZsw5zLNDEo2P9TLBDEJmdZAulwhM2JsCWWK26yEDaiizNiySrYEf/nLq6RxUfGvKv7jZbl6u6ijCCdwCufgwzVU4QFqUAcGI3iGV3hzcufFeXc+5qMFZ7FzDH/gfP4AVmaTeQ==</latexit>¬D

Error!

An Example Safe Program
Static Analysis: a Gentle Introduction

An Example Safe Program

Example

init([0, 1]⇥ [0, 1]);
iter{

{
translation(1, 0)

}or{
translation(0.5, 0.5)

}
}

x

y

Kwangkeun Yi (Seoul National U) Program Analysis 29 / 51

Static Analysis: a Gentle Introduction

An Example Safe Program

Example

init([0, 1]⇥ [0, 1]);
iter{

{
translation(1, 0)

}or{
translation(0.5, 0.5)

}
}

x

y

Kwangkeun Yi (Seoul National U) Program Analysis 29 / 51

Error!

Need for Static Analysis for Proving <latexit sha1_base64="R7IvKF/zjlQCH3w5dTrFGSYsFSc=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZdFXbisYB/QGUomvW1DM5khyRTK0D9x40IRt/6JO//G9LHQ1gOBwzn3ck9OlAqujed9O4W19Y3NreJ2aWd3b//APTxq6CRTDOssEYlqRVSj4BLrhhuBrVQhjSOBzWh4N/WbI1SaJ/LJjFMMY9qXvMcZNVbquG4gsU+CmJoBoyK/n3TcslfxZiCrxF+QMixQ67hfQTdhWYzSMEG1bvteasKcKsOZwEkpyDSmlA1pH9uWShqjDvNZ8gk5s0qX9BJlnzRkpv7eyGms9TiO7OQ0ol72puJ/XjszvZsw5zLNDEo2P9TLBDEJmdZAulwhM2JsCWWK26yEDaiizNiySrYEf/nLq6RxUfGvKv7jZbl6u6ijCCdwCufgwzVU4QFqUAcGI3iGV3hzcufFeXc+5qMFZ7FzDH/gfP4AVmaTeQ==</latexit>¬D

• How can we check for any given program?

• Enumeration of all executions does not work!

• The set of possible initial states is infinite.

• The length of executions may be infinite.

• The set of possible series of non-deterministic choices
is infinite.

<latexit sha1_base64="R7IvKF/zjlQCH3w5dTrFGSYsFSc=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZdFXbisYB/QGUomvW1DM5khyRTK0D9x40IRt/6JO//G9LHQ1gOBwzn3ck9OlAqujed9O4W19Y3NreJ2aWd3b//APTxq6CRTDOssEYlqRVSj4BLrhhuBrVQhjSOBzWh4N/WbI1SaJ/LJjFMMY9qXvMcZNVbquG4gsU+CmJoBoyK/n3TcslfxZiCrxF+QMixQ67hfQTdhWYzSMEG1bvteasKcKsOZwEkpyDSmlA1pH9uWShqjDvNZ8gk5s0qX9BJlnzRkpv7eyGms9TiO7OQ0ol72puJ/XjszvZsw5zLNDEo2P9TLBDEJmdZAulwhM2JsCWWK26yEDaiizNiySrYEf/nLq6RxUfGvKv7jZbl6u6ijCCdwCufgwzVU4QFqUAcGI3iGV3hzcufFeXc+5qMFZ7FzDH/gfP4AVmaTeQ==</latexit>¬D

How to Finitely Over-Approximate the Set
of Reachable Points?

Static Analysis: a Gentle Introduction

How to Finitely Over-Approximate the Set of Reachable
Points?

Definition (Abstraction)

We call abstraction a set A of logical properties of program states, which
are called abstract properties or abstract elements. A set of abstract
properties is called an abstract domain.

Definition (Concretization)

Given an abstract element a of A, we call concretization the set of program
states that satisfy it. We denote it by �(a).

Kwangkeun Yi (Seoul National U) Program Analysis 30 / 51

Abstraction Example 1: Sign Abstraction
Static Analysis: a Gentle Introduction

Abstraction Example 1: Signs Abstraction

x

y

(c) Concretization of [x  0, y � 0]

x

y

(d) Concretization of [x � 0]

Figure: Signs abstraction

Kwangkeun Yi (Seoul National U) Program Analysis 31 / 51

Abstraction Example 2: Interval AbstractionStatic Analysis: a Gentle Introduction

Abstraction Example 2: Interval Abstraction

The abstract elements: conjunctions of non-relational inequality
constraints: c1  x  c2, c01  y  c02

x

y

(a) Concretization of

[1  x  3, 1  y  2]

x

y

(b) Concretization of

[1  x  2]

x

y

(c) Concretization of

[1  x, 1  y]

Figure: Intervals abstraction

Kwangkeun Yi (Seoul National U) Program Analysis 32 / 51

Best AbstractionMITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

28 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) A concrete set

x

y

(b) Abstractions

x

y

(c) Best abstraction

Figure 2.7
Best abstraction

tervals abstract domain that over-approximates our initial set. For instance, let us consider

the set of program states defined by the disc shown in Figure 2.7(a). Then any box that en-

closes the disc is a valid over-approximation of this set: indeed, any such box describes all

the points in the disc (and more), so it provides a conservative approximation of the disc.

However, there exist many such enclosing boxes. Yet, some of these abstractions are more

desirable than others. As we mentioned earlier, the goal of abstraction is to account for

the concrete set of points using a simple description, at the cost of adding some additional

points that are not in the concrete set. Adding fewer points that are not in the concrete set

is better since it means the abstraction characterizes the set of points in a less ambiguous

and more informative way. In the case of the intervals abstract domain, we can actually

solve this problem in an elegant manner; indeed, the smallest rectangle that encloses any

non-empty set of points is well-defined, using the greatest lower bounds and least upper

bounds over both coordinates (the case of the empty set of points is trivial, as the empty

rectangle is also an element of the abstract domain). In particular, Figure 2.7(c) shows the

best approximation of the disc.

More generally, the best abstraction (?) is defined as a function that interprets any set of

concrete points into an optimal abstract element:

Definition 2.4 (Best abstraction) We say that a is the best abstraction of the concrete set S if and
only if S ⌃ ⇥(a) and for any a� that is an abstraction of S (i.e., S ⌃ ⇥(a�)): then a� is a coarser
abstraction than a. If S has a best abstraction, then the best abstraction is unique. When it is defined,
we let � denote the function that maps any concrete set of states into the best abstraction of that set
of states.

As observed above, the intervals abstract domain has a best abstraction function. While

computing a precise abstraction (if possible the best abstraction) is preferable in general,

we will often encounter useful analyses that cannot compute the best abstraction, or such

that the best abstraction cannot even be defined in the sense of Definition 2.4. The im-

Best Abstraction

• We say is the best abstraction of the concrete set iff

• , and

• for any such that , is a coarser
abstraction than .

<latexit sha1_base64="dTupxKdri2DVdmQ/PR0w9lgSGG4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUoP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo1Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4AxVWM6w==</latexit>a
<latexit sha1_base64="Vsa9UXvkBqmi0ZD+mN55uQFqwx4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68dii/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LBjBP0IzqQPOSMGivV73ulsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWrX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDsB2M3Q==</latexit>

S

<latexit sha1_base64="U/4EbI7wAvBPX7hRSwnL/AOVVwo=">AAAB/nicbVDLSgNBEJyNrxhfq+LJy2AQ4iXsiqjHoBePEc0DkhB6J51kyMzuOjMrhCXgr3jxoIhXv8Obf+PkcdDEgoaiqpvuriAWXBvP+3YyS8srq2vZ9dzG5tb2jru7V9VRohhWWCQiVQ9Ao+AhVgw3AuuxQpCBwFowuB77tUdUmkfhvRnG2JLQC3mXMzBWarsHd7Spk0CjwQfa7IGUUICTtpv3it4EdJH4M5InM5Tb7lezE7FEYmiYAK0bvhebVgrKcCZwlGsmGmNgA+hhw9IQJOpWOjl/RI+t0qHdSNkKDZ2ovydSkFoPZWA7JZi+nvfG4n9eIzHdy1bKwzgxGLLpom4iqInoOAva4QqZEUNLgClub6WsDwqYsYnlbAj+/MuLpHpa9M+L/u1ZvnQ1iyNLDskRKRCfXJASuSFlUiGMpOSZvJI358l5cd6dj2lrxpnN7JM/cD5/ABr+lO8=</latexit>

S ✓ �(a)

<latexit sha1_base64="WaRWI2p38YHMFz4ItB4YFNj0g+0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE1GPRi8cq9gPaUCbbTbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVlDVoLGLVDlAzwSVrGG4EayeKYRQI1gpGt1O/9cSU5rF8NOOE+REOJA85RWOlBzztlStu1Z2BLBMvJxXIUe+Vv7r9mKYRk4YK1LrjuYnxM1SGU8EmpW6qWYJ0hAPWsVRixLSfzS6dkBOr9EkYK1vSkJn6eyLDSOtxFNjOCM1QL3pT8T+vk5rw2s+4TFLDJJ0vClNBTEymb5M+V4waMbYEqeL2VkKHqJAaG07JhuAtvrxMmudV77Lq3V9Uajd5HEU4gmM4Aw+uoAZ3UIcGUAjhGV7hzRk5L8678zFvLTj5zCH8gfP5AyXFjRw=</latexit>

a0
<latexit sha1_base64="zDvKQtl7WpsyrRDG79XGh+DAg6o=">AAAB/3icbVDLSgNBEJyNrxhfq4IXL4NBjJewK6Ieg148RjQPSELonXSSITO768ysEGIO/ooXD4p49Te8+TdOHgdNLGgoqrrp7gpiwbXxvG8ntbC4tLySXs2srW9sbrnbO2UdJYphiUUiUtUANAoeYslwI7AaKwQZCKwEvauRX3lApXkU3pl+jA0JnZC3OQNjpaa7d0vrOgk0Gryn9Q5ICTk4Om66WS/vjUHniT8lWTJFsel+1VsRSySGhgnQuuZ7sWkMQBnOBA4z9URjDKwHHaxZGoJE3RiM7x/SQ6u0aDtStkJDx+rviQFIrfsysJ0STFfPeiPxP6+WmPZFY8DDODEYssmidiKoiegoDNriCpkRfUuAKW5vpawLCpixkWVsCP7sy/OkfJL3z/L+zWm2cDmNI032yQHJEZ+ckwK5JkVSIow8kmfySt6cJ+fFeXc+Jq0pZzqzS/7A+fwBgq+VIA==</latexit>

S ✓ �(a0)
<latexit sha1_base64="WaRWI2p38YHMFz4ItB4YFNj0g+0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE1GPRi8cq9gPaUCbbTbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVlDVoLGLVDlAzwSVrGG4EayeKYRQI1gpGt1O/9cSU5rF8NOOE+REOJA85RWOlBzztlStu1Z2BLBMvJxXIUe+Vv7r9mKYRk4YK1LrjuYnxM1SGU8EmpW6qWYJ0hAPWsVRixLSfzS6dkBOr9EkYK1vSkJn6eyLDSOtxFNjOCM1QL3pT8T+vk5rw2s+4TFLDJJ0vClNBTEymb5M+V4waMbYEqeL2VkKHqJAaG07JhuAtvrxMmudV77Lq3V9Uajd5HEU4gmM4Aw+uoAZ3UIcGUAjhGV7hzRk5L8678zFvLTj5zCH8gfP5AyXFjRw=</latexit>

a0

<latexit sha1_base64="dTupxKdri2DVdmQ/PR0w9lgSGG4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUoP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo1Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4AxVWM6w==</latexit>a

