A Gentle Introduction to Static Analysis (2)

Woosuk Lee

CSE 6049 Program Analysis

Hanyang University, Korea

Some slides are borrowed from http://ropas.snu.ac.kr/~kwang/4541.664A/21/0-overview.pdf

Static Analysis

A general method for automatic and sound approximation of sw run-time behaviors before the execution

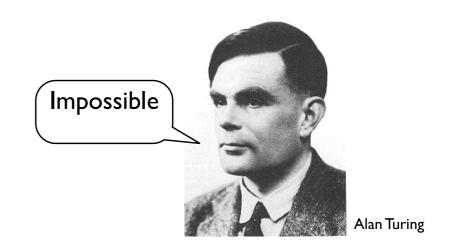
- "before": statically, without running sw
- "automatic": sw analyzes sw
- "sound": all possibilities into account
- "approximation": cannot be exact
- "general": for any source language and property
 - C, C++, C#, F#, Java, JavaScript, ML, Scala, Python, JVM, Dalvik, x86, Excel, etc
 - "buffer-overrun?", "memory leak?", "type errors?", "x = y at line 2?", "memory use $\leq 2K$?", etc

Abstract Interpretation

- A powerful framework for designing correct static analysis
 - "framework" : correct static analysis comes out, reusable
 - "powerful" : all static analyses are understood in this framework
 - "simple" : prescription is simple
 - "eye-opening" : any static analysis is an abstract interpretation

Why Abstraction?

- Without abstraction,
 - can't capture all possible executions
 - can't terminate



- Abstraction ≠ omission
 - reality: {2, 4, 6, 8, ... }
 - "even number" (abstraction) vs "multiple of 4" (omission)

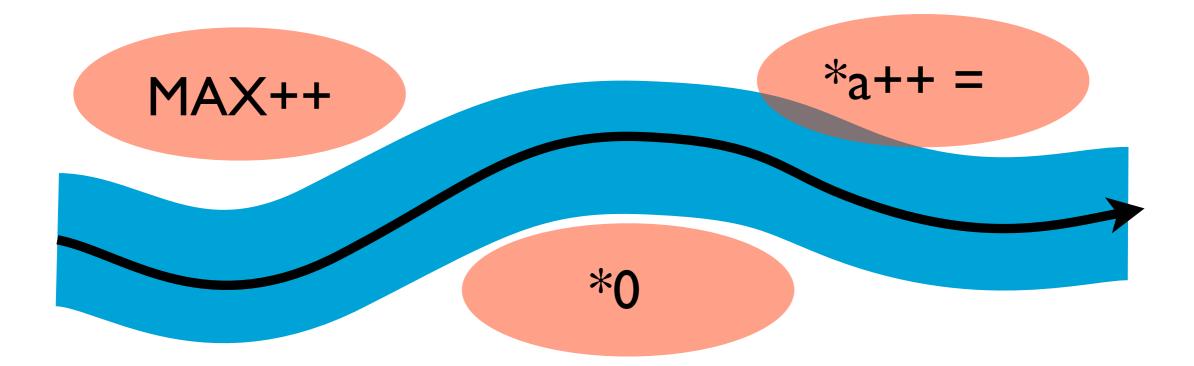
• Q:What are the possible output values?

```
x = 3;
while (*) {
    x += 2;
}
x -= 1;
print(x);
```

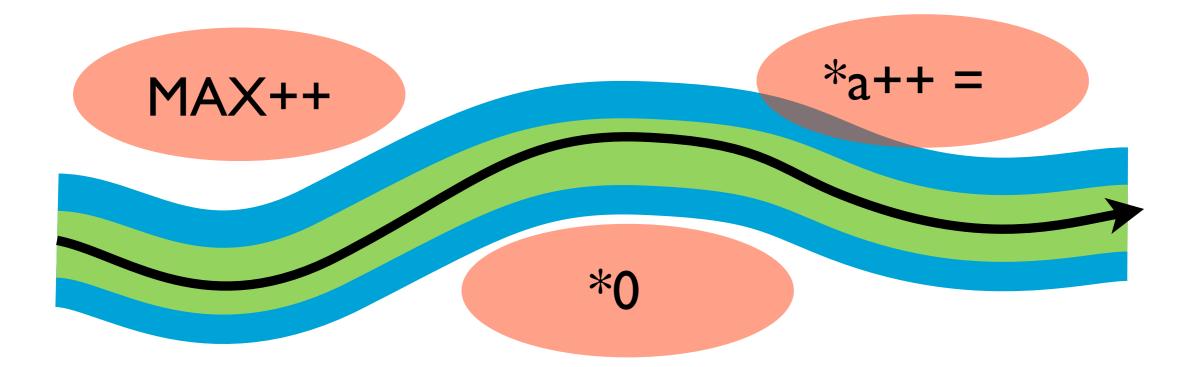
- Concrete interpretation: 2,4, ... infinitely many possible values
- Abstract interpretation I: "integers" (coarse)
- Abstract interpretation 2: "positive integers" (precise)
- Abstract interpretation 3: "positive even integers" (more precise)

Abstraction *a++ = MAX++ *0

Abstraction The static analysis game



Abstraction The static analysis game



An Intuitive Explanation of Abstract Interpretation

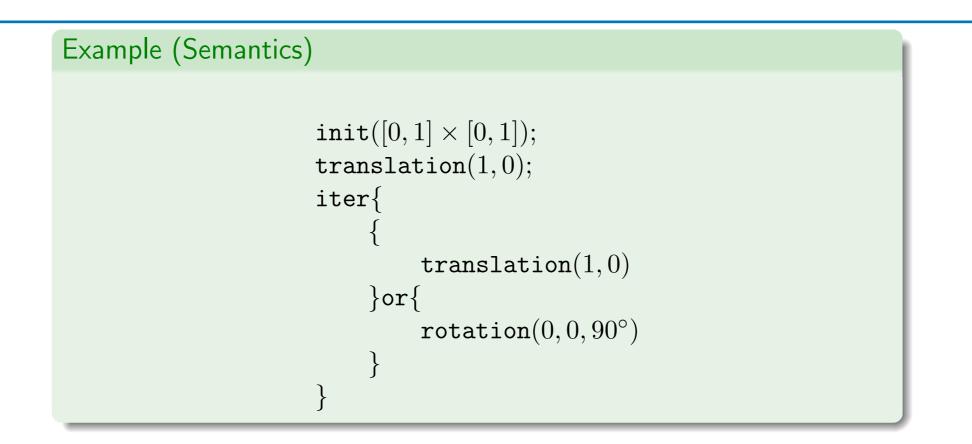
Example Language

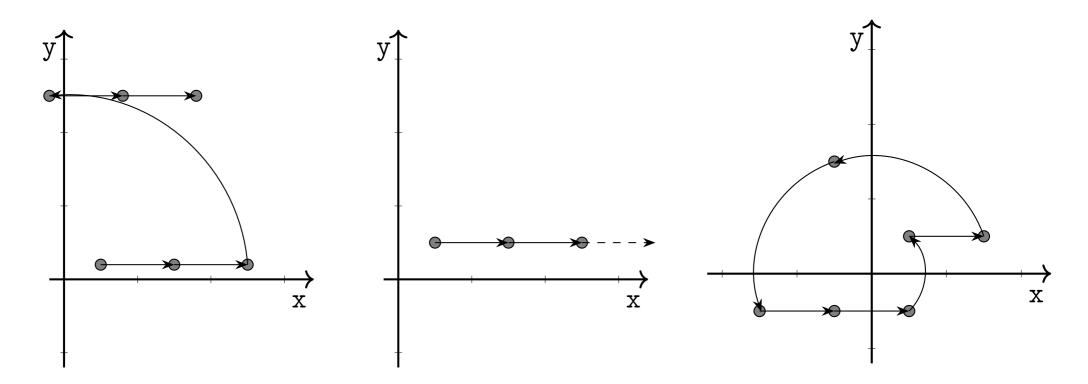
Initialization with a point that is non-deterministically chosen in a fixed region (e.g., [0,1] x [0,1] square)

initialization, with a state in \Re translation by vector (u, v)rotation by center (u, v) and angle θ sequence of operations non-deterministic choice non-deterministic iterations

All programs start with an initialization statement.

