A Gentle Introduction to
Static Analysis (2)

Woosuk Lee

CSE 6049 Program Analysis

G UN/y
£
S
1939
/

9928 Hanyang University, Korea

<M\ (5

-k.‘.‘-

Some slides are borrowed from http://ropas.snu.ac.kr/~kwang/4541.664A/21/0-overview.pdf

http://ropas.snu.ac.kr/~kwang/4541.664A/21/0-overview.pdf

Static Analysis

A general method for
automatic and sound approximation of
sw run-time behaviors
before the execution

“before”: statically, without running sw
“automatic’: sw analyzes sw
“sound”: all possibilities into account

“approximation’: cannot be exact

“general”: for any source language and property

» C, C++, C#, F#, Java, JavaScript, ML, Scala, Python, JVM, Dalvik,
x86, Excel, etc

» “buffer-overrun?”, “memory leak?”, “type errors?”, “x =y at line 27",
“memory use < 2K7", etc

Abstract Interpretation

e A powerful framework for designing correct static analysis
e “framework’ : correct static analysis comes out, reusable
o “powerful” :all static analyses are understood in this framework
e “simple” : prescription is simple

* “eye-opening’ :any static analysis is an abstract interpretation

Why Abstraction!?

¢ Without abstraction,

® can’t capture all possible executions Cmpossiblel |

® can’t terminate r8)

R .
[Alan Turing

® Abstraction ¥* omission

e reality:{2,4,6,8,...}

® “even number” (abstraction) vs “multiple of 4” (omission)

Example

o Q:What are the possible output values!?

e Concrete interpretation: 2,4, ... infinitely many possible values
® Abstract interpretation |:“integers” (coarse)
® Abstract interpretation 2:“positive integers’ (precise)

e Abstract interpretation 3:“positive even integers’ (more precise)

Abstraction

MAX++ fat+ =

\/*0\”

Abstraction

e
oo

Abstraction

=
B

An Intuitive Explanation
of Abstract Interpretation

Example Language

; Initialization with a point that is non-deterministically
| chosen in a fixed region (e.g., [0,1] x [0,1] square)

init(R) initialization, with a state in R

translation(u,v) translation by vector (u,v)

rotation(u,v,@) rotation by center (u,v) and angle 6
sequence of operations

{p}or{p} non-deterministic choice

iter{p} non-deterministic iterations

Semantics

Example (Semantics)

ini5([0,1] x [0, 1]);
translation(1,0);

iter{
{
translation(1,0)
yor{
rotation(0,0,90°)
}
}
vl vl i
& >© > - - - >
1 X/ 1 X/ & B

N\/

Analysis Goal Is Safety Property:
Reachability

Analyze the set of reachable points, to check if the set
intersects with a hypothetical error zone:

D= {(z,y) |z <0}

Error!

Correct / Incorrect Executions

® Our goal: prove =D

Error!

N\r

(a) An incorrect execution

An Example Safe Program

Example
init([0,1] x [0,1]);
iter{
{
translation(1,0)
yor{
translation(0.5,0.5)
}
}
v
Error! .—/_/
G x) 50 20y
X

Need for Static Analysis for Proving -D

e How can we check =D for any given program?
¢ Enumeration of all executions does not work!
® The set of possible initial states is infinite.
® The length of executions may be infinite.

® The set of possible series of non-deterministic choices
is infinite.

How to Finitely Over-Approximate the Set
of Reachable Points!?

Definition (Abstraction)

We call abstraction a set A of logical properties of program states, which
are called abstract properties or abstract elements. A set of abstract
properties is called an abstract domain.

Definition (Concretization)

Given an abstract element a of A, we call concretization the set of program
states that satisfy it. We denote it by v(a).

o

Abstraction Example I: Sign Abstraction

(c) Concretization of [x < 0,y > 0] (d) Concretization of [x > 0]

Figure: Signs abstraction

Abstraction Example 2: Interval Abstraction

The abstract elements: conjunctions of non-relational inequality
constraints: ¢; < x < ¢9, ¢ <y < d

N\r
N\r

N\r

(a) Concretization of (b) Concretization of (c) Concretization of
1<x<3,1<y<2] [1<x<2) 1<x1<y]

Figure: Intervals abstraction

Best Abstraction

(a) A concrete set

Figure 2.7
Best abstraction

A 4

(b) Abstractions (c) Best abstraction

A 4

Best Abstraction

e We say a is the best abstraction of the concrete set S iff

o 5C ’Y(a), and

/
e for any a’ such that S C(a’) ais a coarser
abstraction than a.