Static Analysis: a Gentle Introduction

Abstraction Example 3: Convex Polyhedra Abstraction

The abstract elements: conjunctions of linear inequality constraints:
c1x+ c2y  c3

x

y

(a) Concretization of

a0

x

y

(b) Concretization of

a1

x

y

(c) Concretization of

a2

Figure: Convex polyhedra abstraction

Kwangkeun Yi (Seoul National U) Program Analysis 33 / 51

Abstraction Example 3: Convex Polyhedra
Abstraction

<latexit sha1_base64="QNfFvMZuRSkCxkBVFBlmV6htOzQ=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgpiURX8uiG5cV7APaUCbTSTt0MokzEzGGfokbF4q49VPc+TdO2yy09cCFwzn3cu89fsyZ0o7zbS0tr6yurRc2iptb2zsle3evqaJEEtogEY9k28eKciZoQzPNaTuWFIc+py1/dD3xWw9UKhaJO53G1AvxQLCAEayN1LNLj6iCUtQd0HtUcapnPbvsVJ0p0CJxc1KGHPWe/dXtRyQJqdCEY6U6rhNrL8NSM8LpuNhNFI0xGeEB7RgqcEiVl00PH6Mjo/RREElTQqOp+nsiw6FSaeibzhDroZr3JuJ/XifRwaWXMREnmgoyWxQkHOkITVJAfSYp0Tw1BBPJzK2IDLHERJusiiYEd/7lRdI8qbrnVff2tFy7yuMowAEcwjG4cAE1uIE6NIBAAs/wCm/Wk/VivVsfs9YlK5/Zhz+wPn8Az2eRPg==</latexit>

x� y � �0.5

<latexit sha1_base64="Z1s2ZOJ6fCL931QngaPgMr0eYEA=">AAAB8XicbVDLTgJBEOz1ifhCPXqZSEw8kV3i60j04hETeUTYkNmhgQmzs+vMrJFs+AsvHjTGq3/jzb9xgD0oWEknlarudHcFseDauO63s7S8srq2ntvIb25t7+wW9vbrOkoUwxqLRKSaAdUouMSa4UZgM1ZIw0BgIxheT/zGIyrNI3lnRjH6Ie1L3uOMGivdP5G2wAdSLp11CkW35E5BFomXkSJkqHYKX+1uxJIQpWGCat3y3Nj4KVWGM4HjfDvRGFM2pH1sWSppiNpPpxePybFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0PK2xC8+ZcXSb1c8s5L3u1psXKVxZGDQziCE/DgAipwA1WoAQMJz/AKb452Xpx352PWuuRkMwfwB87nD/oHj88=</latexit>

x  2.5

<latexit sha1_base64="eDt06lHNufn/vsArhSDxZQ38sqg=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0UQhJJIfSyLblxWsA9oQ5lMb9qhk0mcmYgx9EvcuFDErZ/izr9x2mahrQcuHM65l3vv8WPOlHacb2tpeWV1bb2wUdzc2t4p2bt7TRUlkkKDRjySbZ8o4ExAQzPNoR1LIKHPoeWPrid+6wGkYpG402kMXkgGggWMEm2knl16xCe4muLuAO5xtXLWs8tOxZkCLxI3J2WUo96zv7r9iCYhCE05UarjOrH2MiI1oxzGxW6iICZ0RAbQMVSQEJSXTQ8f4yOj9HEQSVNC46n6eyIjoVJp6JvOkOihmvcm4n9eJ9HBpZcxEScaBJ0tChKOdYQnKeA+k0A1Tw0hVDJzK6ZDIgnVJquiCcGdf3mRNE8r7nnFva2Wa1d5HAV0gA7RMXLRBaqhG1RHDURRgp7RK3qznqwX6936mLUuWfnMPvoD6/MH3CqRRw==</latexit>

x+ 4y � 4.5

Best Abstraction is Not Always Obtainable

• Computing the best abstraction is expensive in general, or
sometimes even impossible.

• In case of the diameter, there is no
best abstraction since it requires
infinitely many linear inequalities.

• Thus in practice, we often use abstractions as precise as
possible but may not be the best.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

28 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) A concrete set

x

y

(b) Abstractions

x

y

(c) Best abstraction

Figure 2.7
Best abstraction

tervals abstract domain that over-approximates our initial set. For instance, let us consider

the set of program states defined by the disc shown in Figure 2.7(a). Then any box that en-

closes the disc is a valid over-approximation of this set: indeed, any such box describes all

the points in the disc (and more), so it provides a conservative approximation of the disc.

However, there exist many such enclosing boxes. Yet, some of these abstractions are more

desirable than others. As we mentioned earlier, the goal of abstraction is to account for

the concrete set of points using a simple description, at the cost of adding some additional

points that are not in the concrete set. Adding fewer points that are not in the concrete set

is better since it means the abstraction characterizes the set of points in a less ambiguous

and more informative way. In the case of the intervals abstract domain, we can actually

solve this problem in an elegant manner; indeed, the smallest rectangle that encloses any

non-empty set of points is well-defined, using the greatest lower bounds and least upper

bounds over both coordinates (the case of the empty set of points is trivial, as the empty

rectangle is also an element of the abstract domain). In particular, Figure 2.7(c) shows the

best approximation of the disc.

More generally, the best abstraction (?) is defined as a function that interprets any set of

concrete points into an optimal abstract element:

Definition 2.4 (Best abstraction) We say that a is the best abstraction of the concrete set S if and
only if S ⌃ ⇥(a) and for any a� that is an abstraction of S (i.e., S ⌃ ⇥(a�)): then a� is a coarser
abstraction than a. If S has a best abstraction, then the best abstraction is unique. When it is defined,
we let � denote the function that maps any concrete set of states into the best abstraction of that set
of states.

As observed above, the intervals abstract domain has a best abstraction function. While

computing a precise abstraction (if possible the best abstraction) is preferable in general,

we will often encounter useful analyses that cannot compute the best abstraction, or such

that the best abstraction cannot even be defined in the sense of Definition 2.4. The im-

. . .

Reachable States of the Example Program

Static Analysis: a Gentle Introduction

An Example Program, Again

Example

init([0, 1]⇥ [0, 1]);
iter{

{
translation(1, 0)

}or{
translation(0.5, 0.5)

}
}

x

y

Figure: Reachable states

Kwangkeun Yi (Seoul National U) Program Analysis 34 / 51

Abstractions of the Semantics of the
Example Program

Static Analysis: a Gentle Introduction

Abstractions of the Semantics of the Example Program

x

y

(a) Reachable states

x

y

(b) Intervals abstraction

x

y

(c) Convex polyhedra ab-

straction

Figure: Program’s reachable states and abstraction

Kwangkeun Yi (Seoul National U) Program Analysis 35 / 51

Abstract Semantics Computation
Static Analysis: a Gentle Introduction

Abstract Semantics Computation

Recall the example language

p ::= init(R) initialization, with a state in R
| translation(u, v) translation by vector (u, v)
| rotation(u, v, ✓) rotation defined by center (u, v) and angle ✓
| p ; p sequence of operations
| {p}or{p} non-deterministic choice
| iter{p} non-deterministic iterations

Approach
A sound analysis for a program is constructed by computing sound abstract
semantics of the program’s components.

Kwangkeun Yi (Seoul National U) Program Analysis 38 / 51

Sound Analysis Function for the Example
Language

Static Analysis: a Gentle Introduction

Sound Analysis Function for the Example Language

Input: a program p and an abstract area a (pre-state)
Output: an abstract area a0 (post-state)

Definition (sound analysis)
An analysis is sound if and only if it captures the real execuctions of

the input program.

If an execution of p moves a point (x, y) to point (x0, y0),
then for all abstract element a such that (x, y) 2 �(a),

(x0, y0) 2 �(analysis(p, a))

Kwangkeun Yi (Seoul National U) Program Analysis 36 / 51

Sound Analysis Function as a DiagramStatic Analysis: a Gentle Introduction

Sound Analysis Function as a Diagram

If

apre

(x, y) (x0, y0)

ab
st

ra
ct

io
n

run p

then

apre

(x, y) (x0, y0)

apost = analysis(p, apre)

ab
st

ra
ct

io
n

run p

ab
st

ra
ct

io
n

analyze p

Figure: Sound analysis of a program p

Kwangkeun Yi (Seoul National U) Program Analysis 37 / 51

Abstract Semantics Computation: init(R)Static Analysis: a Gentle Introduction

Abstract Semantics Computation: init(R)

Select, if any, the best abstraction of the region R.
For the example program with the intervals or convex polyhedra
abstract domains, analysis of init([0, 1]⇥ [0, 1]) is

x

y

analysis(init(R), a) = best abstraction of the region R

Kwangkeun Yi (Seoul National U) Program Analysis 39 / 51

Abstract Semantics Computation:
translation(u, v)Static Analysis: a Gentle Introduction

Abstract Semantics Computation: translation(u, v)

x

y

(a) Concrete seman-

tics

x

y

apre

apost

(b) Intervals

x

y

apre

apost

(c) Convex polyhedra

analysis(translation(u, v), a) =
⇢

return an abstract state that contains
the translation of a

Kwangkeun Yi (Seoul National U) Program Analysis 40 / 51

Abstract Semantics Computation:
rotation(u, v, θ)

Static Analysis: a Gentle Introduction

Abstract Semantics Computation: rotation(u, v, ✓)

x

y

(d) Concrete seman-

tics

x

y

apre

apost

(e) Intervals

x

y

apre

apost

(f) Convex polyhedra

analysis(rotation(u, v, ✓), a) =
⇢

return an abstract state that contains
the rotation of a

Kwangkeun Yi (Seoul National U) Program Analysis 41 / 51

Abstract Semantics Computation: p0 ; p1

Static Analysis: a Gentle Introduction

Abstract Semantics Computation: p0 ; p1

analysis(p0; p1, a) = analysis(p1, analysis(p0, a))

Kwangkeun Yi (Seoul National U) Program Analysis 43 / 51

Abstract Semantics Computation: {p}or{p}Static Analysis: a Gentle Introduction

Abstract Semantics Computation: {p}or{p}

x

y

(g) Concrete seman-

tics

apre

apost

x

y

(h) Intervals

apre

apost

x

y

(i) Convex polyhedra

analysis({p0}or{p1}, a) = union(analysis(p1, a), analysis(p0, a))

Kwangkeun Yi (Seoul National U) Program Analysis 42 / 51

Abstract Semantics Computation: iter{b}

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

38 Chapter 2 A Gentle Introduction to Static Analysis

Note that the abstract post-condition that is produced as the analysis result only describes

the final states of the terminating program executions. This result means that “if a concrete

execution terminates, then this abstract post-condition holds.” The result does not mean

that “the iteration will terminate with this abstract post-condition.” This is due to the fact

that the halting problem cannot be computed exactly in finite time.

In the following, we consider the following program p that consists of a loop with body

b:

p ::=

⇥
⇧⇧⌅

⇧⇧⇤

{
b

}

We can discriminate the executions of p depending on the number of iterations of the loop;

indeed, an execution of program p executes b either zero time, or one time, or two times,

or three times, and so on. Thus, p is conceptually equivalent to the following (infinite)

program:

{}
{b}
{b;b}
{b;b;b}
{b;b;b;b}

.

.

.

This program fully eliminates the loop and resorts only to the construct which can be

analyzed as observed in Section 2.3.3, though it obviously cannot be completely written

since it would be infinite. However, if we focus on the executions that spend at most k
iterations in the loop, we can easily write a program without a loop that has exactly the

same behaviors. For all integer k, we let bk denote the program that iterates b k times (b0

is {}, b1 is b, b2 is b;b...). Moreover, we write pk for {b0} {b1} . . . {bk�1} {bk}.

In short:

program p
0

is {}
program p

1
is {} {b}

program p
2

is {} {b} {b;b}
program p

3
is {} {b} {b;b} {b;b;b}
.
.
.

Then we observe the following equivalence, which relates these programs all together:

pk+1
is equivalent to pk {pk;b}

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

38 Chapter 2 A Gentle Introduction to Static Analysis

Note that the abstract post-condition that is produced as the analysis result only describes

the final states of the terminating program executions. This result means that “if a concrete

execution terminates, then this abstract post-condition holds.” The result does not mean

that “the iteration will terminate with this abstract post-condition.” This is due to the fact

that the halting problem cannot be computed exactly in finite time.