Semantics

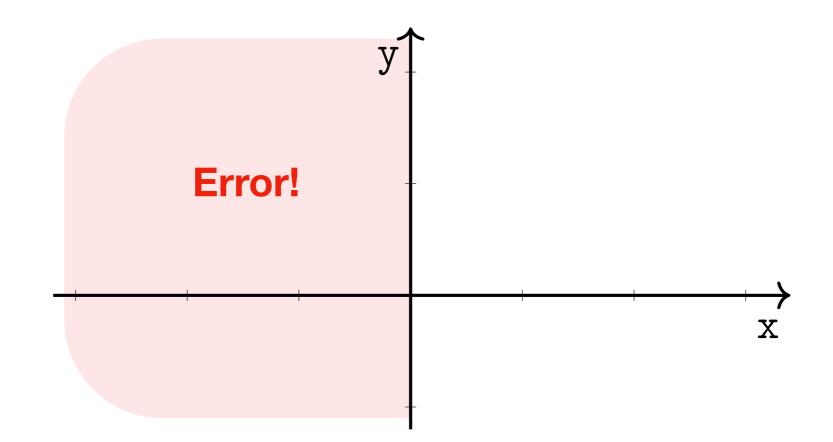




Analysis Goal Is Safety Property: Reachability

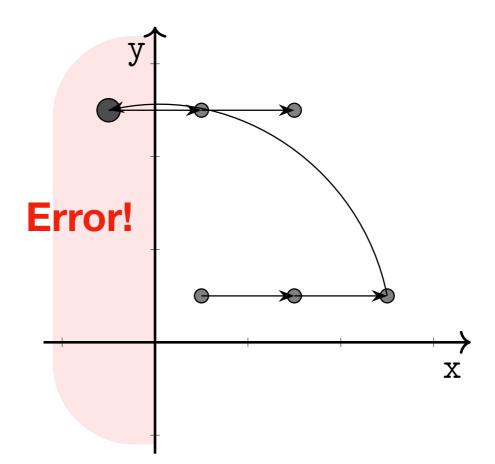
Analyze the set of reachable points, to check if the set intersects with a hypothetical error zone:

$$\mathcal{D} = \{ (x, y) \mid x < 0 \}$$



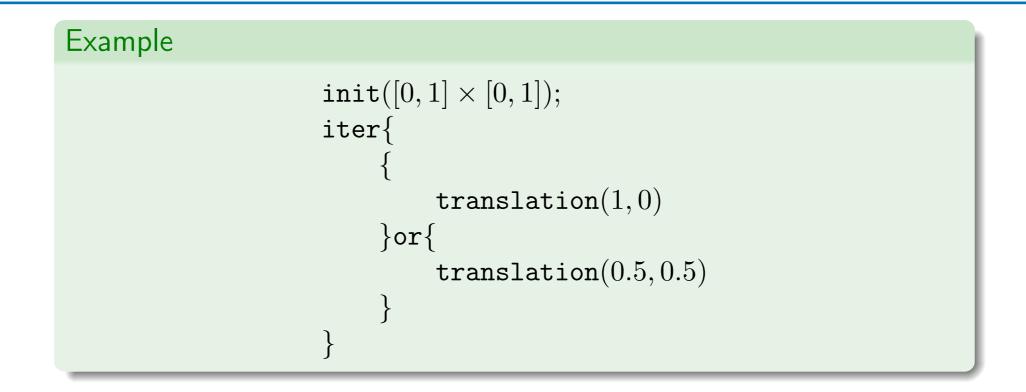
Correct / Incorrect Executions

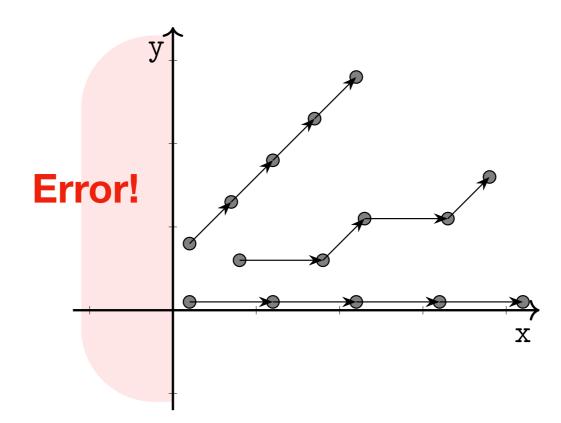
• Our goal: prove $\neg D$



(a) An incorrect execution

An Example Safe Program





Need for Static Analysis for Proving $\neg \mathcal{D}$

- How can we check $\neg D$ for any given program?
- Enumeration of all executions does not work!
 - The set of possible initial states is infinite.
 - The length of executions may be infinite.
 - The set of possible series of non-deterministic choices is infinite.

How to Finitely Over-Approximate the Set of Reachable Points?

Definition (Abstraction)

We call *abstraction* a set A of logical properties of program states, which are called *abstract properties* or *abstract elements*. A set of abstract properties is called an *abstract domain*.

Definition (Concretization)

Given an abstract element a of A, we call *concretization* the set of program states that satisfy it. We denote it by $\gamma(a)$.

Abstraction Example I: Sign Abstraction

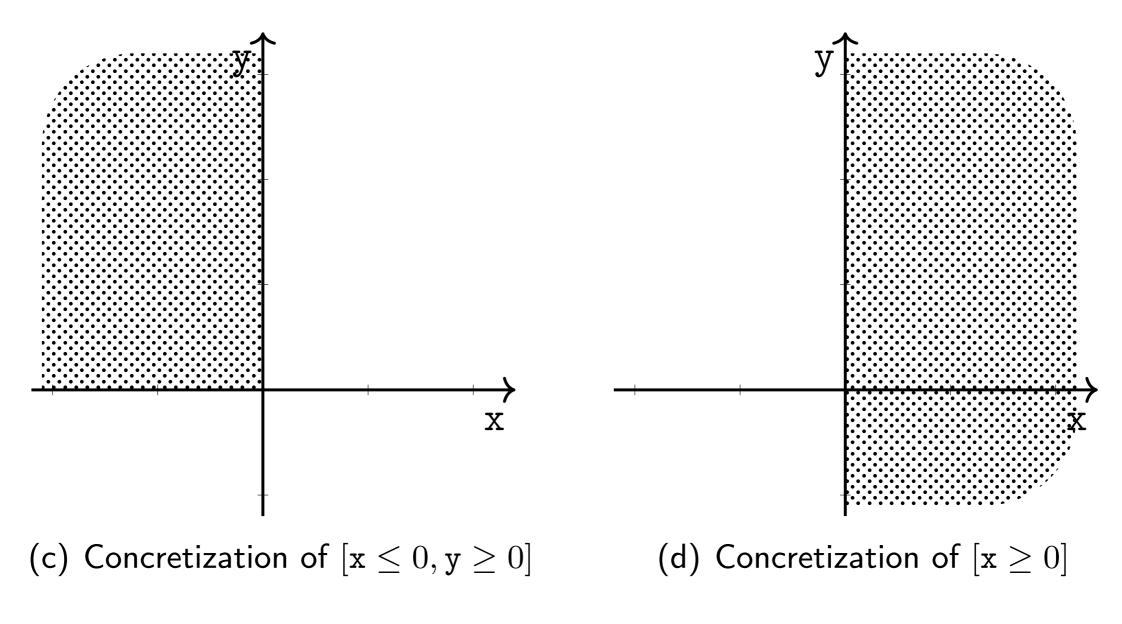


Figure: Signs abstraction

Abstraction Example 2: Interval Abstraction

The abstract elements: conjunctions of non-relational inequality constraints: $c_1 \leq x \leq c_2$, $c'_1 \leq y \leq c'_2$