Abstraction Example 3: Convex Polyhedra
Abstraction

The abstract elements: conjunctions of linear inequality constraints:
C1X + C2y < C3

(a) Concretization of (b) Concretization of (c) Concretization of
ao ai a2

Figure: Convex polyhedra abstraction

Best Abstraction is Not Always Obtainable

¢ Computing the best abstraction is expensive in general, or
sometimes even impossible.

® |n case of the diameter, there is no

best abstraction since it requires
infinitely many linear inequalities.

(a) A concrete set

e Thus in practice, we often use abstractions as precise as
possible but may not be the best.

Reachable States of the Example Program

Example
init([0, 1] x [0, 1]);
iter{

{

translation(1,0)

yory

translation(0.5,0.5)

}

}

Figure: Reachable states

Abstractions of the Semantics of the
Example Program

(a) Reachable states (b) Intervals abstraction (c) Convex polyhedra ab-
straction

Figure: Program’s reachable states and abstraction

Abstract Semantics Computation

Recall the example language

p == init(R) initialization, with a state in R
translation(u,v) translation by vector (u,v)
rotation(u,v,0) rotation defined by center (u,v) and angle 6

P; P sequence of operations

{ptor{p} non-deterministic choice

iter{p} non-deterministic iterations
Approach

A sound analysis for a program is constructed by computing sound abstract
semantics of the program’'s components.

v

Sound Analysis Function for the Example
Language

@ Input: a program p and an abstract area a (pre-state)
@ Output: an abstract area a’ (post-state)

Definition (sound analysis)

An analysis is sound if and only if it captures the real execuctions of
the input program.

If an execution of p moves a point (x,y) to point (x',y'),
then for all abstract element a such that (x,y) € v(a),

(x',y') € v(analysis(p,a))

Sound Analysis Function as a Diagram

analyze p _
Gpre > Gpost = analysis(p, apre)

\@
'S
@)

then

abstraction
abstraction

run p /

> (%) (

~ N\
™
<
N\
<
b

Figure: Sound analysis of a program p

Abstract Semantics Computation: init(R)

@ Select, if any, the best abstraction of the region fR.
@ For the example program with the intervals or convex polyhedra
abstract domains, analysis of init(]0, 1] x [0, 1]) is

—2
X

analysis(init(fR), a) = best abstraction of the region R

Abstract Semantics Computation:
translation(u, v)

/

./,,

(a) Concrete seman- (b) Intervals (c) Convex polyhedra
tics

, , return an abstract state that contains
analysis(translation(u,v),a) =

the translation of a

Abstract Semantics Computation:
rotation(u, v, 0)

A
/ X

(d) Concrete seman- (e) Intervals (f) Convex polyhedra
tics

.

return an abstract state that contains

analysis(rotation(u,v,0),a) = { the rotation of a

Abstract Semantics Computation: po; p;

analysis(pgy;py,a) = analysis(p;,analysis(pgy,a))

Abstract Semantics Computation: {p}or{p}

(g) Concrete seman- (h) Intervals (i) Convex polyhedra
tics

analysis({pytor{p;},a) = union(analysis(py,a),analysis(pgy,a))

Abstract Semantics Computation: iter{b}

U

or{b}
or{b;b}
or{b;b;b}
or{b;b;b;b}

Abstract Semantics Computation: iter{p}

program p, is {}

program p; is {}or{b}

program p, is {}or{blor{b;b}

program p; is {}or{b}lor{b;b}or{b;b;b}

Therefore,

analysis(p;,,a) = union(analysis(py,a),analysis(b,analysis(p;,a)))

Abstract Semantics Computation: iter{p}

R < a;
repeat
T < R;
analysis(iter{p},a) =
R < union(R,analysis(p,R))
until inclusion(R,T)

return T;

operator inclusion returns true only when 1t succeeds checking inclusion

Abstract Semantics Computation: iter{p}

Example: Sign Abstraciton
init({(x,y) |0 <y <2xandx <0.5});
iter{

translation(1,0.5)

(b) Analysis of p, (0 iteration) (c) Analysis of p; (up to 1 iteration)

X

(a) Concrete semantics

Abstract Semantics Computation: iter{p}

Example: Convex Polyhedra
init({(x,y) |0 <y <2xandx <0.5});
iter{

translation(1,0.5)

" 7
X

b) Analysis of p, (0 iteration
®) Y Po () (c) Analysis of p; (up to 1 iteration)

X

(a) Concrete semantics

(d) Analysis of p, (up to 2 iterations) (e) Analysis of ps (up to 3 iterations)

Abstract Semantics Computation: iter{p}

Example: Convex Polyhedra
init({(x,y) |0 <y <2xandx<0.5});
iter{

translation(1,0.5)

X

(a) Concrete semantics (f) Expected result

Widening

® Jo ensure termination of the analysis, we need to enforce
the convergence of the iterations.