In the following, we consider the following program p that consists of a loop with body

b:

p ::=

⇥
⇧⇧⌅

⇧⇧⇤

{
b

}

We can discriminate the executions of p depending on the number of iterations of the loop;

indeed, an execution of program p executes b either zero time, or one time, or two times,

or three times, and so on. Thus, p is conceptually equivalent to the following (infinite)

program:

{}
{b}
{b;b}
{b;b;b}
{b;b;b;b}

.

.

.

This program fully eliminates the loop and resorts only to the construct which can be

analyzed as observed in Section 2.3.3, though it obviously cannot be completely written

since it would be infinite. However, if we focus on the executions that spend at most k
iterations in the loop, we can easily write a program without a loop that has exactly the

same behaviors. For all integer k, we let bk denote the program that iterates b k times (b0

is {}, b1 is b, b2 is b;b...). Moreover, we write pk for {b0} {b1} . . . {bk�1} {bk}.

In short:

program p
0

is {}
program p

1
is {} {b}

program p
2

is {} {b} {b;b}
program p

3
is {} {b} {b;b} {b;b;b}
.
.
.

Then we observe the following equivalence, which relates these programs all together:

pk+1
is equivalent to pk {pk;b}

≡

Abstract Semantics Computation: iter{p}

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

38 Chapter 2 A Gentle Introduction to Static Analysis

Note that the abstract post-condition that is produced as the analysis result only describes

the final states of the terminating program executions. This result means that “if a concrete

execution terminates, then this abstract post-condition holds.” The result does not mean

that “the iteration will terminate with this abstract post-condition.” This is due to the fact

that the halting problem cannot be computed exactly in finite time.

In the following, we consider the following program p that consists of a loop with body

b:

p ::=

⇥
⇧⇧⌅

⇧⇧⇤

{
b

}

We can discriminate the executions of p depending on the number of iterations of the loop;

indeed, an execution of program p executes b either zero time, or one time, or two times,

or three times, and so on. Thus, p is conceptually equivalent to the following (infinite)

program:

{}
{b}
{b;b}
{b;b;b}
{b;b;b;b}

.

.

.

This program fully eliminates the loop and resorts only to the construct which can be

analyzed as observed in Section 2.3.3, though it obviously cannot be completely written

since it would be infinite. However, if we focus on the executions that spend at most k
iterations in the loop, we can easily write a program without a loop that has exactly the

same behaviors. For all integer k, we let bk denote the program that iterates b k times (b0

is {}, b1 is b, b2 is b;b...). Moreover, we write pk for {b0} {b1} . . . {bk�1} {bk}.

In short:

program p
0

is {}
program p

1
is {} {b}

program p
2

is {} {b} {b;b}
program p

3
is {} {b} {b;b} {b;b;b}
.
.
.

Then we observe the following equivalence, which relates these programs all together:

pk+1
is equivalent to pk {pk;b}

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

38 Chapter 2 A Gentle Introduction to Static Analysis

Note that the abstract post-condition that is produced as the analysis result only describes

the final states of the terminating program executions. This result means that “if a concrete

execution terminates, then this abstract post-condition holds.” The result does not mean

that “the iteration will terminate with this abstract post-condition.” This is due to the fact

that the halting problem cannot be computed exactly in finite time.

In the following, we consider the following program p that consists of a loop with body

b:

p ::=

⇥
⇧⇧⌅

⇧⇧⇤

{
b

}

We can discriminate the executions of p depending on the number of iterations of the loop;

indeed, an execution of program p executes b either zero time, or one time, or two times,

or three times, and so on. Thus, p is conceptually equivalent to the following (infinite)

program:

{}
{b}
{b;b}
{b;b;b}
{b;b;b;b}

.

.

.

This program fully eliminates the loop and resorts only to the construct which can be

analyzed as observed in Section 2.3.3, though it obviously cannot be completely written

since it would be infinite. However, if we focus on the executions that spend at most k
iterations in the loop, we can easily write a program without a loop that has exactly the

same behaviors. For all integer k, we let bk denote the program that iterates b k times (b0

is {}, b1 is b, b2 is b;b...). Moreover, we write pk for {b0} {b1} . . . {bk�1} {bk}.

In short:

program p
0

is {}
program p

1
is {} {b}

program p
2

is {} {b} {b;b}
program p

3
is {} {b} {b;b} {b;b;b}
.
.
.

Then we observe the following equivalence, which relates these programs all together:

pk+1
is equivalent to pk {pk;b}

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 39

Indeed, an execution of pk+1
either executes the loop at most k times (hence, it is an

execution of pk), or it runs it k + 1 times exactly (and then it is an execution of pk;b).

Conversely, one can can show that an execution of pk {pk;b} is also an exexcution of

pk+1
.

Therefore, the analysis of this sequence of programs can be computed recursively as

follows:

analysis(pk+1
,a) = union(analysis(pk,a),analysis(b,analysis(pk,a)))

This approach corresponds to the analysis algorithm that inputs an abstract pre-condition

a, stores it into a variable R and iterates the operation:

R union(R,analysis(b,R))

Moreover, as shown above any execution of p can be characterized by the number of times

it iterates over the loop. Thus, any execution is ultimately covered by repeating this itera-

tive abstract computation.

The following example illustrates this approach:

Example 2.12 (Abstract iteration) We consider the program below, which starts at a point located
in a triangle and iterates a basic geometric translation a non-deterministically chosen number of
times:

({(x,y) | 0⌥ y⌥ 2x and x⌥ 0.5});
{

(1,0.5)

}
We assume that the analysis uses the convex polyhedra abstract domain. Then the set of states
observed after initialization and before the statement is shown in Figure 2.15(b). We show in
Figure 2.15(c), Figure 2.15(d) and Figure 2.15(e) the first three iterations of the analysis algorithm
that was sketched above. The imprecision is inherent in the computation of over-approximations (in
gray) of abstract elements as in the previous examples.

While this process does not terminate, we note that repeating it forever would yield the result
shown in Figure 2.15(f), which also provides a sound approximation of all the possible output states
of the program.

The iterative algorithm demonstrated in Example 2.12 will actually always terminate if

using the signs abstract domain. Indeed, this abstract domain has a finite number of abstract

elements and when the iterative algorithm computes R union(R,analysis(b,R)), the

value of R will converge after finitely many steps: whenever it updates R, the new value

is either the same as the previous one (and then so will be all the other subsequent values

since they are computed using the same formula), or the new value denotes a strictly less

precise property. Since the number of abstract properties is finite, the latter case will occur

at most finitely many times. Therefore, at some point, the value of R stabilizes, and then

Therefore,

Abstract Semantics Computation: iter{p}

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 41

analysis is to exhibit such a measure. Very often, non-termination is due to some loop

indexes not being incremented properly, preventing such a decreasing measure to exist.

Intuitively, this is the issue the iterative analysis algorithm we sketched above suffers from,

as shown in Example 2.12.

Another interesting observation is that abstract elements are made of finite sets of con-

straints. Therefore, another way to over-approximate abstract elements that arise in the

abstract iteration would consist in forcing this number of constraints to decrease (possibly

down to zero) until it stabilizes, hereby recovering termination.

Given the current constraint a0, suppose that analyzing one more iteration generates a1.

To have an approximate constraint that subsumes both, we can let the analysis:

• keep all constraints of a0 that are also satisfied in a1;

• discard all constraints of a0 that are not satisfied in a1 (hence to subsume a1).

Applying this method to abstract iterates will produce a sequence of abstract elements with

a positive, decreasing number of constraints until the sequence stabilizes. This method is

an instance of a general technique called widening, which enforces the convergence of

abstract iterates. We denote this operator by widen:

operator widen

�
over-approximates unions

enforces convergence

Stabilization holds when the concretization of the next iterate is included into that of

the previous one. For all the abstract domains considered in this chapter, this inclusion

can be decided in the abstract level simply by checking geometric inclusion. We thus let

inclusion denote a function that inputs two abstract elements a0,a1 and returns true only

when it can prove that ⇥(a0)⌃ ⇥(a1).

operator inclusion returns true only when it succeeds checking inclusion

As a conclusion, the following algorithm computes an abstract post-condition for the

loop construction:

analysis({p},a) =

⇥
⇧⇧⇧⇧⇧⇧⇧⇧⇧⌅

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

R a;

repeat

T R;

R widen(R,analysis(p,R));

until inclusion(R,T)

return T;

This iteration technique will produce a sound result since it over-approximates the abstract

elements produced by the sequence of iterates without widening, and its limit (reached

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 41

analysis is to exhibit such a measure. Very often, non-termination is due to some loop

indexes not being incremented properly, preventing such a decreasing measure to exist.

Intuitively, this is the issue the iterative analysis algorithm we sketched above suffers from,

as shown in Example 2.12.

Another interesting observation is that abstract elements are made of finite sets of con-

straints. Therefore, another way to over-approximate abstract elements that arise in the

abstract iteration would consist in forcing this number of constraints to decrease (possibly

down to zero) until it stabilizes, hereby recovering termination.

Given the current constraint a0, suppose that analyzing one more iteration generates a1.

To have an approximate constraint that subsumes both, we can let the analysis:

• keep all constraints of a0 that are also satisfied in a1;

• discard all constraints of a0 that are not satisfied in a1 (hence to subsume a1).

Applying this method to abstract iterates will produce a sequence of abstract elements with

a positive, decreasing number of constraints until the sequence stabilizes. This method is

an instance of a general technique called widening, which enforces the convergence of

abstract iterates. We denote this operator by widen:

operator widen

�
over-approximates unions

enforces convergence

Stabilization holds when the concretization of the next iterate is included into that of

the previous one. For all the abstract domains considered in this chapter, this inclusion

can be decided in the abstract level simply by checking geometric inclusion. We thus let

inclusion denote a function that inputs two abstract elements a0,a1 and returns true only

when it can prove that ⇥(a0)⌃ ⇥(a1).

operator inclusion returns true only when it succeeds checking inclusion

As a conclusion, the following algorithm computes an abstract post-condition for the

loop construction:

analysis({p},a) =

⇥
⇧⇧⇧⇧⇧⇧⇧⇧⇧⌅

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

R a;

repeat

T R;

R widen(R,analysis(p,R));

until inclusion(R,T)

return T;

This iteration technique will produce a sound result since it over-approximates the abstract

elements produced by the sequence of iterates without widening, and its limit (reached

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 41

analysis is to exhibit such a measure. Very often, non-termination is due to some loop

indexes not being incremented properly, preventing such a decreasing measure to exist.

Intuitively, this is the issue the iterative analysis algorithm we sketched above suffers from,

as shown in Example 2.12.

Another interesting observation is that abstract elements are made of finite sets of con-

straints. Therefore, another way to over-approximate abstract elements that arise in the

abstract iteration would consist in forcing this number of constraints to decrease (possibly

down to zero) until it stabilizes, hereby recovering termination.

Given the current constraint a0, suppose that analyzing one more iteration generates a1.

To have an approximate constraint that subsumes both, we can let the analysis:

• keep all constraints of a0 that are also satisfied in a1;

• discard all constraints of a0 that are not satisfied in a1 (hence to subsume a1).