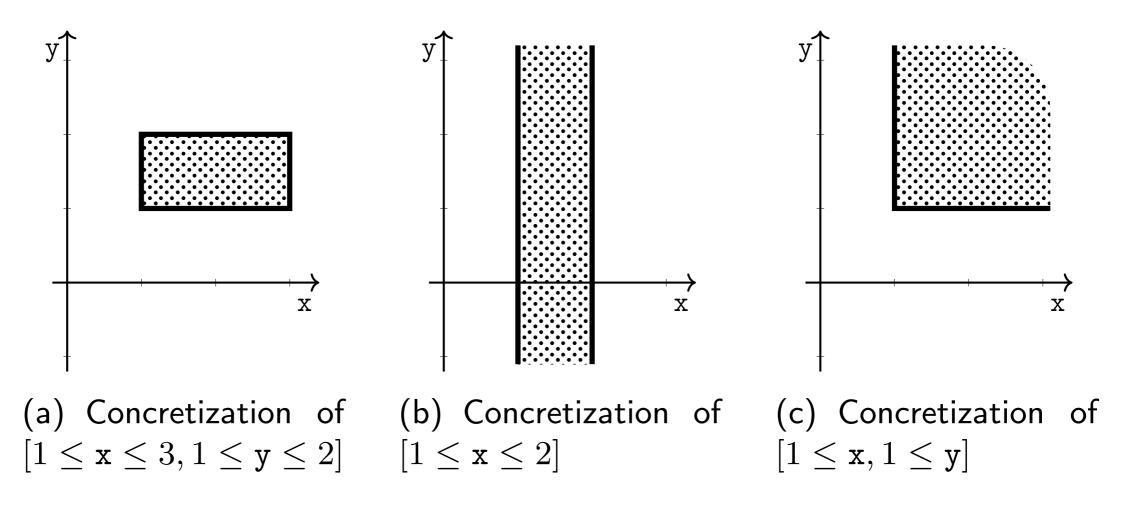
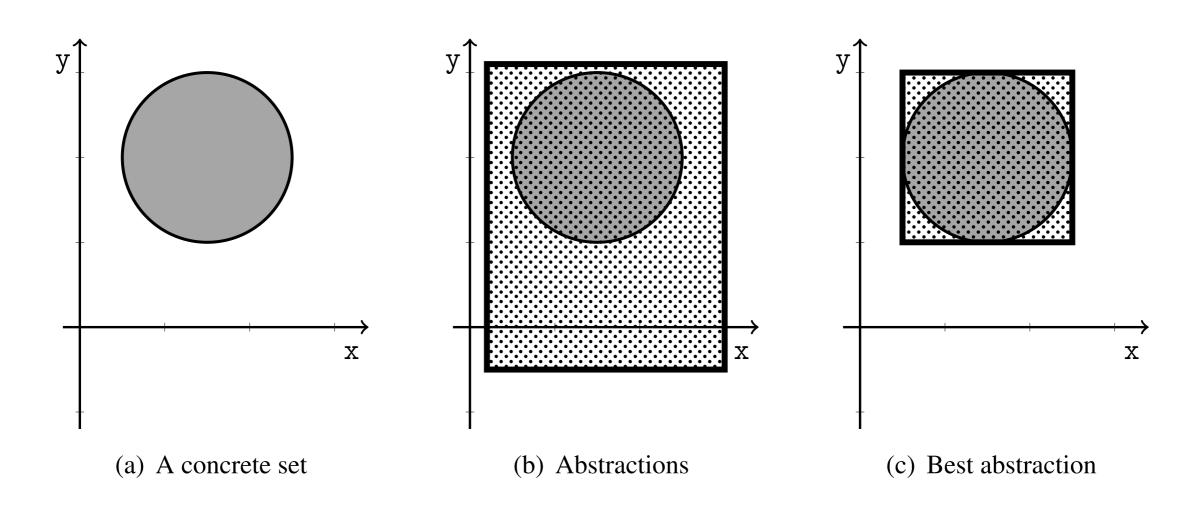
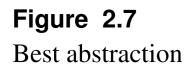


Figure: Intervals abstraction

Best Abstraction





Best Abstraction

- $\bullet\,$ We say a is the best abstraction of the concrete set S iff
 - $S \subseteq \gamma(a)$, and
 - for any a' such that $S \subseteq \gamma(a')$, a' is a coarser abstraction than a.

Abstraction Example 3: Convex Polyhedra Abstraction

The abstract elements: conjunctions of linear inequality constraints: $c_1\mathbf{x} + c_2\mathbf{y} \le c_3$

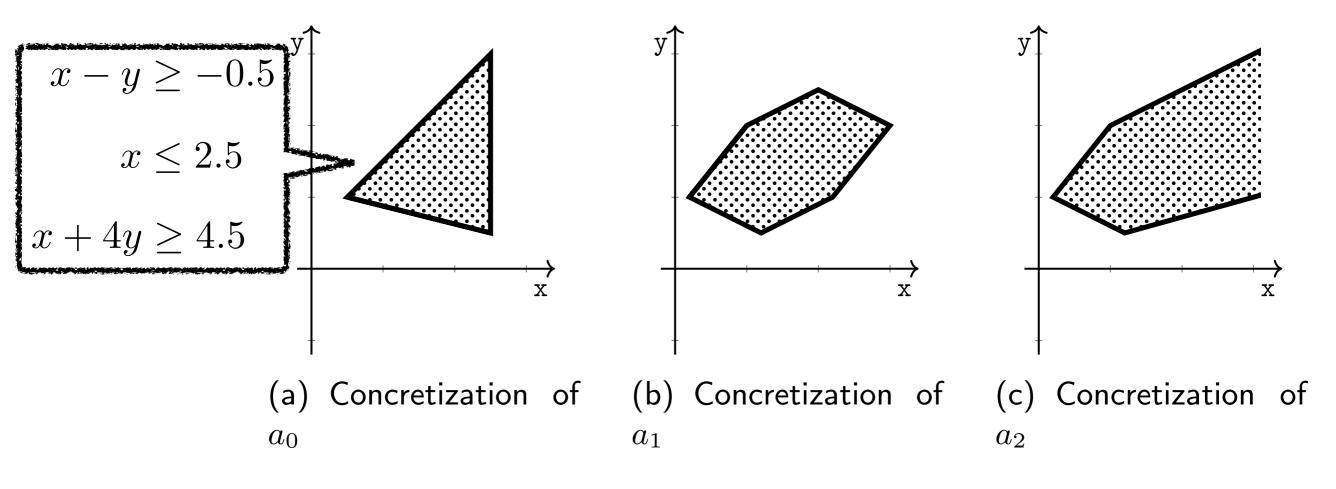
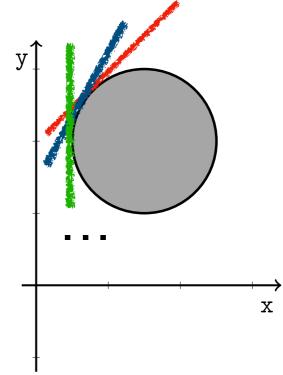


Figure: Convex polyhedra abstraction

Best Abstraction is Not Always Obtainable

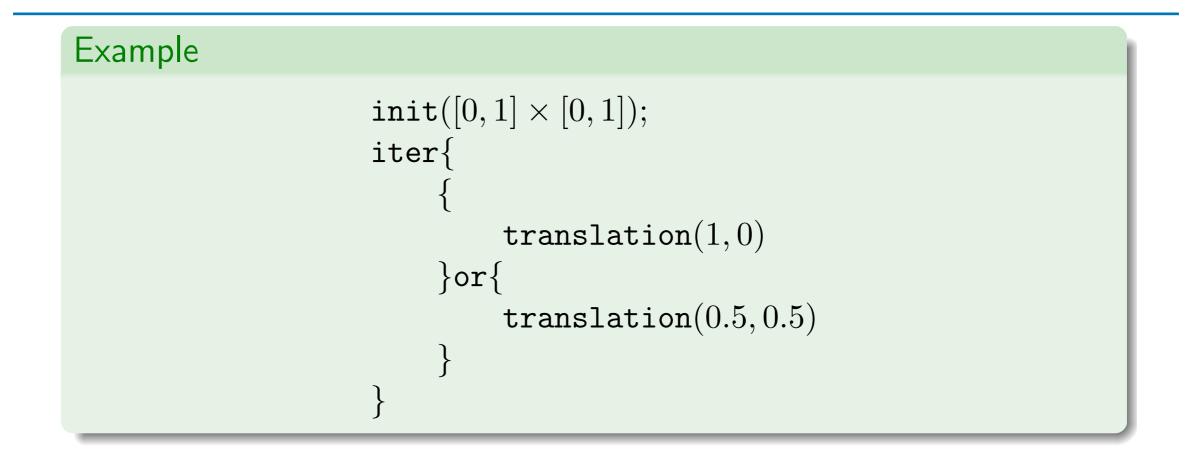
- Computing the best abstraction is expensive in general, or sometimes even impossible.
 - In case of the diameter, there is no best abstraction since it requires infinitely many linear inequalities.



(a) A concrete set

• Thus in practice, we often use abstractions as precise as possible but may not be the best.

Reachable States of the Example Program



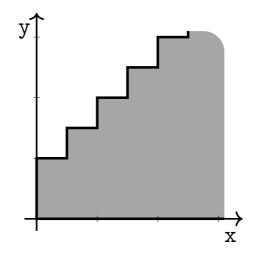
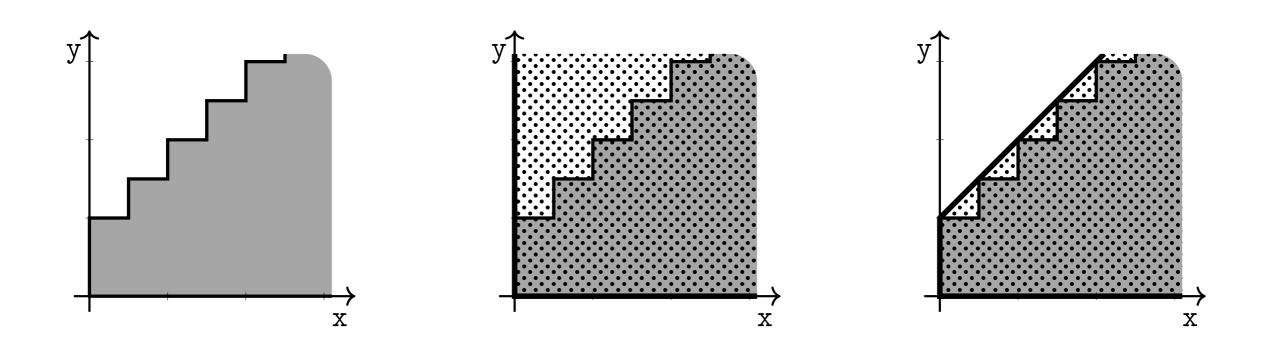


Figure: Reachable states

Abstractions of the Semantics of the Example Program



(a) Reachable states (b) Intervals abstraction (c) Convex polyhedra abstraction

Figure: Program's reachable states and abstraction

Abstract Semantics Computation

Recall the example language

Approach

A sound analysis for a program is constructed by computing sound abstract semantics of the program's components.

