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Comparison between Computing and Other Engineering

Computing Area Other Engineering Areas

Object Software Machine/building/circuit/chemical 
process design

Execution subject Computer runs it Nature runs it

Our question Will it work as intended? Will it work as intended?

Our knowledge Program analysis
Newtonian mechanics, Maxwell 

equations, Navier-stokes 
equations, thermodynamic 

equations, and other principles
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Our Interest

• How to verify specific properties about program 
executions before execution:

• absence of run-time errors i.e., no crashes

• preservation of invariants

Introduction

Our Interest

How to verify specific properties about program executions before

execution:
absence of run-time errors i.e., no crashes
preservation of invariants

Verification
Make sure that JP K ✓ S where

the semantics JP K = the set of all behaviors of P
the specification S = the set of acceptable behaviors
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Semantics and Semantic Properties
Introduction

Semantics JP K and Semantic Properties S

Semantics JP K:
compositional style (“denotational”)

I JABK = · · · JAK · · · JBK · · ·
transitional style (“operational”)

I JABK = {s0 ,! s1 ,! · · · , · · · }

Semantic properties S:
safety

I some behavior observable in finite time will never occur.
liveness

I some behavior observable after infinite time will never occur.
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Safety Properties

• Some behaviors observable in finite time will never 
occur.

• Examples:

• No crashing error — e.g., no divide by zero, no 
uncaught exceptions, etc

• No invariant violation



Invariant?

• Assertions supposed to be always true 

• e.g., “x has a value larger than 1 at line 5” 

• Loop invariant: assertion that holds at the beginning of 
every loop iteration
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Invariant

• Assertions supposed to be always true 

• Starting from a state in the invariant: any computation step also leads to 
another state in the invariant (i.e., fixed point!)


• E.g., “x has an int value during the execution”, “y is larger than 1 at line 5”

7

• Loop invariant: assertion to be true at the beginning of every loop iteration

x = 0; 
while (x < 10) { 
x = x + 1; 

}

Loop invariant 1: “x is an integer”

Loop invariant 2: “0 <= x < 10”



Example: Division-by-zero
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Example: Division-by-Zero

8

1: int main(){ 
2:   int x = input(); 
3:   x = 2 * x - 1; 
4:   while (x > 0) { 
5:     x = x - 2; 
6:   } 
7:   assert(x != 0); 
8:   return 10 / x; 
9: }

// True
// x is an odd number
// x is a positive odd number

// x is an odd number



Proving Safety Properties
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Safety Property
• A program never exhibit a behavior observable within finite time


• “Bad things will never occur”


• If false, then there exists a finite counterexample

6

• Bad things: integer overflow, buffer overrun, deadlock, etc

• To prove: all executions never reach error states
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Figure 9.1
Example of state (hence, also safety) property: absence of errors

of the program with an array that is not sorted can also be described by a set of states the
programmer expects not to observe. Thus, the fact that the program should always produce
a sorted array is a state property, hence a safety property.

As an example, Figure 9.1 describes graphically a generic state property, which expresses
that a set of error states should not be encountered during any program execution. A few
correct executions are shown in Figure 9.1(a), whereas Figure 9.1(b) displays an erroneous
execution. As we can see in Figure 9.1(b), showing that a program does not satisfy this
property boils down to exhibiting at least one finite error trace.

However, not all safety properties are state properties. As an example, let us consider
an array sorting program. The partial correctness of this program can boils down to the
conjunction of two properties: first, the output array should be sorted; second, it should
contain the same elements as the input array. To verify this second property, one should
check that the elements present in the array when an execution reaches the program exit
point are exactly the same as in the initial state of that execution. This preservation property
is naturally expressed as a relation between pairs of states. On the other hand, it cannot
be captured by the data of a set of states: indeed, any given exit state can be observed
at the end of an execution that peserves the set of elements in the array (this execution
should start in a state where the array contains the same set of elements). In other words,
one needs to observe not only the final states but also a part of the executions that lead to
them in order to decide whether the program preserves the elements stored in the array.
Moreover, we also observe that this property fits the definition of safety since a counter-
example is necessarily a finite execution that goes from the entry point to the exit point
(and that modifies the elements present in the array).

Proving safety properties by static analysis. Let us now study the verification of safety
properties using static analysis techniques. In previous chapters (e.g., in Chapter 3 and
Chapter 4), we have discussed static analyses that compute a superset of the set of all the
reachable states. Such analyses are naturally adapted to the verification of state properties:



Liveness Properties

• Some behaviors observable after infinite time will never 
occur

• Examples:

• No unbounded repetition of a given behavior

• No non-termination



Example: proving termination

• If x is initially a negative integer ⇒ the program terminates

• If x is initially a positive integer ⇒ x strictly decreases 

every iteration ⇒ the program terminates

• In this manner, proves a quantity strictly decreases w.r.t. 
some well-founded order

x = read_int ();  
while ( x > 0 ) { 
  x = x - 1;  
}

A minimum element exists



A Hard Limit: Undecidability

• Semantic property: a property defined wrt the set of 
executions of a program 

• Syntactic property can be decided directly based on 
the program text. 