Applying this method to abstract iterates will produce a sequence of abstract elements with

a positive, decreasing number of constraints until the sequence stabilizes. This method is

an instance of a general technique called widening, which enforces the convergence of

abstract iterates. We denote this operator by widen:

operator widen

�
over-approximates unions

enforces convergence

Stabilization holds when the concretization of the next iterate is included into that of

the previous one. For all the abstract domains considered in this chapter, this inclusion

can be decided in the abstract level simply by checking geometric inclusion. We thus let

inclusion denote a function that inputs two abstract elements a0,a1 and returns true only

when it can prove that ⇥(a0)⌃ ⇥(a1).

operator inclusion returns true only when it succeeds checking inclusion

As a conclusion, the following algorithm computes an abstract post-condition for the

loop construction:

analysis({p},a) =

⇥
⇧⇧⇧⇧⇧⇧⇧⇧⇧⌅

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

R a;

repeat

T R;

R widen(R,analysis(p,R));

until inclusion(R,T)

return T;

This iteration technique will produce a sound result since it over-approximates the abstract

elements produced by the sequence of iterates without widening, and its limit (reached

<latexit sha1_base64="iUsUalAdlsvQqz958Kg47uUFX54=">AAACLXicbZDLSgMxFIYz9VbrbdSlm2ARWpAyI6Iui7pwWYu9QFtKJk3b0ExmSM4IZZgXcuOriOCiIm59DdN2BG09EPjz/eeQnN8LBdfgOBMrs7K6tr6R3cxtbe/s7tn7B3UdRIqyGg1EoJoe0UxwyWrAQbBmqBjxPcEa3uhm6jcemdI8kA8wDlnHJwPJ+5wSMKhr38ZtAFxNcHvAQOPZLZLGSgqpczqHRBIx1lynPPzh1aRY7Np5p+TMCi8LNxV5lFala7+2ewGNfCaBCqJ1y3VC6MREAaeCJbl2pFlI6IgMWMtISXymO/Fs2wSfGNLD/UCZIwHP6O+JmPhaj33PdPoEhnrRm8L/vFYE/atOzGUYAZN0/lA/EhgCPI0O97hiFMTYCEIVN3/FdEgUoWACzpkQ3MWVl0X9rORelNz783z5Oo0ji47QMSogF12iMrpDFVRDFD2hFzRB79az9WZ9WJ/z1oyVzhyiP2V9fQMPqaf9</latexit>

R union(R, analysis(p, R))

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 41

analysis is to exhibit such a measure. Very often, non-termination is due to some loop

indexes not being incremented properly, preventing such a decreasing measure to exist.

Intuitively, this is the issue the iterative analysis algorithm we sketched above suffers from,

as shown in Example 2.12.

Another interesting observation is that abstract elements are made of finite sets of con-

straints. Therefore, another way to over-approximate abstract elements that arise in the

abstract iteration would consist in forcing this number of constraints to decrease (possibly

down to zero) until it stabilizes, hereby recovering termination.

Given the current constraint a0, suppose that analyzing one more iteration generates a1.

To have an approximate constraint that subsumes both, we can let the analysis:

• keep all constraints of a0 that are also satisfied in a1;

• discard all constraints of a0 that are not satisfied in a1 (hence to subsume a1).

Applying this method to abstract iterates will produce a sequence of abstract elements with

a positive, decreasing number of constraints until the sequence stabilizes. This method is

an instance of a general technique called widening, which enforces the convergence of

abstract iterates. We denote this operator by widen:

operator widen

�
over-approximates unions

enforces convergence

Stabilization holds when the concretization of the next iterate is included into that of

the previous one. For all the abstract domains considered in this chapter, this inclusion

can be decided in the abstract level simply by checking geometric inclusion. We thus let

inclusion denote a function that inputs two abstract elements a0,a1 and returns true only

when it can prove that ⇥(a0)⌃ ⇥(a1).

operator inclusion returns true only when it succeeds checking inclusion

As a conclusion, the following algorithm computes an abstract post-condition for the

loop construction:

analysis({p},a) =

⇥
⇧⇧⇧⇧⇧⇧⇧⇧⇧⌅

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

R a;

repeat

T R;

R widen(R,analysis(p,R));

until inclusion(R,T)

return T;

This iteration technique will produce a sound result since it over-approximates the abstract

elements produced by the sequence of iterates without widening, and its limit (reached

Abstract Semantics Computation: iter{p}
Example: Sign Abstraciton

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 39

Indeed, an execution of pk+1
either executes the loop at most k times (hence, it is an

execution of pk), or it runs it k + 1 times exactly (and then it is an execution of pk;b).

Conversely, one can can show that an execution of pk {pk;b} is also an exexcution of

pk+1
.

Therefore, the analysis of this sequence of programs can be computed recursively as

follows:

analysis(pk+1
,a) = union(analysis(pk,a),analysis(b,analysis(pk,a)))

This approach corresponds to the analysis algorithm that inputs an abstract pre-condition

a, stores it into a variable R and iterates the operation:

R union(R,analysis(b,R))

Moreover, as shown above any execution of p can be characterized by the number of times

it iterates over the loop. Thus, any execution is ultimately covered by repeating this itera-

tive abstract computation.

The following example illustrates this approach:

Example 2.12 (Abstract iteration) We consider the program below, which starts at a point located
in a triangle and iterates a basic geometric translation a non-deterministically chosen number of
times:

({(x,y) | 0⌥ y⌥ 2x and x⌥ 0.5});
{

(1,0.5)

}
We assume that the analysis uses the convex polyhedra abstract domain. Then the set of states
observed after initialization and before the statement is shown in Figure 2.15(b). We show in
Figure 2.15(c), Figure 2.15(d) and Figure 2.15(e) the first three iterations of the analysis algorithm
that was sketched above. The imprecision is inherent in the computation of over-approximations (in
gray) of abstract elements as in the previous examples.

While this process does not terminate, we note that repeating it forever would yield the result
shown in Figure 2.15(f), which also provides a sound approximation of all the possible output states
of the program.

The iterative algorithm demonstrated in Example 2.12 will actually always terminate if

using the signs abstract domain. Indeed, this abstract domain has a finite number of abstract

elements and when the iterative algorithm computes R union(R,analysis(b,R)), the

value of R will converge after finitely many steps: whenever it updates R, the new value

is either the same as the previous one (and then so will be all the other subsequent values

since they are computed using the same formula), or the new value denotes a strictly less

precise property. Since the number of abstract properties is finite, the latter case will occur

at most finitely many times. Therefore, at some point, the value of R stabilizes, and then

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

26 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concretization of [x⌥ 0,y� 0]

x

y

(b) Concretization of [x� 0]

Figure 2.5
Signs abstraction

properties than others. Furthermore, some abstractions yield simpler computer representa-

tions and less costly algorithms than others. In the following paragraphs, we will present

a few other examples of abstractions, which also have a simple and intuitive graphical

representation.

Signs abstraction. The abstraction of Example 2.4 treats x and y differently and is very

specific to the property D defined in Section 2.1. It would not work if we wanted a static

analysis to prove that y never becomes negative. Similarly, it would not apply if the prop-

erty to prove was that x does not become positive. However, this abstraction generalizes

into a more expressive one, which describes a set of states using two pieces of information:

the possible values of the sign of x and the possible values of the sign of y. For each vari-

able, this abstraction records whether it may be positive, negative, non-negative, etc. The

concretizations of a few abstract elements are shown in Figure 2.5:

• the left diagram shows the concretization of the abstract element that expresses the fact

that x is negative, and y is non-negative;

• the right diagram shows the concretization of the abstract element that expresses the

fact that x is positive and this abstract element carries no information about y.

We can observe that this signs abstract domain can express any property the previous do-

main could express, but it can also describe some properties that were beyond the reach of

the previous domain.

Intervals abstraction. In practice, abstractions based on signs are often too weak to cap-

ture strong program properties, but other more precise abstractions have been proposed.

Using inequalities and range constraints over variables is a very natural approach to

reason over numerical properties. Similarly, we can use range constraints over program

variables so as to more precisely describe what values they may take. This is the principle

of the intervals abstraction (?):

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

26 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concretization of [x⌥ 0,y� 0]

x

y

(b) Concretization of [x� 0]

Figure 2.5
Signs abstraction

properties than others. Furthermore, some abstractions yield simpler computer representa-

tions and less costly algorithms than others. In the following paragraphs, we will present

a few other examples of abstractions, which also have a simple and intuitive graphical

representation.

Signs abstraction. The abstraction of Example 2.4 treats x and y differently and is very

specific to the property D defined in Section 2.1. It would not work if we wanted a static

analysis to prove that y never becomes negative. Similarly, it would not apply if the prop-

erty to prove was that x does not become positive. However, this abstraction generalizes

into a more expressive one, which describes a set of states using two pieces of information:

the possible values of the sign of x and the possible values of the sign of y. For each vari-

able, this abstraction records whether it may be positive, negative, non-negative, etc. The

concretizations of a few abstract elements are shown in Figure 2.5:

• the left diagram shows the concretization of the abstract element that expresses the fact

that x is negative, and y is non-negative;

• the right diagram shows the concretization of the abstract element that expresses the

fact that x is positive and this abstract element carries no information about y.

We can observe that this signs abstract domain can express any property the previous do-

main could express, but it can also describe some properties that were beyond the reach of

the previous domain.

Intervals abstraction. In practice, abstractions based on signs are often too weak to cap-

ture strong program properties, but other more precise abstractions have been proposed.

Using inequalities and range constraints over variables is a very natural approach to

reason over numerical properties. Similarly, we can use range constraints over program

variables so as to more precisely describe what values they may take. This is the principle

of the intervals abstraction (?):

No change. Done!

Abstract Semantics Computation: iter{p}
Example: Convex Polyhedra

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 39

Indeed, an execution of pk+1
either executes the loop at most k times (hence, it is an

execution of pk), or it runs it k + 1 times exactly (and then it is an execution of pk;b).

Conversely, one can can show that an execution of pk {pk;b} is also an exexcution of

pk+1
.

Therefore, the analysis of this sequence of programs can be computed recursively as

follows:

analysis(pk+1
,a) = union(analysis(pk,a),analysis(b,analysis(pk,a)))

This approach corresponds to the analysis algorithm that inputs an abstract pre-condition

a, stores it into a variable R and iterates the operation:

R union(R,analysis(b,R))

Moreover, as shown above any execution of p can be characterized by the number of times

it iterates over the loop. Thus, any execution is ultimately covered by repeating this itera-

tive abstract computation.

The following example illustrates this approach:

Example 2.12 (Abstract iteration) We consider the program below, which starts at a point located
in a triangle and iterates a basic geometric translation a non-deterministically chosen number of
times:

({(x,y) | 0⌥ y⌥ 2x and x⌥ 0.5});
{

(1,0.5)

}
We assume that the analysis uses the convex polyhedra abstract domain. Then the set of states
observed after initialization and before the statement is shown in Figure 2.15(b). We show in
Figure 2.15(c), Figure 2.15(d) and Figure 2.15(e) the first three iterations of the analysis algorithm
that was sketched above. The imprecision is inherent in the computation of over-approximations (in
gray) of abstract elements as in the previous examples.

While this process does not terminate, we note that repeating it forever would yield the result
shown in Figure 2.15(f), which also provides a sound approximation of all the possible output states
of the program.

The iterative algorithm demonstrated in Example 2.12 will actually always terminate if

using the signs abstract domain. Indeed, this abstract domain has a finite number of abstract

elements and when the iterative algorithm computes R union(R,analysis(b,R)), the

value of R will converge after finitely many steps: whenever it updates R, the new value

is either the same as the previous one (and then so will be all the other subsequent values

since they are computed using the same formula), or the new value denotes a strictly less

precise property. Since the number of abstract properties is finite, the latter case will occur

at most finitely many times. Therefore, at some point, the value of R stabilizes, and then

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

. . .

Forever!

Abstract Semantics Computation: iter{p}
Example: Convex Polyhedra

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 39

Indeed, an execution of pk+1
either executes the loop at most k times (hence, it is an

execution of pk), or it runs it k + 1 times exactly (and then it is an execution of pk;b).

Conversely, one can can show that an execution of pk {pk;b} is also an exexcution of

pk+1
.

Therefore, the analysis of this sequence of programs can be computed recursively as

follows:

analysis(pk+1
,a) = union(analysis(pk,a),analysis(b,analysis(pk,a)))

This approach corresponds to the analysis algorithm that inputs an abstract pre-condition

a, stores it into a variable R and iterates the operation:

R union(R,analysis(b,R))

Moreover, as shown above any execution of p can be characterized by the number of times

it iterates over the loop. Thus, any execution is ultimately covered by repeating this itera-

tive abstract computation.

The following example illustrates this approach:

Example 2.12 (Abstract iteration) We consider the program below, which starts at a point located
in a triangle and iterates a basic geometric translation a non-deterministically chosen number of
times:

({(x,y) | 0⌥ y⌥ 2x and x⌥ 0.5});
{

(1,0.5)

}
We assume that the analysis uses the convex polyhedra abstract domain. Then the set of states
observed after initialization and before the statement is shown in Figure 2.15(b). We show in
Figure 2.15(c), Figure 2.15(d) and Figure 2.15(e) the first three iterations of the analysis algorithm
that was sketched above. The imprecision is inherent in the computation of over-approximations (in
gray) of abstract elements as in the previous examples.