Sound Analysis Function for the Example Language

- Input: a program p and an abstract area a (pre-state)
- Output: an abstract area a' (post-state)

Definition (sound analysis)

An analysis is sound if and only if it captures the real execuctions of the input program.

If an execution of p moves a point (x, y) to point (x', y'), then for all abstract element a such that $(x, y) \in \gamma(a)$, $(x', y') \in \gamma(\text{analysis}(p, a))$

Sound Analysis Function as a Diagram

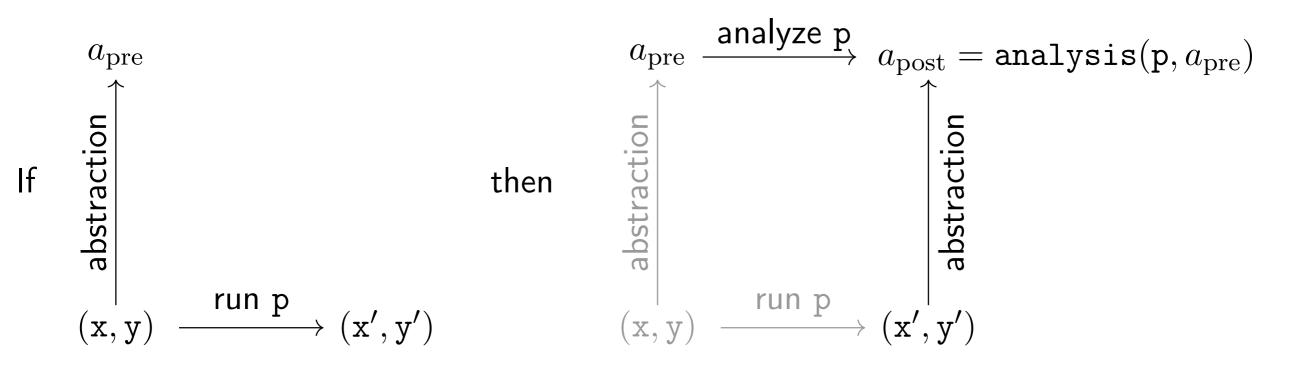
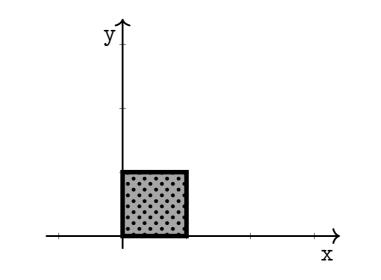


Figure: Sound analysis of a program p

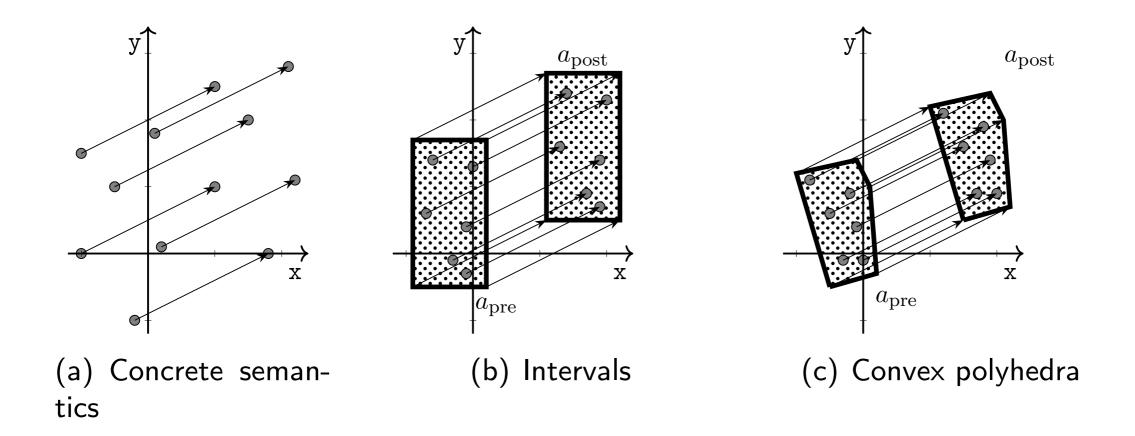
Abstract Semantics Computation: init(R)

- $\bullet\,$ Select, if any, the best abstraction of the region $\Re.$
- For the example program with the intervals or convex polyhedra abstract domains, analysis of $\texttt{init}([0,1]\times[0,1])$ is



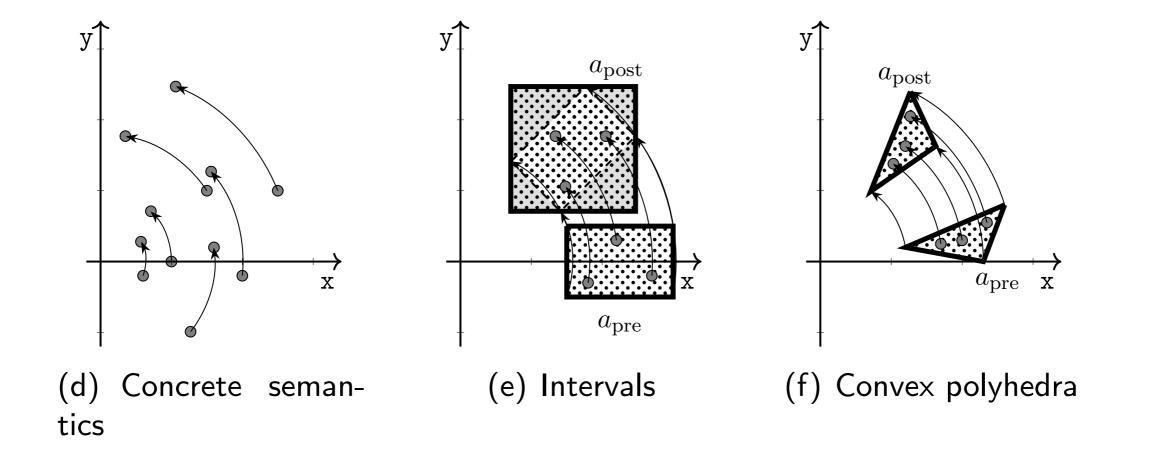
 $\texttt{analysis}(\texttt{init}(\Re), a) = \texttt{best abstraction of the region} \ \Re$

Abstract Semantics Computation: translation(u, v)



analysis(translation $(u, v), a) = \begin{cases} \text{ return an abstract state that contains} \\ \text{the translation of } a \end{cases}$

Abstract Semantics Computation: rotation(u, v, θ)

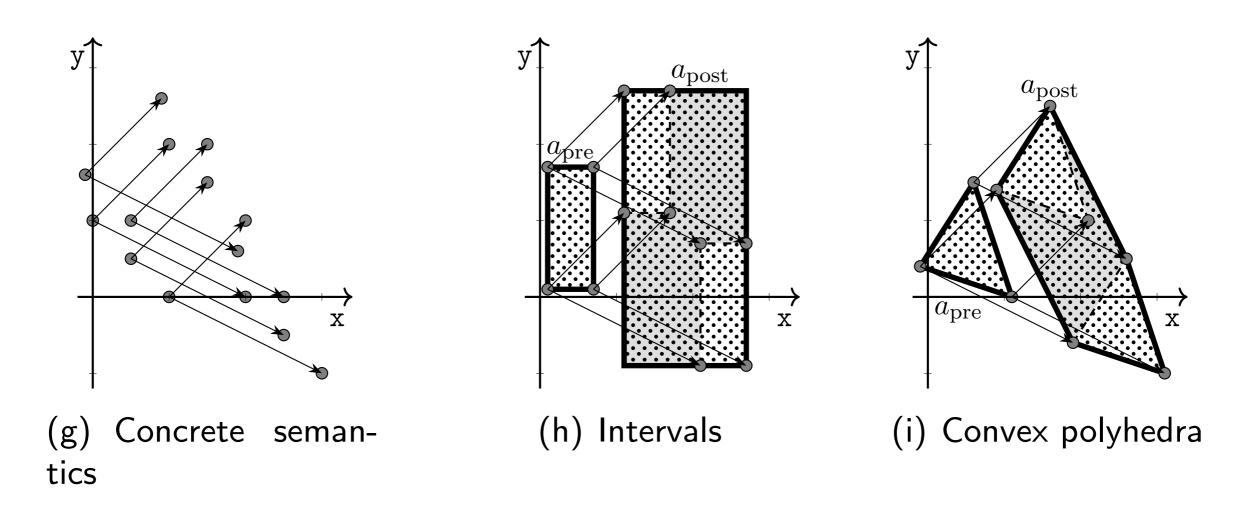


analysis(rotation $(u, v, \theta), a) = \begin{cases} \text{ return an abstract state that contains} \\ \text{the rotation of } a \end{cases}$