• Nontrivial property: worth the effort of designing a 
program analyzer for (trivial: true/false for all programs)

Theorem (Rice’s theorem). Any nontrivial semantic properties are  
undecidable. 



A Hard Limit: Undecidability

• Answer: No, i.e., we cannot write a function H(p) that returns true 

iff program p terminates. 

• Proof: proof by contradiction. Suppose we have such a function H.  

Consider the following function  
f () = if H(f) then (while true skip) else skip  

Does f() terminate?  

if f()  terminates, it should not terminate.  

if f() is non-terminating, it should terminate (contradiction!)

The Halting Problem: can we have a function H that 
correctly decides if a given program will terminate?



A Hard Limit: Undecidability

• Example:  we cannot have an exact analyzer A for a 
property: “This program always prints 1 and finishes”

• Proof: proof by contradiction. Suppose we have such an 
analyzer.  
Given a program P, generate P’ : “P; print 1” 
A says “Yes”: P halts, A says “No”: P does not halt 
Therefore, we can solve the halting problem 
(contradiction!)



Towards Computability

• More formal version of Rice’s theorem:

• We can give up 

• Automatic: involving manual efforts 

• eventually terminating: possibly nonterminating

• Every: targeting only a restricted class of programs

• If and only if: not always being able to provide an exact answer

Let  be a Turing-complete language, and let P be a nontrivial semantic 
property of program of . There exists no automatic and eventually 
terminating method such that,  
    For every program p in , it returns true if and only if p  
    satisfies the semantic property P. 

<latexit sha1_base64="mjwfTzEUiFDAgL94cMmbRglHmpA=">AAAB8XicbVC7SgNBFL0bXzG+opY2g0GwCrsiahm0sbCIYB6YLGF2MkmGzM4uM3eFsOQvbCwUsfVv7PwbZ5MtNPHAwOGce5lzTxBLYdB1v53Cyura+kZxs7S1vbO7V94/aJoo0Yw3WCQj3Q6o4VIo3kCBkrdjzWkYSN4KxjeZ33ri2ohIPeAk5n5Ih0oMBKNopcduSHEUBOndtFeuuFV3BrJMvJxUIEe9V/7q9iOWhFwhk9SYjufG6KdUo2CST0vdxPCYsjEd8o6liobc+Oks8ZScWKVPBpG2TyGZqb83UhoaMwkDO5klNIteJv7ndRIcXPmpUHGCXLH5R4NEEoxIdj7pC80ZyokllGlhsxI2opoytCWVbAne4snLpHlW9S6q3v15pXad11GEIziGU/DgEmpwC3VoAAMFz/AKb45xXpx352M+WnDynUP4A+fzB7Y5kPI=</latexit>L
<latexit sha1_base64="mjwfTzEUiFDAgL94cMmbRglHmpA=">AAAB8XicbVC7SgNBFL0bXzG+opY2g0GwCrsiahm0sbCIYB6YLGF2MkmGzM4uM3eFsOQvbCwUsfVv7PwbZ5MtNPHAwOGce5lzTxBLYdB1v53Cyura+kZxs7S1vbO7V94/aJoo0Yw3WCQj3Q6o4VIo3kCBkrdjzWkYSN4KxjeZ33ri2ohIPeAk5n5Ih0oMBKNopcduSHEUBOndtFeuuFV3BrJMvJxUIEe9V/7q9iOWhFwhk9SYjufG6KdUo2CST0vdxPCYsjEd8o6liobc+Oks8ZScWKVPBpG2TyGZqb83UhoaMwkDO5klNIteJv7ndRIcXPmpUHGCXLH5R4NEEoxIdj7pC80ZyokllGlhsxI2opoytCWVbAne4snLpHlW9S6q3v15pXad11GEIziGU/DgEmpwC3VoAAMFz/AKb45xXpx352M+WnDynUP4A+fzB7Y5kPI=</latexit>L

<latexit sha1_base64="mjwfTzEUiFDAgL94cMmbRglHmpA=">AAAB8XicbVC7SgNBFL0bXzG+opY2g0GwCrsiahm0sbCIYB6YLGF2MkmGzM4uM3eFsOQvbCwUsfVv7PwbZ5MtNPHAwOGce5lzTxBLYdB1v53Cyura+kZxs7S1vbO7V94/aJoo0Yw3WCQj3Q6o4VIo3kCBkrdjzWkYSN4KxjeZ33ri2ohIPeAk5n5Ih0oMBKNopcduSHEUBOndtFeuuFV3BrJMvJxUIEe9V/7q9iOWhFwhk9SYjufG6KdUo2CST0vdxPCYsjEd8o6liobc+Oks8ZScWKVPBpG2TyGZqb83UhoaMwkDO5klNIteJv7ndRIcXPmpUHGCXLH5R4NEEoxIdj7pC80ZyokllGlhsxI2opoytCWVbAne4snLpHlW9S6q3v15pXad11GEIziGU/DgEmpwC3VoAAMFz/AKb45xXpx352M+WnDynUP4A+fzB7Y5kPI=</latexit>L

