Specialized Static Analysis Framework: Type Inference

Woosuk Lee

CSE 6049 Program Analysis

Hanyang University, Korea

Some slides are borrowed from http://rightingcode.org/slides/7.pdf

Goal of This Lecture

- Learn practical alternatives to the aforementioned general, abstract interpretation framework
- For simple languages and properties, there are frameworks that are simple yet powerful enough
- But with several limitations

Static Analysis by Proof Construction

- Static analysis = proof construction in a finite proof system
- Finite proof system = a finite set of inference rules for a predefined set of judgements
- The soundness corresponds to the soundness of the proof system
 - The input program is provable => the program satisfies the proven judgement.

Example: Type Inference

• A simple ML-like language

Types

Types are defined inductively:

$$egin{array}{cccc} T &
ightarrow & {
m int} \ & | & {
m bool} \ & | & T
ightarrow T \end{array}$$

Examples:

- int
- bool
- int \rightarrow int
- $\bullet \ \mathsf{bool} \to \mathsf{int}$
- int \rightarrow (int \rightarrow bool)
- (int \rightarrow int) \rightarrow (bool \rightarrow bool)
- (int \rightarrow int) \rightarrow (bool \rightarrow (bool \rightarrow int))

• Judgement that says expression E has type t is written as

$\Gamma \vdash e:t$

Γ is a set of type assumptions for the free variables in E (called type environment)

$$\Gamma: Var \to T$$

- $[] \vdash 3:$ int
- $\bullet \ [x \mapsto \mathsf{int}] \vdash x : \mathsf{int}$
- $[] \vdash 4 3:$
- $[x\mapsto {\sf int}]\vdash x-3:$
- [] \vdash iszero 11 :
- [] \vdash proc (x) (x 11) :
- [] \vdash proc (x) (let y = x 11 in (x y)):
- $[] \vdash \texttt{proc}(x) \ (\texttt{if} \ x \ \texttt{then} \ 11 \ \texttt{else} \ 22)$:
- $[] \vdash \texttt{proc}\ (x)\ (\texttt{proc}\ (y)\ \texttt{if}\ y\ \texttt{then}\ x\ \texttt{else}\ 11)$:
- $[] \vdash \texttt{proc}\ (f)\ (\texttt{if}\ (f\ 3)\ \texttt{then}\ 11\ \texttt{else}\ 22)$:
- $[] \vdash (proc (x) x) 1$:
- $[f \mapsto int \rightarrow int] \vdash (f \ (f \ 1))$:

Type System

Inductive rules for assigning types to expressions:

We say that a closed expression E has type t iff we can derive $[] \vdash E : t$.

Program proc (x) (x - 11) is typed int \rightarrow int because we can prove $[] \vdash \text{proc } (x)$ (x - 11) : int \rightarrow int as follows:

$[] \vdash \operatorname{proc} (x) (x - 11) : \operatorname{int} \rightarrow \operatorname{int}$

Soundness of Type System

Theorem (Soundness of the proof rules)

Let E be a program, an expression without free variables. If $\emptyset \vdash E : \tau$, then the program runs without a type error and returns a value of type τ if it terminates.

Automatic Type Inference

- A static analysis algorithm that automatically figures out types of expressions by observing how they are used.
- The algorithm is *sound and complete* with respect to the type system design.
 - (Sound) If the analysis finds a type for an expression, the expression is well-typed with the type according to the type system.
 - (Complete) If an expression has a type according to the type system, the analysis is guaranteed to find the type.
- The algorithm consists of two steps:
 - Generate type equations from the program text.
 - Solve the equations.

Generating Type Equations

For every subexpression and variable, introduce type variables and derive equations between the type variables.

Type Equations

• Type equations are conjunctions of "type equalities": e.g.,

$$egin{array}{rcl} t_0&=&t_f
ightarrow t_1\ t_1&=&t_x
ightarrow t_4\ t_3&=& ext{int}\ t_4&=& ext{int}\ t_4&=& ext{int}\ t_2&=& ext{int}\ t_f&=& ext{int}
ightarrow t_3\ t_f&=&t_x
ightarrow t_4 \end{array}$$

• Type equations (TyEqn) are defined inductively:

$$egin{array}{rll} TyEqn &
ightarrow & \emptyset \ & \mid & T\doteq T \ \wedge & TyEqn \end{array}$$

$$egin{array}{rcl} t_0&=&t_f
ightarrow t_1\ t_1&=&t_x
ightarrow t_4\ t_3&=& ext{int}\ t_4&=& ext{int}\ t_4&=& ext{int}\ t_2&=& ext{int}\ t_f&=& ext{int}
ightarrow t_3\ t_f&=&t_x
ightarrow t_4 \end{array}$$

Generating Type Equations

• Algorithm for generating equations:

$$\mathcal{V}: (Var \rightarrow T) \times E \times T \rightarrow TyEqn$$

• $\mathcal{V}(\Gamma, e, t)$ generates the condition for e to have type t in Γ :

 $\Gamma \vdash e: t ext{ iff } \mathcal{V}(\Gamma, e, t) ext{ is satisfied.}$

• Examples:

- $\mathcal{V}([x \mapsto \text{int}], x+1, \alpha) = \alpha \doteq \text{int}$
- $\mathcal{V}(\emptyset, \operatorname{proc}(x) \text{ (if } x \text{ then } 1 \text{ else } 2), \alpha \to \beta) = \alpha \doteq \operatorname{bool} \wedge \beta \doteq \operatorname{int}$
- To derive type equations for closed expression E, we call $\mathcal{V}(\emptyset, E, \alpha)$, where α is a fresh type variable.