Abstract Semantics Computation: p₀; p₁

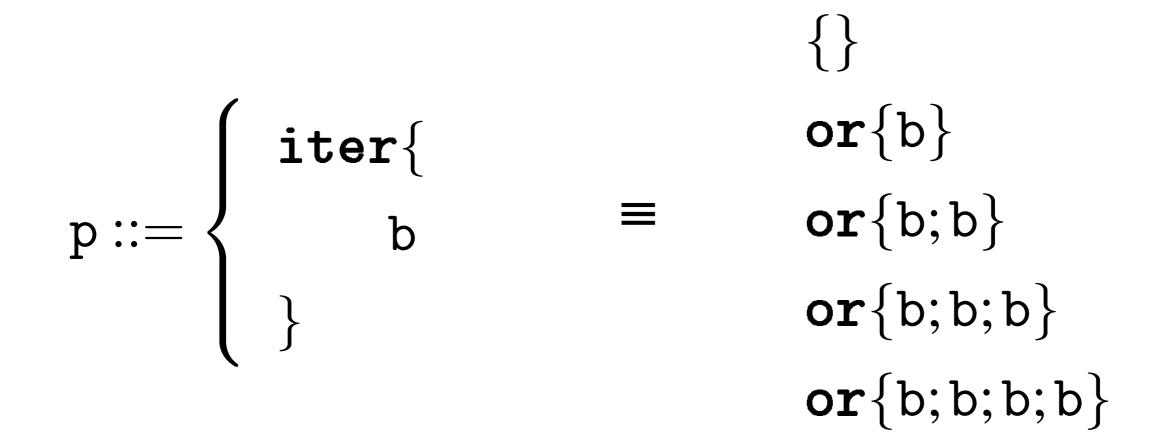
 $\texttt{analysis}(\texttt{p}_0;\texttt{p}_1,a) = \texttt{analysis}(\texttt{p}_1,\texttt{analysis}(\texttt{p}_0,a))$

Abstract Semantics Computation: {p}or{p}



 $\texttt{analysis}(\{\texttt{p}_0\}\texttt{or}\{\texttt{p}_1\},a) = \texttt{union}(\texttt{analysis}(\texttt{p}_1,a),\texttt{analysis}(\texttt{p}_0,a))$

Abstract Semantics Computation: iter{b}



Abstract Semantics Computation: iter{p}

program p_0 is{}program p_1 is{}or{b}program p_2 is{}or{b}or{b;b}program p_3 is{}or{b}or{b;b}or{b;b;b} \vdots \vdots p_{k+1} is equivalent to

Therefore,

 $\texttt{analysis}(\texttt{p}_{k+1}, a) = \texttt{union}(\texttt{analysis}(\texttt{p}_k, a), \texttt{analysis}(\texttt{b}, \texttt{analysis}(\texttt{p}_k, a)))$

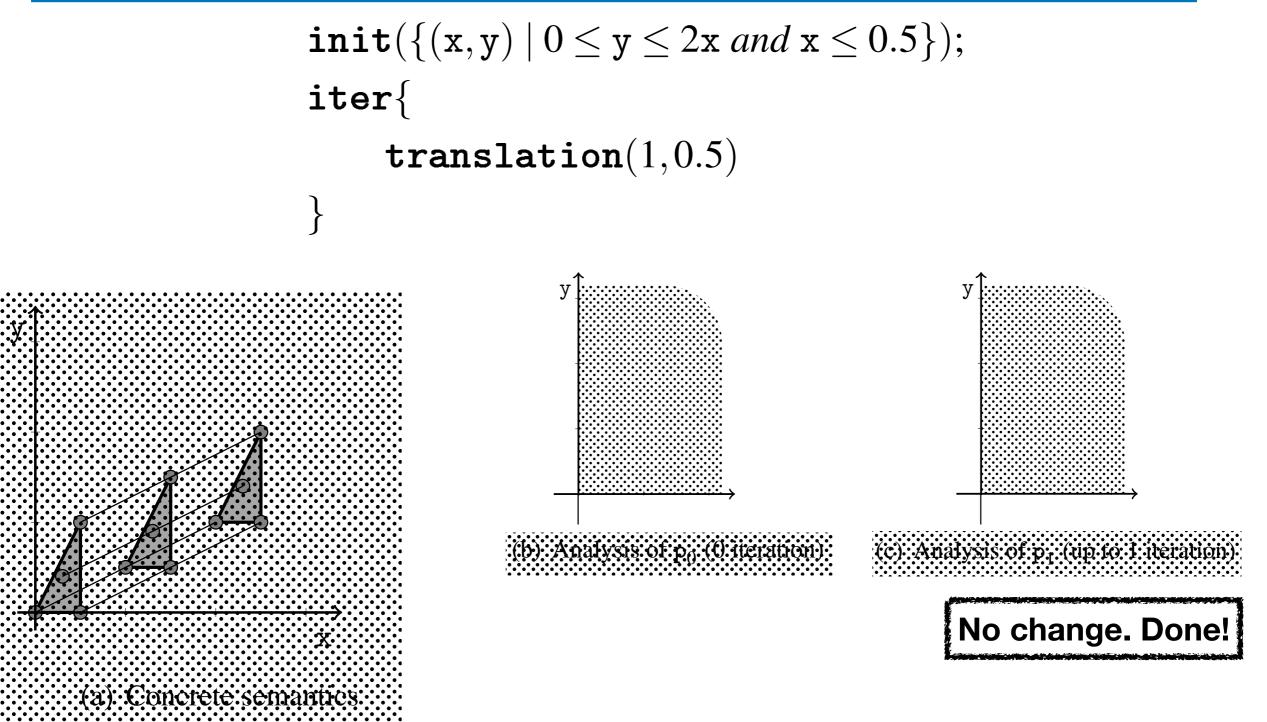
Abstract Semantics Computation: iter{p}

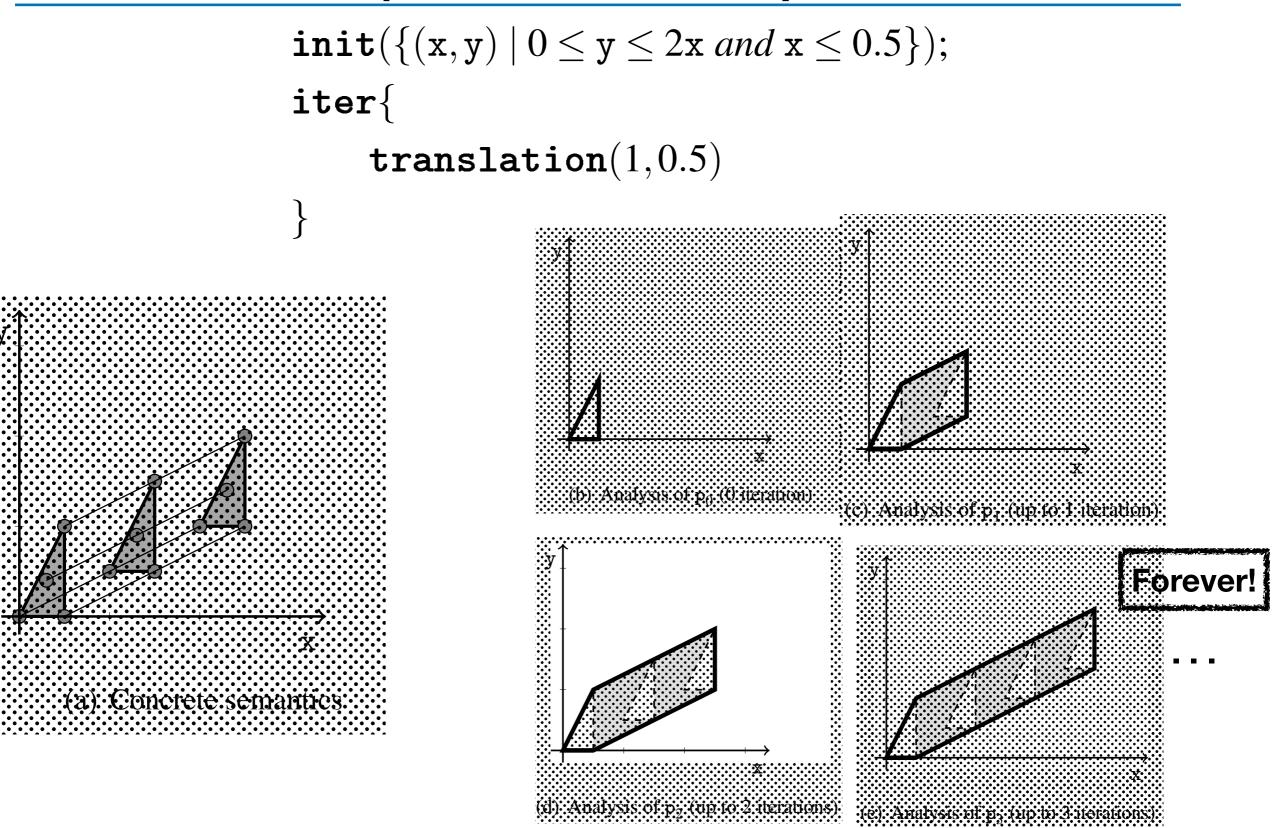
$$analysis(iter{p}, a) = \begin{cases} R \leftarrow a; \\ repeat \\ T \leftarrow R; \\ R \leftarrow union(R, analysis(p, R)) \\ until inclusion(R, T) \\ return T; \end{cases}$$

