A Gentle Introduction to
Static Analysis (1)

Woosuk Lee

CSE 6049 Program Analysis

UN/y
£
£)

9928 Hanyang University, Korea

N 1939

< l

<>

Comparison between Computing and Other Engineering

Computing Area Other Engineering Areas

Machine/building/circuit/chemical

Software ,
process design
Execution subject Computer runs it Nature runs it
Our question Will it work as intended? Will it work as intended?
Newtonian mechanics, Maxwell
Our knowledge Program analysis equiations, NavierESIoKes

equations, thermodynamic
equations, and other principles

The Common Goal

Computing Area Other Engineering Areas

Machine/building/circuit/chemical

Software ,
process design

Execution subject Computer runs it Nature runs it

Will it work as intended?

Our question Will it work as intended?

Newtonian mechanics, Maxwell
equations, Navier-stokes
equations, thermodynamic
equations, and other principles

Our knowledge Program analysis

Our Interest

e How to verify specific properties about program
executions before execution:

® absence of run-time errors i.e., no crashes

® preservation of invariants

Verification
Make sure that [P] C S where

@ the semantics |P| = the set of all behaviors of P

@ the specification & = the set of acceptable behaviors

Semantics and Semantic Properties

Semantics | P]:
@ compositional style (“denotational”)

» [AB] =---[A]---[B] -
@ transitional style (“operational”)
> [[AB]] :{30%81 SR ’}

Semantic properties S:

@ safety
» some behavior observable in finite time will never occur.

@ liveness
» some behavior observable after infinite time will never occur.

Safety Properties

e Some behaviors observable in finite time will never
occur.

e Examples:

® No crashing error — e.g., no divide by zero, no
uncaught exceptions, etc

e No invariant violation

Invariant?

e Assertions supposed to be always true
® e.g., X has a value larger than | at line 5”

® |Loop invariant: assertion that holds at the beginning of
every loop iteration

X = 0; _ | | | ”
while (x < 10) { Loop invariant 1: “x is an integer
X =X + 1;

}

Loop invariant 2: “0 <=x < 10”

Example: Division-by-zero

OCoOONOULERL,WN K-

int main(){
int x = input(); // True
X =2 % X — 1; // x is an odd number
while (x >20) 1 // x is a positive odd number
X = X — 23
} // x is an odd number
assert(x '= 0);

return 10 / Xx;

)

Proving Safety Properties

states

>

o
fime

(a) Correct executions

states

—>
fime

(b) An incorrect execution

states

Invariant

—>
fime

(¢c) Proof by invariance

Liveness Properties

e Some behaviors observable after infinite time will never
occur

e Examples:

* No unbounded repetition of a given behavior

¢ No non-termination

Example: proving termination

x = read int ();

while (x > 0) {
X = x - 1;

}

o |f x is initially a negative integer = the program terminates

e |f x is initially a positive integer = x strictly decreases

every iteration = the program terminates

® |n this manner, proves a quantity strictly decreases w.r.t.

some well-founded order == N -
§ A minimum element exists §

A Hard Limit: Undecidability

Theorem (Rice’s theorem). Any nontrivial semantic properties are
undecidable.

® Semantic property: a property defined wrt the set of
executions of a program

® Syntactic property can be decided directly based on
the program text.

e Nontrivial property: worth the effort of designing a
program analyzer for (trivial: true/false for all programs)

A Hard Limit: Undecidability

The Halting Problem: can we have a function H that
correctly decides if a given program will terminate?

e Answer: Npo, i.e., we cannot write a function H (p) that returns true

iff program p terminates.

e Proof. proof by contradiction. Suppose we have such a function H.

Consider the following function

f () = 1f H(f) then (while true skip) else skip
Does f () terminate!?

if £ () terminates, it should not terminate.

if £ () isnon-terminating, it should terminate (contradiction!)

A Hard Limit: Undecidability

e Example: we cannot have an exact analyzer A for a
property:“This program always prints | and finishes”

® Proof: proof by contradiction. Suppose we have such an
analyzer.
Given a program P, generate P’ : “P; print |”
A says “Yes”: P halts, A says “No”: P does not halt
Therefore, we can solve the halting problem
(contradiction!)