Common general-purpose languages (e.g., C)



Approximation: Soundness and Completeness
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For all program p, A(p) = true  � p satisfies

Soundness and Completeness

• Given a semantic property     , and an analysis tool A

18

• If A were perfectly accurate,

For all program p, A(p) = true  ⟺ p satisfies

which consists of 

For all program p, A(p) = true  � p satisfies  (soundness)

(completeness)

P
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Approximation: Soundness and Completeness
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Soundness and Completeness

19
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Figure 1.2
Soundness and completeness with Venn diagrams

limited class of safety properties, where a given condition should never be violated. Faults are
reported during program executions, as assertion failures. If an assertion fails, then it means that at
least one execution will produce a state where the assertion condition is violated.

As in the case of soundness, it is very easy to provide a trivial but useless complete
analysis. Indeed, if analysis always returns true, then it never rejects a program that
satisfies the property of interest; thus, it is complete, though it is of course of no use. To be
useful, a complete analyzer should often reject programs that do not satisfy the property of
interest. Building such useful complete analyses is a difficult task in general (just like it is
also difficult to build useful sound analyses).

Soundness and completeness. Soundness and completeness are two dual properties.
To better show them, we represent answers of sound and complete analyses using Venn
diagrams in Figure 1.2 and following the legend in Figure 1.2(d):

• In Figure 1.2(a), we draw the set of all programs and divide it into two subsets, namely
the programs that satisfy the semantic property P and the programs that do not satisfy
P . A sound and complete analysis would always return true exactly for the programs
that are in the left part of the diagram.

• Figure 1.2(b) depicts the answers of an analysis that is sound but incomplete: we can
see that it rejects all programs that do not satisfy the property but also rejects some that
do satisfy it; whenever it returns true, we have the guarantee that the analyzed program
satisfies P .

• Figure 1.2(c) depicts the answers of an analysis that is complete but unsound: we can
see that it accepts all programs that do satisfy the property but also accepts some that



Spectrum of Program Analysis Techniques

• Testing

• Machine-assisted proving

• Finite-state model checking

• Conservative static analysis

• Bug-finding 



Testing

• Consider finitely many, finite executions

• For each of them, check whether it violates the spec. If 
the finite executions find no bug, then accept. 

• Unsound: can accept programs violating the spec

• Complete: does not reject programs that satisfy the 
spec



Machine-assisted Proving

• Use a specific language to formalize verification goals, manually supply 
proof arguments, and let the proofs be automatically verified 

• Tools: Coq, Isabelle/HOL, PVS, … 

• Applications:  
CompCert (certified compiler),  
seL4 (secure micro-kernel), … 

• Not automatic: key proof arguments provided by users

• Sound: if the formalization is correct

• Quasi-complete: (only limited by the expressiveness of the logics)
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Assisted Proving

• Machine-assisted proof techniques


• Relying on user-provide invariants


• Using proof assistants (e.g., Coq, Isabelle/HOL)

21

• Example: CompCert (verified C compiler), seL4 (verified microkernel)

• Sound and complete (up to the ability of the proof assistant) 

• require manual effort / expertise



Finite-State Model Checking

• Focus on finite state models of programs

• Perform exhaustive exploration of program states 

• Automatic, sound & complete (only wrt the 
fi nite models)

• May not terminate: SW has infi nitely many states: 
the models need approximation or non-termination. 



Conservative Static Analysis

• Perform automatic verification, yet which may fail

• Compute a conservative approximation of the program 
semantics

• Automatic & Sound: accepted programs are safe 

• Incomplete: may reject safe programs (false alarms)

• Analysis algorithms reason over program semantics

• Examples: Astree, Sparrow, Facebook Infer, … 



Bug Finding

• Commercial tools: Coverity, CodeSonar, …

• Automatic and fast 

• Unsound: may accept an incorrect program 

• Incomplete: may reject a correct program

• Used to increase SW quality without any guarantee 



Comparison

Introduction

High-level Comparison

automatic sound complete
testing yes no yes
machine-assisted proving no yes yes/no
finite-state model checking yes yes/no yes/no
conservative static analysis yes yes no
bug-finding yes no no
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Focus of This Course: Conservative Static Analysis
Introduction

Focus of This Lecture: Conservative Static Analysis

A general technique, for any programming language L and safety property
S, that

checks, for input program P in L, if JP K ✓ S,
automatic (software)
finite (terminating)
sound (guarantee)
malleable for arbitrary precision

A forthcoming framework
Will guide us how to design such static analysis.
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