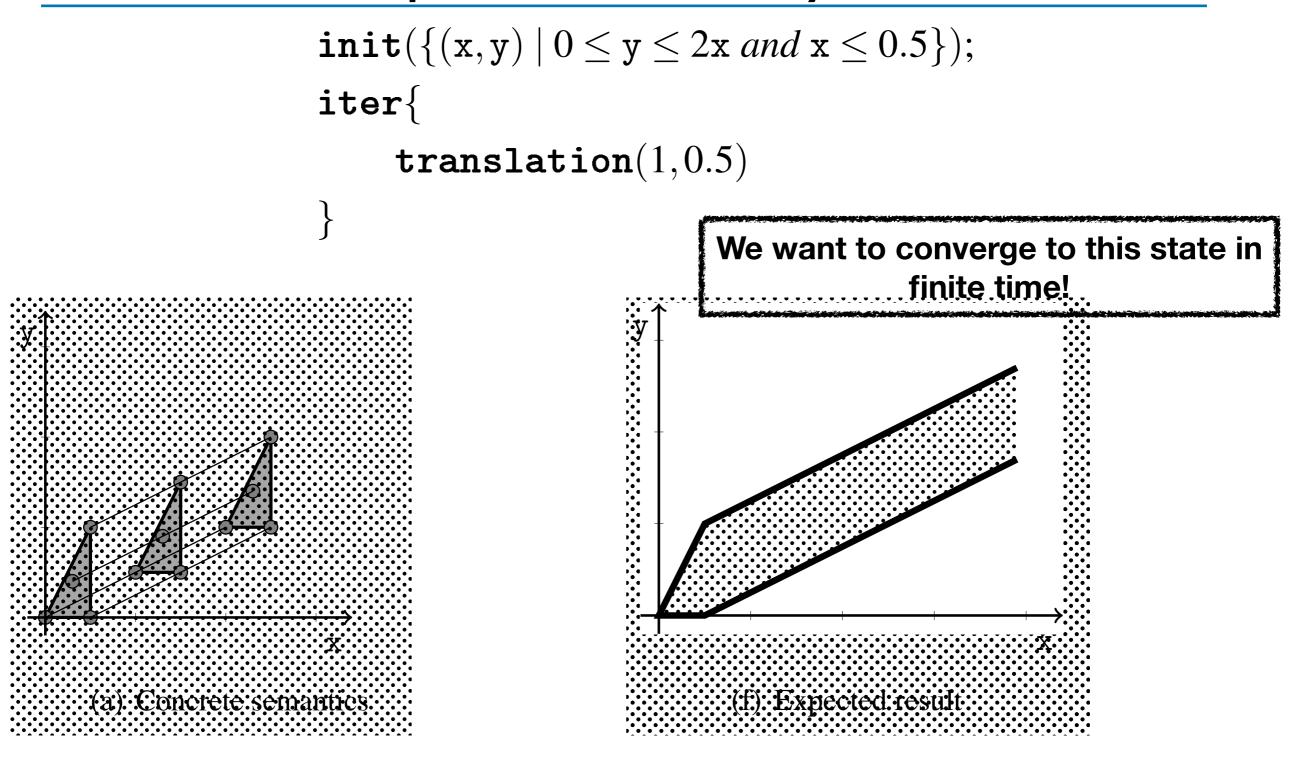
operator inclusion

returns true only when it succeeds checking inclusion

Abstract Semantics Computation: iter{p} Example: Sign Abstraciton

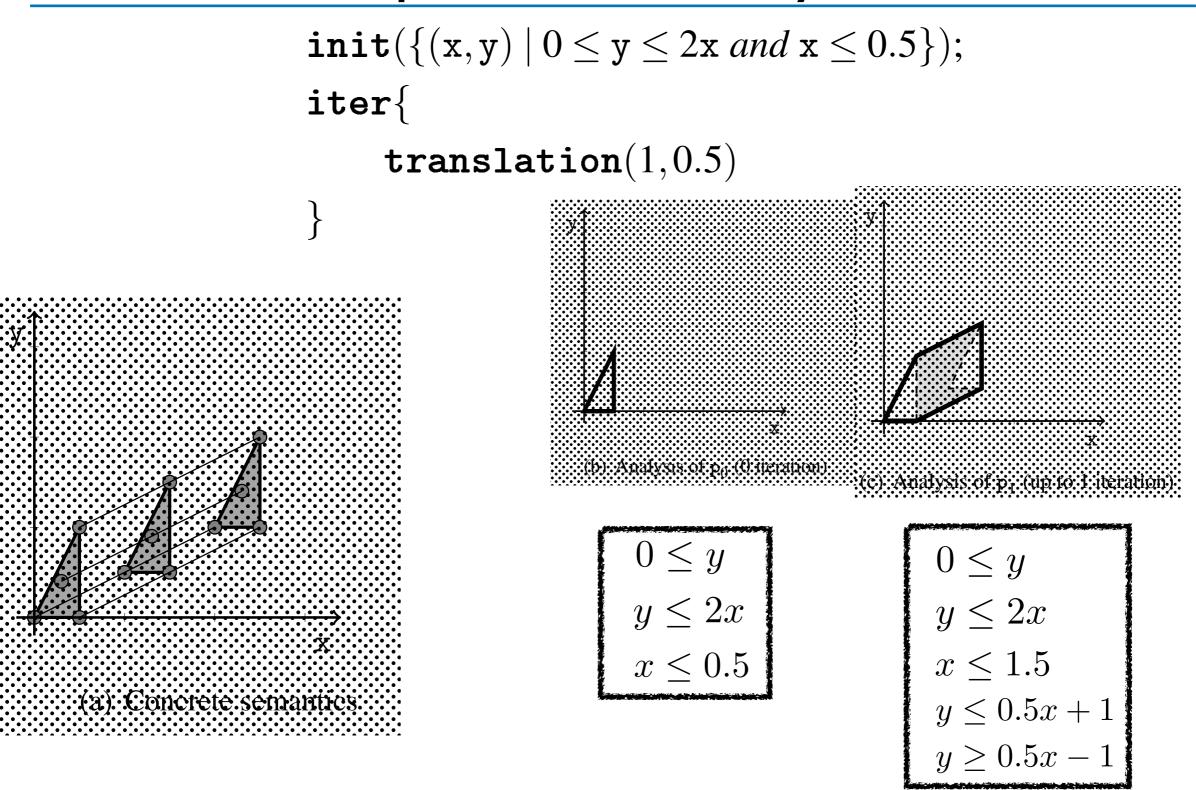


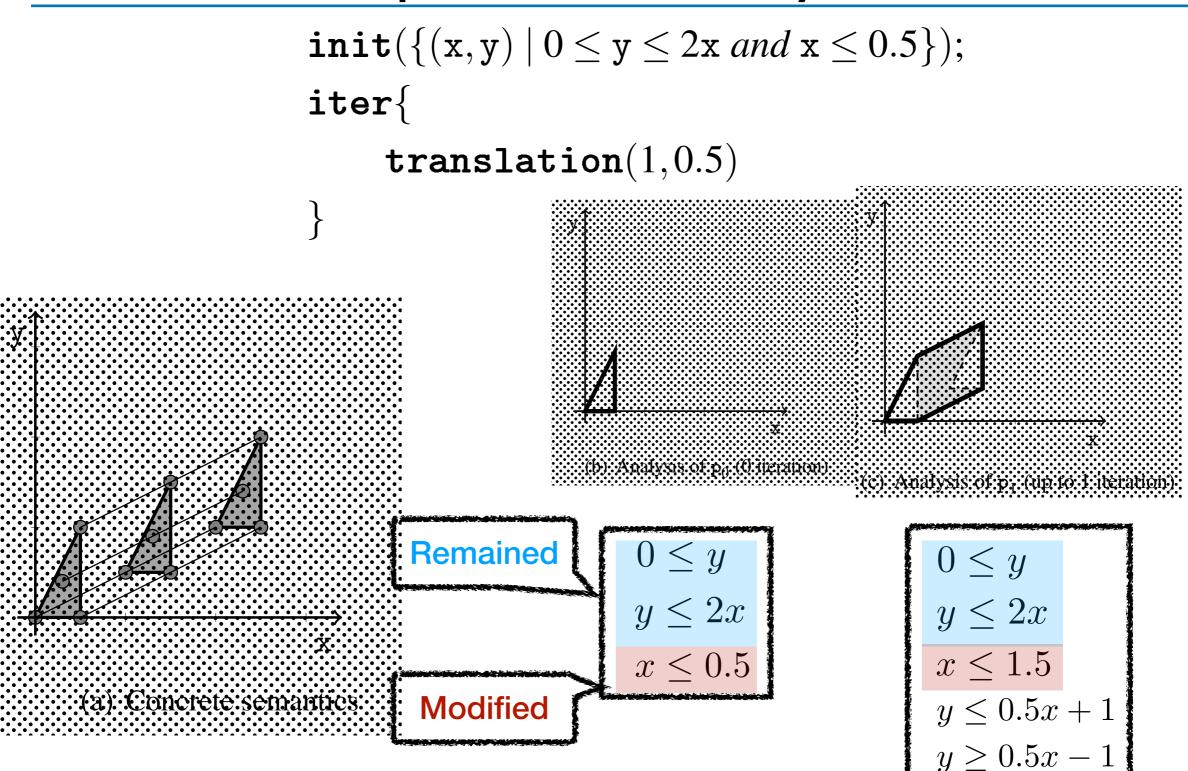


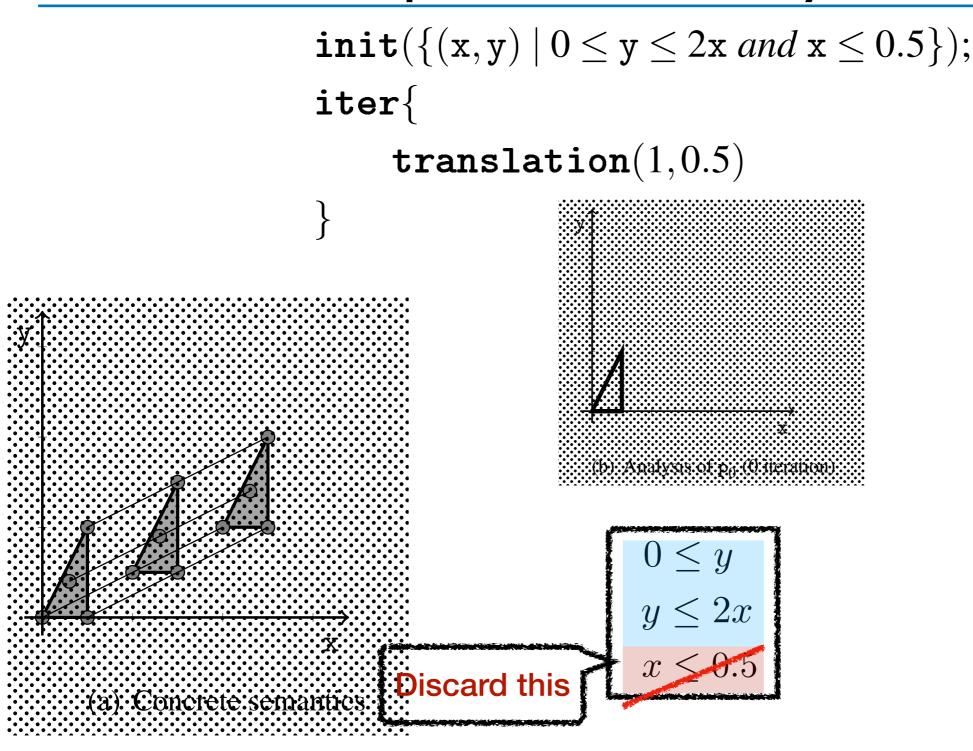


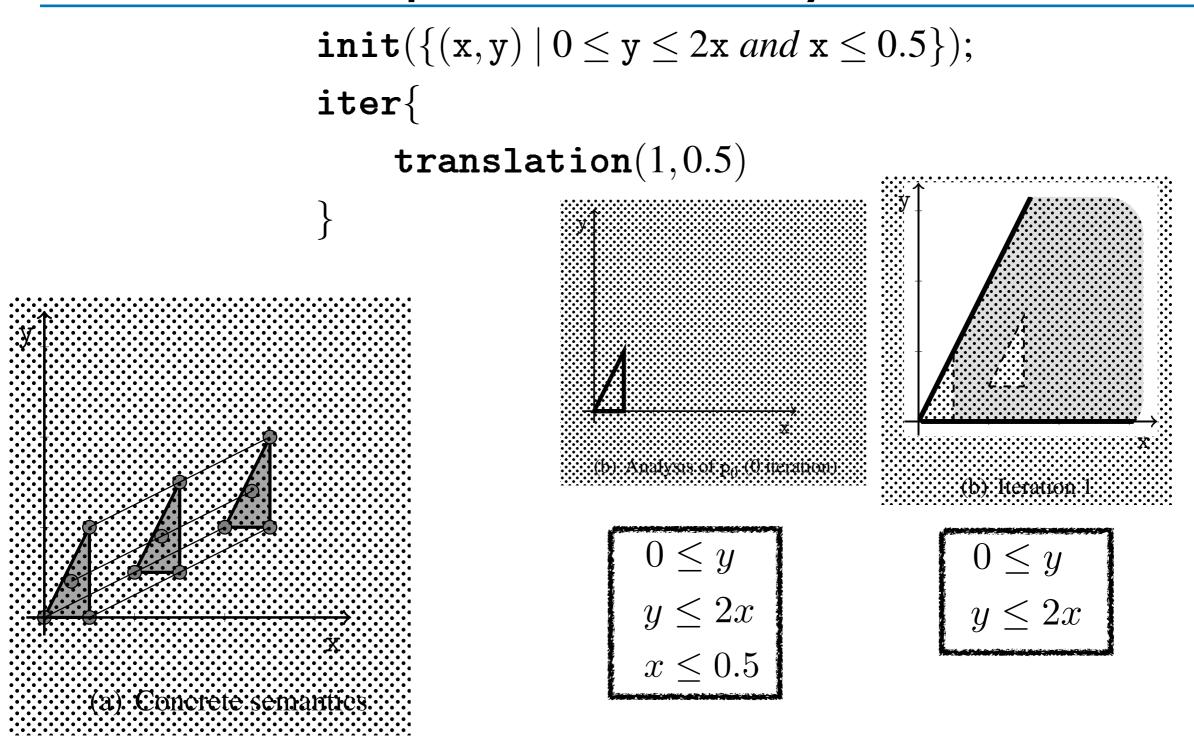
Widening

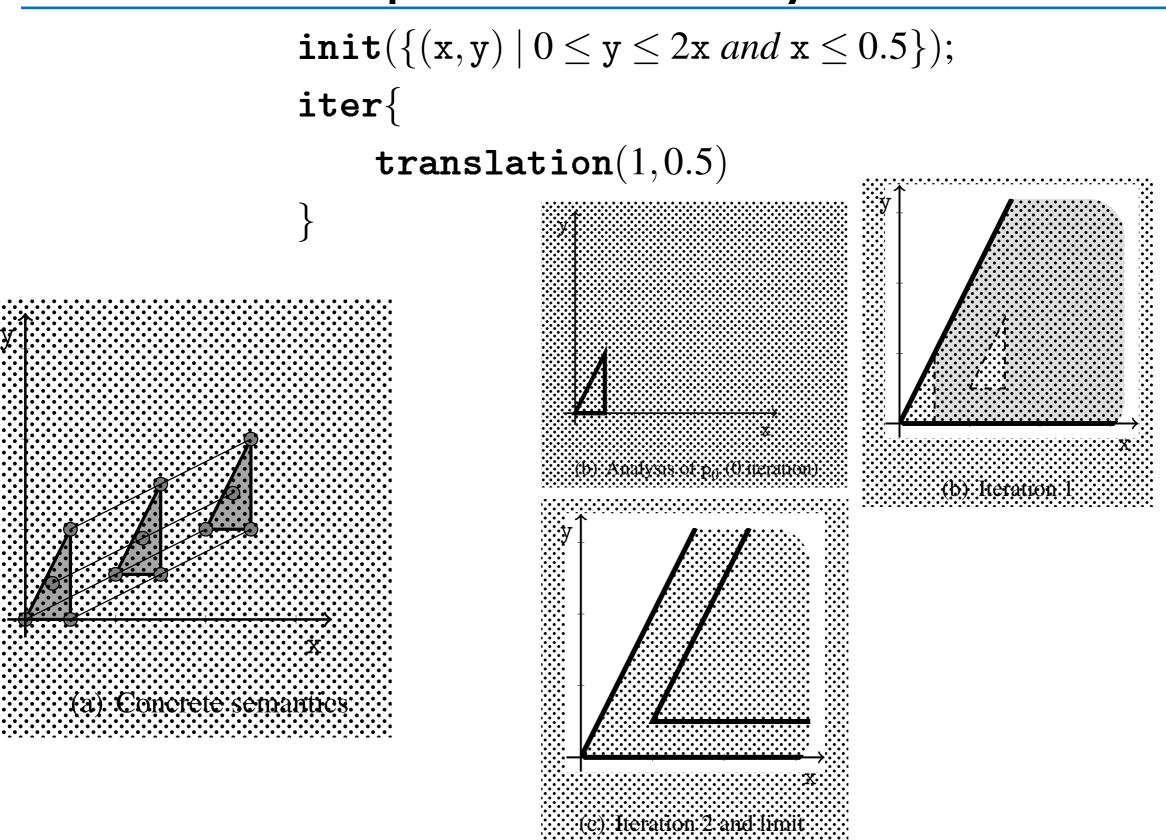
- To ensure termination of the analysis, we need to enforce the convergence of the iterations.
- In case of convex polyhedra
 - An abstract element = (finitely many) inequalities
 - If we decrease the number of inequalities at each iteration, it will eventually terminate.











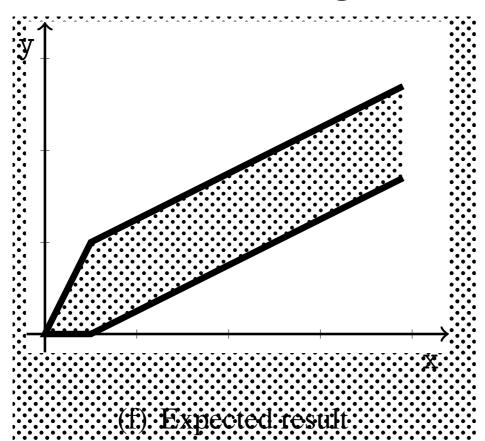
Imprecision due to Widening

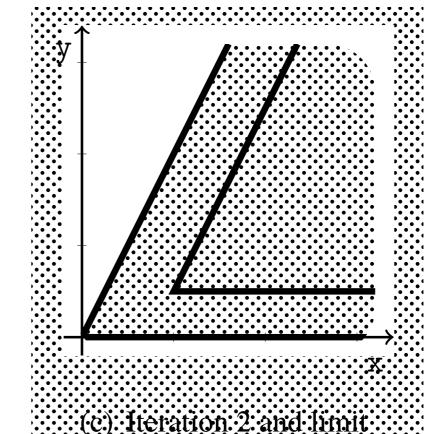
operator widen

over-approximates unions

enforces convergence

- Widening guarantees termination of the analysis.
- However, it incurs significant precision loss.





Abstract Iteration with Widening

Recall

where

$$\mathbf{p}_0 = \{\} \qquad \mathbf{p}_{k+1} = \mathbf{p}_k \text{ or } \{\mathbf{p}_k; \mathbf{p}\}$$

Hence,