Towards Computability

e More formal version of Rice’s theorem 7 Common ge“era' purpose 'anguages (e g- C) !

Let Il be a Turing-complete Ianguage and Iet P be a nontrlwal semantic
property of program of IL.There exists no automatic and eventually
terminating method such that,

For every program p in L, it returns true if and only if p

satisfies the semantic property P.

® Ve can give up
e Automatic: involving manual efforts
e cventually terminating: possibly nonterminating
® Every:targeting only a restricted class of programs

® |f and only if: not always being able to provide an exact answer

Approximation: Soundness and Completeness

e Given a semantic property &, and an analysis tool A

 |f A were perfectly accurate,

For all program p, A(p) = true < p satisfies &

which consists of

For all program p, A(p) = true = p satisfies & (soundness)

For all program p, A(p) = true < p satisfies & (completeness)

Approximation: Soundness and Completeness

()

programs 1 programs
programs programs -+ satisfying &2 .. not satisfying &2
satisfying & not satistying & S D
S5 rue B false HIIIHED
§) GEEEEEEI R

(a) Programs (b) Sound, incomplete analysis

programs programs programs that satisfy P

satisfying &7 ::if not satisfying &

programs that do not satisfy &

programs for which the analysis returns true

:::i:0:) programs for which the analysis returns false

(¢) Unsound, complete analysis (d) Legend

Spectrum of Program Analysis Techniques

Testing

Machine-assisted proving
Finite-state model checking
Conservative static analysis

Bug-finding

Testing

Consider finitely many, finite executions

For each of them, check whether it violates the spec. If
the finite executions find no bug, then accept.

Unsound: can accept programs violating the spec

Complete: does not reject programs that satisfy the
spec

Machine-assisted Proving

Use a specific language to formalize verification goals, manually supply
proof arguments, and let the proofs be automatically verified

ile Edit

= X e
. 2 subgoals

Ellntlro.v|OExamples.v| © nat

rewrite IHn. Ll [IHn : forall m : nat, {n = m} + {n <> m}

[ools: Coq, Isabelle/HOL, PVS
Qed. Hm : n=m
° q’ 9 9 o oo (1/2)

emma nat_eq_dec : forall (n m : nat), {n = m} + Sm=Sm

indu

destruct m as [|m]
left. (2/2)
reflexivity. {Sn=Sm}+ {Sn<>Sm}

right

discriminate.

° ° destruct m as [[m].
° right; discriminate.
A I Icatl O n S destruct (IHn m) as [Hm|Hm].
s left.

ewrite Hm.|

reflexivity

ight. e e

CompCert (certified compiler), |

tttttt

o Eval compute in (nat_eq_dec 2 2).
seL4 (secure micro-kerne B R R
’ e o o
Definition pred (n:nat) : option nat
ch n with
| @ => None =l
il | 2l
IRea edicat

Not automatic: key proof arguments provided by users
Sound: if the formalization is correct

Quasi-complete: (only limited by the expressiveness of the logics)

Finite-State Model Checking

® Focus on finite state models of programs
® Perform exhaustive exploration of program states

e Automatic, sound & complete (only wrt the
fi nite models)

® May not terminate: SVWV has infinitely many states:
the models need approximation or non-termination.

Conservative Static Analysis

Perform automatic verification, yet which may fail

Compute a conservative approximation of the program
semantics

Automatic & Sound: accepted programs are safe
Incomplete: may reject safe programs (false alarms)
Analysis algorithms reason over program semantics

Examples: Astree, Sparrow, Facebook Infer; ...

Bug Finding

Commercial tools: Coverity, CodeSonar, ...
Automatic and fast

Unsound: may accept an incorrect program
Incomplete: may reject a correct program

Used to increase SWV quality without any guarantee

Comparison

automatic | sound | complete
testing yes no yes
machine-assisted proving no yes yes/no
finite-state model checking yes yes/no | yes/no
conservative static analysis yes yes no
bug-finding yes no no

Focus of This Course: Conservative Static Analysis

A general technique, for any programming language I and safety property

S, that
e checks, for input program P in L, if [P] C S,
@ automatic (software)
o finite (terminating)
e sound (guarantee)
o

malleable for arbitrary precision