While this process does not terminate, we note that repeating it forever would yield the result
shown in Figure 2.15(f), which also provides a sound approximation of all the possible output states
of the program.

The iterative algorithm demonstrated in Example 2.12 will actually always terminate if

using the signs abstract domain. Indeed, this abstract domain has a finite number of abstract

elements and when the iterative algorithm computes R union(R,analysis(b,R)), the

value of R will converge after finitely many steps: whenever it updates R, the new value

is either the same as the previous one (and then so will be all the other subsequent values

since they are computed using the same formula), or the new value denotes a strictly less

precise property. Since the number of abstract properties is finite, the latter case will occur

at most finitely many times. Therefore, at some point, the value of R stabilizes, and then

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

We want to converge to this state in  
finite time!

Widening

• To ensure termination of the analysis, we need to enforce
the convergence of the iterations.

• In case of convex polyhedra

• An abstract element = (finitely many) inequalities

• If we decrease the number of inequalities at each
iteration, it will eventually terminate.

Abstract Semantics Computation: iter{p}
Example: Convex Polyhedra

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 39

Indeed, an execution of pk+1
either executes the loop at most k times (hence, it is an

execution of pk), or it runs it k + 1 times exactly (and then it is an execution of pk;b).

Conversely, one can can show that an execution of pk {pk;b} is also an exexcution of

pk+1
.

Therefore, the analysis of this sequence of programs can be computed recursively as

follows:

analysis(pk+1
,a) = union(analysis(pk,a),analysis(b,analysis(pk,a)))

This approach corresponds to the analysis algorithm that inputs an abstract pre-condition

a, stores it into a variable R and iterates the operation:

R union(R,analysis(b,R))

Moreover, as shown above any execution of p can be characterized by the number of times

it iterates over the loop. Thus, any execution is ultimately covered by repeating this itera-

tive abstract computation.

The following example illustrates this approach:

Example 2.12 (Abstract iteration) We consider the program below, which starts at a point located
in a triangle and iterates a basic geometric translation a non-deterministically chosen number of
times:

({(x,y) | 0⌥ y⌥ 2x and x⌥ 0.5});
{

(1,0.5)

}
We assume that the analysis uses the convex polyhedra abstract domain. Then the set of states
observed after initialization and before the statement is shown in Figure 2.15(b). We show in
Figure 2.15(c), Figure 2.15(d) and Figure 2.15(e) the first three iterations of the analysis algorithm
that was sketched above. The imprecision is inherent in the computation of over-approximations (in
gray) of abstract elements as in the previous examples.

While this process does not terminate, we note that repeating it forever would yield the result
shown in Figure 2.15(f), which also provides a sound approximation of all the possible output states
of the program.

The iterative algorithm demonstrated in Example 2.12 will actually always terminate if

using the signs abstract domain. Indeed, this abstract domain has a finite number of abstract

elements and when the iterative algorithm computes R union(R,analysis(b,R)), the

value of R will converge after finitely many steps: whenever it updates R, the new value

is either the same as the previous one (and then so will be all the other subsequent values

since they are computed using the same formula), or the new value denotes a strictly less

precise property. Since the number of abstract properties is finite, the latter case will occur

at most finitely many times. Therefore, at some point, the value of R stabilizes, and then

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

<latexit sha1_base64="gq36ol2mSRE4spXUGIQLWJlTc8o=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzUdklX4JhMeuWKW3XnIKvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nAaambakwoG9EBdiyVNELtZ/N7p+TMKn0SxsqWNGSu/p7IaKT1JApsZ0TNUC97M/E/r5Oa8MbPuExSg5ItFoWpICYms+dJnytkRkwsoUxxeythQ6ooMzaikg3BW355lTQvqt5V1Xu4rNRu8ziKcAKncA4eXEMN7qEODWAg4Ble4c0ZOy/Ou/OxaC04+cwx/IHz+QMRW49X</latexit>

0  y
<latexit sha1_base64="dOG5+2U2+Fr0+8z/DyXMZuggxd4=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqewWUY9FLx4r2A9pl5JNZ9vQJLsmWXFZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEUWjSiEeqExANnEloGmY4dGIFRAQc2sH4euq3H0FpFsk7k8bgCzKULGSUGCvdp7jH4QHXnvrlilt1Z8DLxMtJBeVo9MtfvUFEEwHSUE607npubPyMKMMoh0mpl2iICR2TIXQtlUSA9rPZwRN8YpUBDiNlSxo8U39PZERonYrAdgpiRnrRm4r/ed3EhJd+xmScGJB0vihMODYRnn6PB0wBNTy1hFDF7K2Yjogi1NiMSjYEb/HlZdKqVb3zqnd7Vqlf5XEU0RE6RqfIQxeojm5QAzURRQI9o1f05ijnxXl3PuatBSefOUR/4Hz+APO9j9s=</latexit>

y  2x
<latexit sha1_base64="rGSAQXd6XHXw78BIc9OREz9pqTo=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0dM5BFhQ2aHBibMzq4zs0ay4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNR1SaR/LOjGL0Q9qXvMcZNVa6fyJtgQ/ELZ91iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2XvdvTUuUqiyMPB3AIx+DBBVTgBqpQAwYSnuEV3hztvDjvzsesNedkM/vwB87nD/b7j80=</latexit>

x  0.5

<latexit sha1_base64="gq36ol2mSRE4spXUGIQLWJlTc8o=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzUdklX4JhMeuWKW3XnIKvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nAaambakwoG9EBdiyVNELtZ/N7p+TMKn0SxsqWNGSu/p7IaKT1JApsZ0TNUC97M/E/r5Oa8MbPuExSg5ItFoWpICYms+dJnytkRkwsoUxxeythQ6ooMzaikg3BW355lTQvqt5V1Xu4rNRu8ziKcAKncA4eXEMN7qEODWAg4Ble4c0ZOy/Ou/OxaC04+cwx/IHz+QMRW49X</latexit>

0  y
<latexit sha1_base64="dOG5+2U2+Fr0+8z/DyXMZuggxd4=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqewWUY9FLx4r2A9pl5JNZ9vQJLsmWXFZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEUWjSiEeqExANnEloGmY4dGIFRAQc2sH4euq3H0FpFsk7k8bgCzKULGSUGCvdp7jH4QHXnvrlilt1Z8DLxMtJBeVo9MtfvUFEEwHSUE607npubPyMKMMoh0mpl2iICR2TIXQtlUSA9rPZwRN8YpUBDiNlSxo8U39PZERonYrAdgpiRnrRm4r/ed3EhJd+xmScGJB0vihMODYRnn6PB0wBNTy1hFDF7K2Yjogi1NiMSjYEb/HlZdKqVb3zqnd7Vqlf5XEU0RE6RqfIQxeojm5QAzURRQI9o1f05ijnxXl3PuatBSefOUR/4Hz+APO9j9s=</latexit>

y  2x
<latexit sha1_base64="j+WCCYUQBxT0MlgJ1rkR//7iP+U=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0dM5BFhQ2aHBibMzq4zs0ay4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNR1SaR/LOjGL0Q9qXvMcZNVa6fyJtgQ/EK591iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2XvdvTUuUqiyMPB3AIx+DBBVTgBqpQAwYSnuEV3hztvDjvzsesNedkM/vwB87nD/iBj84=</latexit>

x  1.5
<latexit sha1_base64="Bmt22cLc23lkUcPXFgVW9BD5VjA=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEQQiJ+FoW3bisYB/QhjKZTtqhk0mcmYix9EvcuFDErZ/izr9x2mahrQcuHM65l3vvCRLOlHbdb6uwtLyyulZcL21sbm2X7Z3dhopTSWidxDyWrQArypmgdc00p61EUhwFnDaD4fXEbz5QqVgs7nSWUD/CfcFCRrA2UtcuZ6jD6T1ynbNHdIy8rl1xHXcKtEi8nFQgR61rf3V6MUkjKjThWKm25ybaH2GpGeF0XOqkiiaYDHGftg0VOKLKH00PH6NDo/RQGEtTQqOp+ntihCOlsigwnRHWAzXvTcT/vHaqw0t/xESSairIbFGYcqRjNEkB9ZikRPPMEEwkM7ciMsASE22yKpkQvPmXF0njxPHOHe/2tFK9yuMowj4cwBF4cAFVuIEa1IFACs/wCm/Wk/VivVsfs9aClc/swR9Ynz/c5JFF</latexit>

y  0.5x+ 1
<latexit sha1_base64="Pzc/IHZN4S/KZa0edHJfVDLblKw=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCG0MivpZFNy4r2Ae0oUymN+3QySTOTMQa+iVuXCji1k9x5984bbPQ1gMXDufcy733BAlnSrvut1VYWl5ZXSuulzY2t7bL9s5uQ8WppFCnMY9lKyAKOBNQ10xzaCUSSBRwaAbD64nffACpWCzu9CgBPyJ9wUJGiTZS1y6PcKcP99h1zh7xMfa6dsV13CnwIvFyUkE5al37q9OLaRqB0JQTpdqem2g/I1IzymFc6qQKEkKHpA9tQwWJQPnZ9PAxPjRKD4exNCU0nqq/JzISKTWKAtMZET1Q895E/M9rpzq89DMmklSDoLNFYcqxjvEkBdxjEqjmI0MIlczciumASEK1yapkQvDmX14kjRPHO3e829NK9SqPo4j20QE6Qh66QFV0g2qojihK0TN6RW/Wk/VivVsfs9aClc/soT+wPn8A2CWRQg==</latexit>

y � 0.5x� 1

Abstract Semantics Computation: iter{p}
Example: Convex Polyhedra

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 39

Indeed, an execution of pk+1
either executes the loop at most k times (hence, it is an

execution of pk), or it runs it k + 1 times exactly (and then it is an execution of pk;b).

Conversely, one can can show that an execution of pk {pk;b} is also an exexcution of

pk+1
.

Therefore, the analysis of this sequence of programs can be computed recursively as

follows:

analysis(pk+1
,a) = union(analysis(pk,a),analysis(b,analysis(pk,a)))

This approach corresponds to the analysis algorithm that inputs an abstract pre-condition

a, stores it into a variable R and iterates the operation:

R union(R,analysis(b,R))

Moreover, as shown above any execution of p can be characterized by the number of times

it iterates over the loop. Thus, any execution is ultimately covered by repeating this itera-

tive abstract computation.

The following example illustrates this approach:

Example 2.12 (Abstract iteration) We consider the program below, which starts at a point located
in a triangle and iterates a basic geometric translation a non-deterministically chosen number of
times:

({(x,y) | 0⌥ y⌥ 2x and x⌥ 0.5});
{

(1,0.5)

}
We assume that the analysis uses the convex polyhedra abstract domain. Then the set of states
observed after initialization and before the statement is shown in Figure 2.15(b). We show in
Figure 2.15(c), Figure 2.15(d) and Figure 2.15(e) the first three iterations of the analysis algorithm
that was sketched above. The imprecision is inherent in the computation of over-approximations (in
gray) of abstract elements as in the previous examples.

While this process does not terminate, we note that repeating it forever would yield the result
shown in Figure 2.15(f), which also provides a sound approximation of all the possible output states
of the program.