$$analysis(iter\{p\}, a) = \begin{cases} R \leftarrow a; \\ repeat \\ T \leftarrow R; \\ R \leftarrow widen(R, analysis(p, R)); \\ until inclusion(R, T) \\ return T; \end{cases}$$

$$operator widen \qquad \begin{cases} over approximates unions \\ enforces finite convergence \end{cases}$$

Loop Unrolling for Precision Improvement

```
init({(x,y) | 0 \le y \le 2x and x \le 0.5});
iter{
     translation(1, 0.5)
}
                        Loop unrolling once
init({(x, y) | 0 \le y \le 2x and x \le 0.5});
{}or{
    translation(1, 0.5)
iter{
    translation(1,0.5)
}
```

Loop Unrolling for Precision Improvement

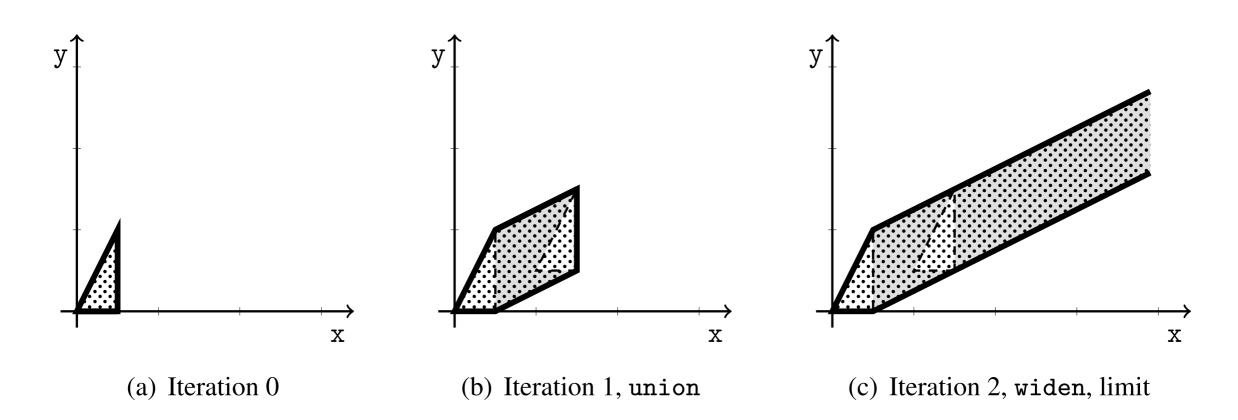


Figure 2.17

Abstract iteration with widening and unrolling

Abstract Semantics Function analysis At a Glance

The analysis(p, a) is finitely computable and sound.

$\texttt{analysis}(\texttt{init}(\mathfrak{R}), a)$	=	best abstraction of the region ${\mathfrak R}$
analysis(translation(u,v),a)		$\begin{cases} \text{ return an abstract state that contains} \\ \text{ the translation of } a \end{cases}$
$\texttt{analysis}(\texttt{rotation}(u,v,\theta),a)$	=	$\begin{cases} \text{return an abstract state that contains} \\ \text{the rotation of } a \end{cases}$
		$\texttt{union}(\texttt{analysis}(\texttt{p}_1, a), \texttt{analysis}(\texttt{p}_0, a))$