® |n case of convex polyhedra
® An abstract element = (finitely many) inequalities

* |f we decrease the number of inequalities at each
iteration, it will eventually terminate.

Abstract Semantics Computation: iter{p}
Example: Convex Polyhedra

init({(x,y) |0 <y <2xandx <0.5});
iter{
translation(1,0.5)

} y| i

X

b) Analysis of 0 iteration
®) ysis of p (0 teration) (c) Analysis of p; (up to 1 iteration)

X

(a) Concrete semantics

Abstract Semantics Computation: iter{p}
Example: Convex Polyhedra

init({(x,y) |0 <y <2xandx <0.5});
iter{
translation(1,0.5)

} y| i

X 4

X

b) Analysis of 0 iteration

®) Y Po () (c) Analysis of p; (up to 1 iteration)

§ Remained § § ',

X

(a) Concrete semantics Modified [Domnscmnsrammaaso

Abstract Semantics Computation: iter{p}
Example: Convex Polyhedra

init({(x,y) |0 <y <2xandx <0.5});
iter{
translation(1,0.5)

} y|

X

(b) Analysis of p, (O iteration)

(a) Concrete semantics }

Abstract Semantics Computation: iter{p}
Example: Convex Polyhedra

init({(x,y) |0 <y <2xandx <0.5});

iter{
translation(1,0.5)
} y|
VA
-
(b) Analysis of p, (O iteration)
X

(a) Concrete semantics

Abstract Semantics Computation: iter{p}
Example: Convex Polyhedra

init({(x,y) |0 <y <2xandx <0.5});
iter{
translation(1,0.5)

} y|

X

(b) Analysis of p, (O iteration)

(b) Iteration 1

vl

X

(a) Concrete semantics

X

(c) Iteration 2 and limit

Imprecision due to Widening

. over-approximates unions
operator widen

enforces convergence

® Widening guarantees termination of the analysis.

® However, it incurs significant precision loss.

y] y]

X X

(f) Expected result (c) Iteration 2 and limit

Abstract Iteration with Widening

Recall
iter{p} = {}or {p}or {p;p}or--:
= lim; p,
where
Po =1} Pry1 = P OT {Px;P}

Hence,

(R <+ a;

repeat

analysis(iter{p},a) = < ek

R < widen(R, analysis(p,R));
until inclusion(R,T)
. return T;

over approximates unions

operator widen ..
enforces finite convergence

Loop Unrolling for Precision Improvement

init({(x,y) |0 <y <2xandx <0.5});
iter{
translation(1,0.5)

; Loop unrolling once

init({(x,y) |0 <y <2xandx<0.5});
{}or{

translation(1,0.5)

}
iter{
translation(1,0.5)

}

Loop Unrolling for Precision Improvement

(a) Iteration O (b) Iteration 1, union (c) Iteration 2, widen, limit

Figure 2.17
Abstract iteration with widening and unrolling

Abstract Semantics Function analysis At a
Glance

The analysis(p,a) is finitely computable and sound.

analysis(init(fR),a) = best abstraction of the region R

[return an abstract state that contains
the translation of a

return an abstract state that contains

| the rotation of a
union(analysis(py,a),analysis(pgy,a))

analysis(translation(u,v),a) =

(

analysis(rotation(u,v,0),a) =

analysis({pytor{p;},a)
analysis(py;Pp;,a)

analysis(p;,analysis(pg,a))
[R <+ a;
repeat
T < R;
R <— widen(R, analysis(p,R));
until inclusion(R,T)
_ return T;

analysis(iter{p},a) = A«

Soundness of Abstract Semantics Function
analysis

Sound analysis

If an execution of p from a state (x,y) generates the state (x/,y’),
then for all abstract element a such that (x,y) € v(a),

(x,y') € 7(analysis(p, a))

Theorem. The analysis function is sound.

Verification of the Property of Interest

Does program compute a point inside no-fly zone 7

Need to collect the set of reachable points.

Run analysis(p, —) and collect all points R from every call to
analysis.

Since analysis is sound, the result is an over approx. of the
reachable points.

If RNDO =0, then p is verified. Otherwise, we don’t know.

(a) An example R (b) A more precise R