The iterative algorithm demonstrated in Example 2.12 will actually always terminate if

using the signs abstract domain. Indeed, this abstract domain has a finite number of abstract

elements and when the iterative algorithm computes R union(R,analysis(b,R)), the

value of R will converge after finitely many steps: whenever it updates R, the new value

is either the same as the previous one (and then so will be all the other subsequent values

since they are computed using the same formula), or the new value denotes a strictly less

precise property. Since the number of abstract properties is finite, the latter case will occur

at most finitely many times. Therefore, at some point, the value of R stabilizes, and then

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

<latexit sha1_base64="gq36ol2mSRE4spXUGIQLWJlTc8o=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzUdklX4JhMeuWKW3XnIKvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nAaambakwoG9EBdiyVNELtZ/N7p+TMKn0SxsqWNGSu/p7IaKT1JApsZ0TNUC97M/E/r5Oa8MbPuExSg5ItFoWpICYms+dJnytkRkwsoUxxeythQ6ooMzaikg3BW355lTQvqt5V1Xu4rNRu8ziKcAKncA4eXEMN7qEODWAg4Ble4c0ZOy/Ou/OxaC04+cwx/IHz+QMRW49X</latexit>

0  y
<latexit sha1_base64="dOG5+2U2+Fr0+8z/DyXMZuggxd4=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqewWUY9FLx4r2A9pl5JNZ9vQJLsmWXFZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEUWjSiEeqExANnEloGmY4dGIFRAQc2sH4euq3H0FpFsk7k8bgCzKULGSUGCvdp7jH4QHXnvrlilt1Z8DLxMtJBeVo9MtfvUFEEwHSUE607npubPyMKMMoh0mpl2iICR2TIXQtlUSA9rPZwRN8YpUBDiNlSxo8U39PZERonYrAdgpiRnrRm4r/ed3EhJd+xmScGJB0vihMODYRnn6PB0wBNTy1hFDF7K2Yjogi1NiMSjYEb/HlZdKqVb3zqnd7Vqlf5XEU0RE6RqfIQxeojm5QAzURRQI9o1f05ijnxXl3PuatBSefOUR/4Hz+APO9j9s=</latexit>

y  2x
<latexit sha1_base64="rGSAQXd6XHXw78BIc9OREz9pqTo=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0dM5BFhQ2aHBibMzq4zs0ay4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNR1SaR/LOjGL0Q9qXvMcZNVa6fyJtgQ/ELZ91iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2XvdvTUuUqiyMPB3AIx+DBBVTgBqpQAwYSnuEV3hztvDjvzsesNedkM/vwB87nD/b7j80=</latexit>

x  0.5

<latexit sha1_base64="gq36ol2mSRE4spXUGIQLWJlTc8o=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzUdklX4JhMeuWKW3XnIKvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nAaambakwoG9EBdiyVNELtZ/N7p+TMKn0SxsqWNGSu/p7IaKT1JApsZ0TNUC97M/E/r5Oa8MbPuExSg5ItFoWpICYms+dJnytkRkwsoUxxeythQ6ooMzaikg3BW355lTQvqt5V1Xu4rNRu8ziKcAKncA4eXEMN7qEODWAg4Ble4c0ZOy/Ou/OxaC04+cwx/IHz+QMRW49X</latexit>

0  y
<latexit sha1_base64="dOG5+2U2+Fr0+8z/DyXMZuggxd4=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqewWUY9FLx4r2A9pl5JNZ9vQJLsmWXFZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEUWjSiEeqExANnEloGmY4dGIFRAQc2sH4euq3H0FpFsk7k8bgCzKULGSUGCvdp7jH4QHXnvrlilt1Z8DLxMtJBeVo9MtfvUFEEwHSUE607npubPyMKMMoh0mpl2iICR2TIXQtlUSA9rPZwRN8YpUBDiNlSxo8U39PZERonYrAdgpiRnrRm4r/ed3EhJd+xmScGJB0vihMODYRnn6PB0wBNTy1hFDF7K2Yjogi1NiMSjYEb/HlZdKqVb3zqnd7Vqlf5XEU0RE6RqfIQxeojm5QAzURRQI9o1f05ijnxXl3PuatBSefOUR/4Hz+APO9j9s=</latexit>

y  2x
<latexit sha1_base64="j+WCCYUQBxT0MlgJ1rkR//7iP+U=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0dM5BFhQ2aHBibMzq4zs0ay4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNR1SaR/LOjGL0Q9qXvMcZNVa6fyJtgQ/EK591iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2XvdvTUuUqiyMPB3AIx+DBBVTgBqpQAwYSnuEV3hztvDjvzsesNedkM/vwB87nD/iBj84=</latexit>

x  1.5
<latexit sha1_base64="Bmt22cLc23lkUcPXFgVW9BD5VjA=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEQQiJ+FoW3bisYB/QhjKZTtqhk0mcmYix9EvcuFDErZ/izr9x2mahrQcuHM65l3vvCRLOlHbdb6uwtLyyulZcL21sbm2X7Z3dhopTSWidxDyWrQArypmgdc00p61EUhwFnDaD4fXEbz5QqVgs7nSWUD/CfcFCRrA2UtcuZ6jD6T1ynbNHdIy8rl1xHXcKtEi8nFQgR61rf3V6MUkjKjThWKm25ybaH2GpGeF0XOqkiiaYDHGftg0VOKLKH00PH6NDo/RQGEtTQqOp+ntihCOlsigwnRHWAzXvTcT/vHaqw0t/xESSairIbFGYcqRjNEkB9ZikRPPMEEwkM7ciMsASE22yKpkQvPmXF0njxPHOHe/2tFK9yuMowj4cwBF4cAFVuIEa1IFACs/wCm/Wk/VivVsfs9aClc/swR9Ynz/c5JFF</latexit>

y  0.5x+ 1
<latexit sha1_base64="Pzc/IHZN4S/KZa0edHJfVDLblKw=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCG0MivpZFNy4r2Ae0oUymN+3QySTOTMQa+iVuXCji1k9x5984bbPQ1gMXDufcy733BAlnSrvut1VYWl5ZXSuulzY2t7bL9s5uQ8WppFCnMY9lKyAKOBNQ10xzaCUSSBRwaAbD64nffACpWCzu9CgBPyJ9wUJGiTZS1y6PcKcP99h1zh7xMfa6dsV13CnwIvFyUkE5al37q9OLaRqB0JQTpdqem2g/I1IzymFc6qQKEkKHpA9tQwWJQPnZ9PAxPjRKD4exNCU0nqq/JzISKTWKAtMZET1Q895E/M9rpzq89DMmklSDoLNFYcqxjvEkBdxjEqjmI0MIlczciumASEK1yapkQvDmX14kjRPHO3e829NK9SqPo4j20QE6Qh66QFV0g2qojihK0TN6RW/Wk/VivVsfs9aClc/soT+wPn8A2CWRQg==</latexit>

y � 0.5x� 1

Remained

Modified

Abstract Semantics Computation: iter{p}
Example: Convex Polyhedra

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 39

Indeed, an execution of pk+1
either executes the loop at most k times (hence, it is an

execution of pk), or it runs it k + 1 times exactly (and then it is an execution of pk;b).

Conversely, one can can show that an execution of pk {pk;b} is also an exexcution of

pk+1
.

Therefore, the analysis of this sequence of programs can be computed recursively as

follows:

analysis(pk+1
,a) = union(analysis(pk,a),analysis(b,analysis(pk,a)))

This approach corresponds to the analysis algorithm that inputs an abstract pre-condition

a, stores it into a variable R and iterates the operation:

R union(R,analysis(b,R))

Moreover, as shown above any execution of p can be characterized by the number of times

it iterates over the loop. Thus, any execution is ultimately covered by repeating this itera-

tive abstract computation.

The following example illustrates this approach:

Example 2.12 (Abstract iteration) We consider the program below, which starts at a point located
in a triangle and iterates a basic geometric translation a non-deterministically chosen number of
times:

({(x,y) | 0⌥ y⌥ 2x and x⌥ 0.5});
{

(1,0.5)

}
We assume that the analysis uses the convex polyhedra abstract domain. Then the set of states
observed after initialization and before the statement is shown in Figure 2.15(b). We show in
Figure 2.15(c), Figure 2.15(d) and Figure 2.15(e) the first three iterations of the analysis algorithm
that was sketched above. The imprecision is inherent in the computation of over-approximations (in
gray) of abstract elements as in the previous examples.

While this process does not terminate, we note that repeating it forever would yield the result
shown in Figure 2.15(f), which also provides a sound approximation of all the possible output states
of the program.

The iterative algorithm demonstrated in Example 2.12 will actually always terminate if

using the signs abstract domain. Indeed, this abstract domain has a finite number of abstract

elements and when the iterative algorithm computes R union(R,analysis(b,R)), the

value of R will converge after finitely many steps: whenever it updates R, the new value

is either the same as the previous one (and then so will be all the other subsequent values

since they are computed using the same formula), or the new value denotes a strictly less

precise property. Since the number of abstract properties is finite, the latter case will occur

at most finitely many times. Therefore, at some point, the value of R stabilizes, and then

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

<latexit sha1_base64="gq36ol2mSRE4spXUGIQLWJlTc8o=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzUdklX4JhMeuWKW3XnIKvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nAaambakwoG9EBdiyVNELtZ/N7p+TMKn0SxsqWNGSu/p7IaKT1JApsZ0TNUC97M/E/r5Oa8MbPuExSg5ItFoWpICYms+dJnytkRkwsoUxxeythQ6ooMzaikg3BW355lTQvqt5V1Xu4rNRu8ziKcAKncA4eXEMN7qEODWAg4Ble4c0ZOy/Ou/OxaC04+cwx/IHz+QMRW49X</latexit>

0  y
<latexit sha1_base64="dOG5+2U2+Fr0+8z/DyXMZuggxd4=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqewWUY9FLx4r2A9pl5JNZ9vQJLsmWXFZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEUWjSiEeqExANnEloGmY4dGIFRAQc2sH4euq3H0FpFsk7k8bgCzKULGSUGCvdp7jH4QHXnvrlilt1Z8DLxMtJBeVo9MtfvUFEEwHSUE607npubPyMKMMoh0mpl2iICR2TIXQtlUSA9rPZwRN8YpUBDiNlSxo8U39PZERonYrAdgpiRnrRm4r/ed3EhJd+xmScGJB0vihMODYRnn6PB0wBNTy1hFDF7K2Yjogi1NiMSjYEb/HlZdKqVb3zqnd7Vqlf5XEU0RE6RqfIQxeojm5QAzURRQI9o1f05ijnxXl3PuatBSefOUR/4Hz+APO9j9s=</latexit>

y  2x
<latexit sha1_base64="rGSAQXd6XHXw78BIc9OREz9pqTo=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0dM5BFhQ2aHBibMzq4zs0ay4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNR1SaR/LOjGL0Q9qXvMcZNVa6fyJtgQ/ELZ91iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2XvdvTUuUqiyMPB3AIx+DBBVTgBqpQAwYSnuEV3hztvDjvzsesNedkM/vwB87nD/b7j80=</latexit>

x  0.5Discard this

Abstract Semantics Computation: iter{p}
Example: Convex Polyhedra

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 39

Indeed, an execution of pk+1
either executes the loop at most k times (hence, it is an

execution of pk), or it runs it k + 1 times exactly (and then it is an execution of pk;b).

Conversely, one can can show that an execution of pk {pk;b} is also an exexcution of

pk+1
.

Therefore, the analysis of this sequence of programs can be computed recursively as

follows:

analysis(pk+1
,a) = union(analysis(pk,a),analysis(b,analysis(pk,a)))

This approach corresponds to the analysis algorithm that inputs an abstract pre-condition

a, stores it into a variable R and iterates the operation:

R union(R,analysis(b,R))

Moreover, as shown above any execution of p can be characterized by the number of times

it iterates over the loop. Thus, any execution is ultimately covered by repeating this itera-

tive abstract computation.

The following example illustrates this approach:

Example 2.12 (Abstract iteration) We consider the program below, which starts at a point located
in a triangle and iterates a basic geometric translation a non-deterministically chosen number of
times:

({(x,y) | 0⌥ y⌥ 2x and x⌥ 0.5});
{

(1,0.5)

}
We assume that the analysis uses the convex polyhedra abstract domain. Then the set of states
observed after initialization and before the statement is shown in Figure 2.15(b). We show in
Figure 2.15(c), Figure 2.15(d) and Figure 2.15(e) the first three iterations of the analysis algorithm
that was sketched above. The imprecision is inherent in the computation of over-approximations (in
gray) of abstract elements as in the previous examples.

While this process does not terminate, we note that repeating it forever would yield the result
shown in Figure 2.15(f), which also provides a sound approximation of all the possible output states
of the program.