$\texttt{analysis}(\texttt{p}_0;\texttt{p}_1,a)$	=	$\texttt{analysis}(\texttt{p}_1,\texttt{analysis}(\texttt{p}_0,a))$
$\texttt{analysis}(\texttt{iter}\{\texttt{p}\}, a)$	—	$\left\{ \begin{array}{l} \mathtt{R} \leftarrow a; \\ \texttt{repeat} \\ \mathtt{T} \leftarrow \mathtt{R}; \\ \mathtt{R} \leftarrow \texttt{widen}(\mathtt{R}, \texttt{analysis}(\mathtt{p}, \mathtt{R})); \\ \texttt{until inclusion}(\mathtt{R}, \mathtt{T}) \\ \texttt{return T}; \end{array} \right.$

Soundness of Abstract Semantics Function analysis

Sound analysis

If an execution of p from a state (x, y) generates the state (x', y'), then for all abstract element a such that $(x, y) \in \gamma(a)$, $(x', y') \in \gamma(analysis(p, a))$

Theorem. The analysis function is sound.

Verification of the Property of Interest

- Does program compute a point inside no-fly zone $\mathfrak{D}?$
- Need to collect the set of reachable points.
- Run analysis(p, -) and collect all points \Re from every call to analysis.
- Since analysis is sound, the result is an over approx. of the reachable points.
- If $\mathfrak{R} \cap \mathfrak{D} = \emptyset$, then p is verified. Otherwise, we don't know.