The iterative algorithm demonstrated in Example 2.12 will actually always terminate if

using the signs abstract domain. Indeed, this abstract domain has a finite number of abstract

elements and when the iterative algorithm computes R union(R,analysis(b,R)), the

value of R will converge after finitely many steps: whenever it updates R, the new value

is either the same as the previous one (and then so will be all the other subsequent values

since they are computed using the same formula), or the new value denotes a strictly less

precise property. Since the number of abstract properties is finite, the latter case will occur

at most finitely many times. Therefore, at some point, the value of R stabilizes, and then

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

<latexit sha1_base64="gq36ol2mSRE4spXUGIQLWJlTc8o=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzUdklX4JhMeuWKW3XnIKvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nAaambakwoG9EBdiyVNELtZ/N7p+TMKn0SxsqWNGSu/p7IaKT1JApsZ0TNUC97M/E/r5Oa8MbPuExSg5ItFoWpICYms+dJnytkRkwsoUxxeythQ6ooMzaikg3BW355lTQvqt5V1Xu4rNRu8ziKcAKncA4eXEMN7qEODWAg4Ble4c0ZOy/Ou/OxaC04+cwx/IHz+QMRW49X</latexit>

0  y
<latexit sha1_base64="dOG5+2U2+Fr0+8z/DyXMZuggxd4=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqewWUY9FLx4r2A9pl5JNZ9vQJLsmWXFZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEUWjSiEeqExANnEloGmY4dGIFRAQc2sH4euq3H0FpFsk7k8bgCzKULGSUGCvdp7jH4QHXnvrlilt1Z8DLxMtJBeVo9MtfvUFEEwHSUE607npubPyMKMMoh0mpl2iICR2TIXQtlUSA9rPZwRN8YpUBDiNlSxo8U39PZERonYrAdgpiRnrRm4r/ed3EhJd+xmScGJB0vihMODYRnn6PB0wBNTy1hFDF7K2Yjogi1NiMSjYEb/HlZdKqVb3zqnd7Vqlf5XEU0RE6RqfIQxeojm5QAzURRQI9o1f05ijnxXl3PuatBSefOUR/4Hz+APO9j9s=</latexit>

y  2x
<latexit sha1_base64="rGSAQXd6XHXw78BIc9OREz9pqTo=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0dM5BFhQ2aHBibMzq4zs0ay4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNR1SaR/LOjGL0Q9qXvMcZNVa6fyJtgQ/ELZ91iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2XvdvTUuUqiyMPB3AIx+DBBVTgBqpQAwYSnuEV3hztvDjvzsesNedkM/vwB87nD/b7j80=</latexit>

x  0.5

<latexit sha1_base64="gq36ol2mSRE4spXUGIQLWJlTc8o=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzUdklX4JhMeuWKW3XnIKvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nAaambakwoG9EBdiyVNELtZ/N7p+TMKn0SxsqWNGSu/p7IaKT1JApsZ0TNUC97M/E/r5Oa8MbPuExSg5ItFoWpICYms+dJnytkRkwsoUxxeythQ6ooMzaikg3BW355lTQvqt5V1Xu4rNRu8ziKcAKncA4eXEMN7qEODWAg4Ble4c0ZOy/Ou/OxaC04+cwx/IHz+QMRW49X</latexit>

0  y
<latexit sha1_base64="dOG5+2U2+Fr0+8z/DyXMZuggxd4=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqewWUY9FLx4r2A9pl5JNZ9vQJLsmWXFZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEUWjSiEeqExANnEloGmY4dGIFRAQc2sH4euq3H0FpFsk7k8bgCzKULGSUGCvdp7jH4QHXnvrlilt1Z8DLxMtJBeVo9MtfvUFEEwHSUE607npubPyMKMMoh0mpl2iICR2TIXQtlUSA9rPZwRN8YpUBDiNlSxo8U39PZERonYrAdgpiRnrRm4r/ed3EhJd+xmScGJB0vihMODYRnn6PB0wBNTy1hFDF7K2Yjogi1NiMSjYEb/HlZdKqVb3zqnd7Vqlf5XEU0RE6RqfIQxeojm5QAzURRQI9o1f05ijnxXl3PuatBSefOUR/4Hz+APO9j9s=</latexit>

y  2x

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

42 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Iteration 0

x

y

(b) Iteration 1

x

y

(c) Iteration 2 and limit

Figure 2.16
Abstract iteration with widening

after finitely many iterates) also over-approximates all the abstract elements produced by

the sequence of iterates without widening and, thus, the states that the program may reach.

The following example illustrates its use in practice:

Example 2.13 (Abstract iteration with widening) We consider the same program as in Exam-
ple 2.12. Figure 2.15 shows the sequence of abstract iterates using the widening technique. This
sequence converges after only two iterations and produces a (rather coarse) over-approximation of
the reachable states of the program (shown in Figure 2.15(a)). The most interesting point is the com-
putation of the abstract element shown in Figure 2.16(b) from the two triangles obtained in the first
two iterations:

• the constraints 0 ⌥ y and y⌥ 2x are stable as they are satisfied in the translated triangle; thus,
they are preserved;

• the constraint x⌥ 0.5 is not preserved; thus, it is discarded.

The result obtained in the example clearly shows that widening is another source of im-

precision and, thus, of potential incompleteness. Indeed, to ensure convergence in finite

time, the analysis weakens the abstract elements more aggressively, adding many points

that cannot be observed in any real program execution, as we can see in Figure 2.16(b).

Fortunately, there exist many techniques to make the analysis of loops more precise. The

example below demonstrates a classic such technique on the same code.

Example 2.14 (Loop unrolling) We note that we can rewrite a program with a loop in different
ways than the one used so far in this section. In particular, the program of Example 2.12 is equivalent
to the following program:

({(x,y) | 0 ⌥ y⌥ 2x and x⌥ 0.5});
{} {

(1,0.5)

}
{

(1,0.5)

}

Abstract Semantics Computation: iter{p}
Example: Convex Polyhedra

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 39

Indeed, an execution of pk+1
either executes the loop at most k times (hence, it is an

execution of pk), or it runs it k + 1 times exactly (and then it is an execution of pk;b).

Conversely, one can can show that an execution of pk {pk;b} is also an exexcution of

pk+1
.

Therefore, the analysis of this sequence of programs can be computed recursively as

follows:

analysis(pk+1
,a) = union(analysis(pk,a),analysis(b,analysis(pk,a)))

This approach corresponds to the analysis algorithm that inputs an abstract pre-condition

a, stores it into a variable R and iterates the operation:

R union(R,analysis(b,R))

Moreover, as shown above any execution of p can be characterized by the number of times

it iterates over the loop. Thus, any execution is ultimately covered by repeating this itera-

tive abstract computation.

The following example illustrates this approach:

Example 2.12 (Abstract iteration) We consider the program below, which starts at a point located
in a triangle and iterates a basic geometric translation a non-deterministically chosen number of
times:

({(x,y) | 0⌥ y⌥ 2x and x⌥ 0.5});
{

(1,0.5)

}
We assume that the analysis uses the convex polyhedra abstract domain. Then the set of states
observed after initialization and before the statement is shown in Figure 2.15(b). We show in
Figure 2.15(c), Figure 2.15(d) and Figure 2.15(e) the first three iterations of the analysis algorithm
that was sketched above. The imprecision is inherent in the computation of over-approximations (in
gray) of abstract elements as in the previous examples.

While this process does not terminate, we note that repeating it forever would yield the result
shown in Figure 2.15(f), which also provides a sound approximation of all the possible output states
of the program.

The iterative algorithm demonstrated in Example 2.12 will actually always terminate if

using the signs abstract domain. Indeed, this abstract domain has a finite number of abstract

elements and when the iterative algorithm computes R union(R,analysis(b,R)), the

value of R will converge after finitely many steps: whenever it updates R, the new value

is either the same as the previous one (and then so will be all the other subsequent values

since they are computed using the same formula), or the new value denotes a strictly less

precise property. Since the number of abstract properties is finite, the latter case will occur

at most finitely many times. Therefore, at some point, the value of R stabilizes, and then

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

42 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Iteration 0

x

y

(b) Iteration 1

x

y

(c) Iteration 2 and limit

Figure 2.16
Abstract iteration with widening

after finitely many iterates) also over-approximates all the abstract elements produced by

the sequence of iterates without widening and, thus, the states that the program may reach.

The following example illustrates its use in practice:

Example 2.13 (Abstract iteration with widening) We consider the same program as in Exam-
ple 2.12. Figure 2.15 shows the sequence of abstract iterates using the widening technique. This
sequence converges after only two iterations and produces a (rather coarse) over-approximation of
the reachable states of the program (shown in Figure 2.15(a)). The most interesting point is the com-
putation of the abstract element shown in Figure 2.16(b) from the two triangles obtained in the first
two iterations:

• the constraints 0 ⌥ y and y⌥ 2x are stable as they are satisfied in the translated triangle; thus,
they are preserved;

• the constraint x⌥ 0.5 is not preserved; thus, it is discarded.

The result obtained in the example clearly shows that widening is another source of im-

precision and, thus, of potential incompleteness. Indeed, to ensure convergence in finite

time, the analysis weakens the abstract elements more aggressively, adding many points

that cannot be observed in any real program execution, as we can see in Figure 2.16(b).

Fortunately, there exist many techniques to make the analysis of loops more precise. The

example below demonstrates a classic such technique on the same code.

Example 2.14 (Loop unrolling) We note that we can rewrite a program with a loop in different
ways than the one used so far in this section. In particular, the program of Example 2.12 is equivalent
to the following program:

({(x,y) | 0 ⌥ y⌥ 2x and x⌥ 0.5});
{} {

(1,0.5)

}
{

(1,0.5)

}

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

42 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Iteration 0

x

y

(b) Iteration 1

x

y

(c) Iteration 2 and limit

Figure 2.16
Abstract iteration with widening

after finitely many iterates) also over-approximates all the abstract elements produced by

the sequence of iterates without widening and, thus, the states that the program may reach.

The following example illustrates its use in practice:

Example 2.13 (Abstract iteration with widening) We consider the same program as in Exam-
ple 2.12. Figure 2.15 shows the sequence of abstract iterates using the widening technique. This
sequence converges after only two iterations and produces a (rather coarse) over-approximation of
the reachable states of the program (shown in Figure 2.15(a)). The most interesting point is the com-
putation of the abstract element shown in Figure 2.16(b) from the two triangles obtained in the first
two iterations:

• the constraints 0 ⌥ y and y⌥ 2x are stable as they are satisfied in the translated triangle; thus,
they are preserved;

• the constraint x⌥ 0.5 is not preserved; thus, it is discarded.

The result obtained in the example clearly shows that widening is another source of im-

precision and, thus, of potential incompleteness. Indeed, to ensure convergence in finite

time, the analysis weakens the abstract elements more aggressively, adding many points

that cannot be observed in any real program execution, as we can see in Figure 2.16(b).

Fortunately, there exist many techniques to make the analysis of loops more precise. The

example below demonstrates a classic such technique on the same code.

Example 2.14 (Loop unrolling) We note that we can rewrite a program with a loop in different
ways than the one used so far in this section. In particular, the program of Example 2.12 is equivalent
to the following program:

({(x,y) | 0 ⌥ y⌥ 2x and x⌥ 0.5});
{} {

(1,0.5)

}
{

(1,0.5)

}

Imprecision due to Widening

• Widening guarantees termination of the analysis.

• However, it incurs significant precision loss.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p
0

(0 iteration)

x

y

(c) Analysis of p
1

(up to 1 iteration)

x

y

(d) Analysis of p
2

(up to 2 iterations)

x

y

(e) Analysis of p
3

(up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a

consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-

ation technique used in Example 2.12 will obviously not allow for a terminating analysis

with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract

iterates, possibly at the price of a coarser result. Note that a common way to prove that

an algorithm terminates involves finding a strictly positive value that decreases strictly

over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

42 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Iteration 0

x

y

(b) Iteration 1

x

y

(c) Iteration 2 and limit

Figure 2.16
Abstract iteration with widening

after finitely many iterates) also over-approximates all the abstract elements produced by

the sequence of iterates without widening and, thus, the states that the program may reach.

The following example illustrates its use in practice:

Example 2.13 (Abstract iteration with widening) We consider the same program as in Exam-
ple 2.12. Figure 2.15 shows the sequence of abstract iterates using the widening technique. This
sequence converges after only two iterations and produces a (rather coarse) over-approximation of
the reachable states of the program (shown in Figure 2.15(a)). The most interesting point is the com-
putation of the abstract element shown in Figure 2.16(b) from the two triangles obtained in the first
two iterations:

• the constraints 0 ⌥ y and y⌥ 2x are stable as they are satisfied in the translated triangle; thus,
they are preserved;

• the constraint x⌥ 0.5 is not preserved; thus, it is discarded.

The result obtained in the example clearly shows that widening is another source of im-

precision and, thus, of potential incompleteness. Indeed, to ensure convergence in finite

time, the analysis weakens the abstract elements more aggressively, adding many points

that cannot be observed in any real program execution, as we can see in Figure 2.16(b).

Fortunately, there exist many techniques to make the analysis of loops more precise. The

example below demonstrates a classic such technique on the same code.

Example 2.14 (Loop unrolling) We note that we can rewrite a program with a loop in different
ways than the one used so far in this section. In particular, the program of Example 2.12 is equivalent
to the following program:

({(x,y) | 0 ⌥ y⌥ 2x and x⌥ 0.5});
{} {

(1,0.5)

}
{

(1,0.5)

}

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 41

analysis is to exhibit such a measure. Very often, non-termination is due to some loop

indexes not being incremented properly, preventing such a decreasing measure to exist.

Intuitively, this is the issue the iterative analysis algorithm we sketched above suffers from,

as shown in Example 2.12.

Another interesting observation is that abstract elements are made of finite sets of con-

straints. Therefore, another way to over-approximate abstract elements that arise in the

abstract iteration would consist in forcing this number of constraints to decrease (possibly

down to zero) until it stabilizes, hereby recovering termination.

Given the current constraint a0, suppose that analyzing one more iteration generates a1.

To have an approximate constraint that subsumes both, we can let the analysis:

• keep all constraints of a0 that are also satisfied in a1;

• discard all constraints of a0 that are not satisfied in a1 (hence to subsume a1).

Applying this method to abstract iterates will produce a sequence of abstract elements with

a positive, decreasing number of constraints until the sequence stabilizes. This method is

an instance of a general technique called widening, which enforces the convergence of

abstract iterates. We denote this operator by widen:

operator widen

�
over-approximates unions

enforces convergence

Stabilization holds when the concretization of the next iterate is included into that of

the previous one. For all the abstract domains considered in this chapter, this inclusion

can be decided in the abstract level simply by checking geometric inclusion. We thus let

inclusion denote a function that inputs two abstract elements a0,a1 and returns true only

when it can prove that ⇥(a0)⌃ ⇥(a1).

operator inclusion returns true only when it succeeds checking inclusion

As a conclusion, the following algorithm computes an abstract post-condition for the

loop construction:

analysis({p},a) =

⇥
⇧⇧⇧⇧⇧⇧⇧⇧⇧⌅

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

R a;

repeat

T R;

R widen(R,analysis(p,R));

until inclusion(R,T)

return T;

This iteration technique will produce a sound result since it over-approximates the abstract

elements produced by the sequence of iterates without widening, and its limit (reached

Static Analysis: a Gentle Introduction

Abstract Semantics Computation: iter{p} (3/5)

Recall
iter{p} = {} or {p} or {p; p} or · · ·

= limi pi
where

p0 = {} pk+1 = pk or {pk; p}

Hence,

analysis(iter{p}, a) =

8
>>>>>><

>>>>>>:

R a;
repeat

T R;
R widen(R, analysis(p, R));

until inclusion(R, T)
return T;

operator widen
⇢

over approximates unions
enforces finite convergence

Kwangkeun Yi (Seoul National U) Program Analysis 46 / 51

Abstract Iteration with Widening

Loop Unrolling for Precision Improvement

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 39

Indeed, an execution of pk+1
either executes the loop at most k times (hence, it is an

execution of pk), or it runs it k + 1 times exactly (and then it is an execution of pk;b).

Conversely, one can can show that an execution of pk {pk;b} is also an exexcution of

pk+1
.

Therefore, the analysis of this sequence of programs can be computed recursively as

follows:

analysis(pk+1
,a) = union(analysis(pk,a),analysis(b,analysis(pk,a)))

This approach corresponds to the analysis algorithm that inputs an abstract pre-condition

a, stores it into a variable R and iterates the operation:

R union(R,analysis(b,R))

Moreover, as shown above any execution of p can be characterized by the number of times

it iterates over the loop. Thus, any execution is ultimately covered by repeating this itera-

tive abstract computation.

The following example illustrates this approach:

Example 2.12 (Abstract iteration) We consider the program below, which starts at a point located
in a triangle and iterates a basic geometric translation a non-deterministically chosen number of
times:

({(x,y) | 0⌥ y⌥ 2x and x⌥ 0.5});
{

(1,0.5)

}
We assume that the analysis uses the convex polyhedra abstract domain. Then the set of states
observed after initialization and before the statement is shown in Figure 2.15(b). We show in
Figure 2.15(c), Figure 2.15(d) and Figure 2.15(e) the first three iterations of the analysis algorithm
that was sketched above. The imprecision is inherent in the computation of over-approximations (in
gray) of abstract elements as in the previous examples.

While this process does not terminate, we note that repeating it forever would yield the result
shown in Figure 2.15(f), which also provides a sound approximation of all the possible output states
of the program.

The iterative algorithm demonstrated in Example 2.12 will actually always terminate if

using the signs abstract domain. Indeed, this abstract domain has a finite number of abstract

elements and when the iterative algorithm computes R union(R,analysis(b,R)), the

value of R will converge after finitely many steps: whenever it updates R, the new value

is either the same as the previous one (and then so will be all the other subsequent values

since they are computed using the same formula), or the new value denotes a strictly less

precise property. Since the number of abstract properties is finite, the latter case will occur

at most finitely many times. Therefore, at some point, the value of R stabilizes, and then

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

42 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Iteration 0

x

y

(b) Iteration 1

x

y

(c) Iteration 2 and limit

Figure 2.16
Abstract iteration with widening

after finitely many iterates) also over-approximates all the abstract elements produced by

the sequence of iterates without widening and, thus, the states that the program may reach.

The following example illustrates its use in practice:

Example 2.13 (Abstract iteration with widening) We consider the same program as in Exam-
ple 2.12. Figure 2.15 shows the sequence of abstract iterates using the widening technique. This
sequence converges after only two iterations and produces a (rather coarse) over-approximation of
the reachable states of the program (shown in Figure 2.15(a)). The most interesting point is the com-
putation of the abstract element shown in Figure 2.16(b) from the two triangles obtained in the first
two iterations:

• the constraints 0 ⌥ y and y⌥ 2x are stable as they are satisfied in the translated triangle; thus,
they are preserved;

• the constraint x⌥ 0.5 is not preserved; thus, it is discarded.

The result obtained in the example clearly shows that widening is another source of im-

precision and, thus, of potential incompleteness. Indeed, to ensure convergence in finite

time, the analysis weakens the abstract elements more aggressively, adding many points

that cannot be observed in any real program execution, as we can see in Figure 2.16(b).

Fortunately, there exist many techniques to make the analysis of loops more precise. The

example below demonstrates a classic such technique on the same code.

Example 2.14 (Loop unrolling) We note that we can rewrite a program with a loop in different
ways than the one used so far in this section. In particular, the program of Example 2.12 is equivalent
to the following program:

({(x,y) | 0 ⌥ y⌥ 2x and x⌥ 0.5});
{} {

(1,0.5)

}
{

(1,0.5)

}

Loop unrolling once

Loop Unrolling for Precision ImprovementMITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 43

x

y

(a) Iteration 0

x

y

(b) Iteration 1, union

x

y

(c) Iteration 2, widen, limit

Figure 2.17
Abstract iteration with widening and unrolling

In essence, analyzing this second version instead has the following effect on the analysis: for the
first iteration, the union operator will be used, and for all subsequent iterations, widen will be
used instead. When computing widening at iteration 2, all constraints are stable but the constraint
x⌥ 1.5. This produces the result shown in Figure 2.17(c). Thus, both the result of the first iteration
(shown in Figure 2.16(b)) and the widening output (shown in Figure 2.17(c)) are a lot more precise
than with the standard widening iteration technique presented in Example 2.13.

2.3.5 Verification of the Property of Interest
The analysis function that we have designed allows verifying the reachability property of

interest that we introduced in Section 2.1.

While the analysis function that we have shown so far only returns an over-approximation

of the output states (and not of all the intermediate reachable states), it actually com-

putes as intermediate results over-approximations for all the reachable states of the in-

put program. Let us consider the case of a sequence p
0
;p

1
. The analysis then returns

analysis(p
1
,analysis(p

0
,apre)). We observe that after analyzing p

0
and before analyz-

ing p
1
, the analysis holds an over-approximation of all the states that can be observed after

executing p
0

and before executing p
1

(the abstract element analysis(p
0
,apre)). The same

holds for each kind of instruction of our language.

As a consequence, the analysis can attempt at verifying the property of interest by check-

ing that the abstract elements computed at each step have an empty intersection with D,

or equivalently, are included in ¬D. This inclusion can be fully verified in the abstract

level, using the same inclusion test as we have used for checking the termination of the

sequences of abstract iterates.

We assume the analysis uses the abstract domain of convex polyhedra and illustrate suc-

cessful and unsuccessful analyses in the two examples below:

Example 2.15 (Successful verification) Figure 2.18(a) shows the over-approximation computed
for the set of all the reachable states of the program of Example 2.3. In this case, the over-approxima-

Abstract Semantics Function analysis At a
Glance

Static Analysis: a Gentle Introduction

Abstract Semantics Function analysis At a Glance
The analysis(p, a) is finitely computable and sound.

analysis(init(R), a) = best abstraction of the region R

analysis(translation(u, v), a) =

⇢
return an abstract state that contains
the translation of a

analysis(rotation(u, v, ✓), a) =

⇢
return an abstract state that contains
the rotation of a

analysis({p0}or{p1}, a) = union(analysis(p1, a), analysis(p0, a))
analysis(p0; p1, a) = analysis(p1, analysis(p0, a))

analysis(iter{p}, a) =

8
>>>>>><

>>>>>>:

R a;
repeat

T R;
R widen(R, analysis(p, R));

until inclusion(R, T)
return T;

Sound analysis
If an execution of p from a state (x, y) generates the state (x0, y0),
then for all abstract element a such that (x, y) 2 �(a),

(x0, y0) 2 �(analysis(p, a))

Kwangkeun Yi (Seoul National U) Program Analysis 49 / 51

Soundness of Abstract Semantics Function
analysis

Static Analysis: a Gentle Introduction

Abstract Semantics Function analysis At a Glance
The analysis(p, a) is finitely computable and sound.

analysis(init(R), a) = best abstraction of the region R

analysis(translation(u, v), a) =

⇢
return an abstract state that contains
the translation of a

analysis(rotation(u, v, ✓), a) =

⇢
return an abstract state that contains
the rotation of a

analysis({p0}or{p1}, a) = union(analysis(p1, a), analysis(p0, a))
analysis(p0; p1, a) = analysis(p1, analysis(p0, a))

analysis(iter{p}, a) =

8
>>>>>><

>>>>>>:

R a;
repeat

T R;
R widen(R, analysis(p, R));

until inclusion(R, T)
return T;

Sound analysis
If an execution of p from a state (x, y) generates the state (x0, y0),
then for all abstract element a such that (x, y) 2 �(a),

(x0, y0) 2 �(analysis(p, a))

Kwangkeun Yi (Seoul National U) Program Analysis 49 / 51

Theorem. The analysis function is sound.

Verification of the Property of Interest
Static Analysis: a Gentle Introduction

Verification of the Property of Interest

Does program compute a point inside no-fly zone D?
Need to collect the set of reachable points.
Run analysis(p,�) and collect all points R from every call to
analysis.
Since analysis is sound, the result is an over approx. of the
reachable points.
If R \D = ;, then p is verified. Otherwise, we don’t know.

x

y

(a) An example R

x

y

(b) A more precise R

Kwangkeun Yi (Seoul National U) Program Analysis 50 / 51