Generating Type Equations

$$\begin{array}{ll} \mathcal{V}(\emptyset, (\operatorname{proc}\ (x)\ (x))\ 1, \alpha) \\ = \mathcal{V}(\emptyset, \operatorname{proc}\ (x)\ (x), \alpha_1 \to \alpha) \land \mathcal{V}(\emptyset, 1, \alpha_1) & \text{new } \alpha_1 \\ = \alpha_1 \to \alpha \doteq \alpha_2 \to \alpha_3 \land \mathcal{V}([x \mapsto \alpha_2], x, \alpha_3) \land \alpha_1 \doteq \text{int} & \text{new } \alpha_2, \alpha_3 \\ = \alpha_1 \to \alpha \doteq \alpha_2 \to \alpha_3 \land \alpha_2 \doteq \alpha_3 \land \alpha_1 \doteq \text{int} \end{array}$$

Find the values of type variables that make all the equations true.

		Equations			Solution
t_0	=	$t_f ightarrow t_1$	t_0	=	$(int \rightarrow int) \rightarrow (int \rightarrow int)$
t_1	=	$t_x ightarrow t_2$	$\mid t_1$	=	int \rightarrow int
t_{3}	=	int	t_2	=	int
t_4	=	int	t_3	=	int
t_2	=	int	t_4	=	int
t_{f}	=	int $ ightarrow t_3$	$ t_{f} $	=	int \rightarrow int
t_{f}	=	$t_x ightarrow t_4$	$\mid t_x \mid$	=	int

Static type systems find such a solution using *unification algorithm*.

The calculation is split into equations to be solved and substitution found so far. Initially, the substitution is empty:

		Equations	Substitution
t_0	=	$t_f ightarrow t_1$	
t_1	=	$t_x ightarrow t_2$	
t_3	=	int	
t_4	=	int	
t_2	=	int	
t_{f}	=	$int \to t_3$	
t_{f}	=	$t_x ightarrow t_4$	

Consider each equation in turn. If the equation's left-hand side is a variable, move it to the substitution:

		Equations		Subs	titution
t_1		$t_x ightarrow t_2$	t_0	—	$t_f ightarrow t_1$
t_3	=	int			
t_4	=	int			
t_2	=	int			
t_{f}	=	int $ ightarrow t_3$			
t_{f}	=	$t_x ightarrow t_4$			

Move the next equation to the substitution and propagate the information to the existing substitution (i.e., substitute the right-hand side for each occurrence of t_1):

		Equations			Substitution
t_3	=	int	t_0	=	$t_f ightarrow (t_x ightarrow t_2)$
t_4	=	int	t_1	=	$t_x ightarrow t_2$
t_2	=	int			
t_{f}	=	$int \to t_3$			
t_{f}	=	$t_x ightarrow t_4$			

Same for the next three equations:

		Equations			Substitution
t_4	=	int	t_0	=	$t_f ightarrow (t_x ightarrow t_2)$
t_2	=	int	$ t_1 $	=	$t_x ightarrow t_2$
t_{f}	=	int $ ightarrow t_{3}$	t_3	=	int
t_{f}	=	$t_x ightarrow t_4$			
		Equations		(Substitution
t_2	=	int	t_0	=	$t_f ightarrow (t_x ightarrow t_2)$
t_{f}	=	int $ ightarrow t_3$	t_1	=	$t_x ightarrow t_2$
t_{f}	=	$t_x ightarrow t_4$	t_3	=	int
			$ t_4 $	=	int
		Equations		(Substitution
t_{f}		int $ ightarrow t_3$	t_0	=	$t_f ightarrow (t_x ightarrow { m int})$
t_{f}	=	$t_x ightarrow t_4$	$ t_1 $	=	$t_x ightarrow$ int
			$\mid t_{3}$	=	int
			t_4	=	int
			$\mid t_2$	=	int

Consider the next equation $t_f = \text{int} \rightarrow t_3$. The equation contains t_3 , which is already bound to int in the substitution. Substitute int for t_3 in the equation. This is called *applying* the substitution to the equation.

		Equations			Substitution
t_{f}	—	int \rightarrow int	t_0	=	$t_f ightarrow (t_x ightarrow { m int})$
t_{f}	=	$t_x ightarrow t_4$	t_1	=	$t_{oldsymbol{x}} ightarrow$ int
			t_3	=	int
			t_4	=	int
			t_2	=	int

Move the resulting equation to the substitution and update it.

Equations			Substitution
$t_f = t_x o t_4$	t_0	=	$(int o int) o (t_x o int)$
	t_1	=	$t_{m{x}} ightarrow { m int}$
	t_3	=	int
	t_4	=	int
	t_2	=	int
	$\mid t_{f}$	=	int \rightarrow int

Apply the substitution to the equation:

	Eq	uations				Substitution
int \rightarrow int	=	$t_x ightarrow$ int	$ t_0$		—	$(int o int) o (t_x o int)$
			$\mid t_1$:	=	$t_{oldsymbol{x}} ightarrow int$
			$ t_3$		=	int
			$\mid t_4$		=	int
			$ t_2$:	=	int
			$\mid t_{f}$:	=	int \rightarrow int

If neither side of the equation is a variable, simplify the equation by yielding two new equations:

	Eq	uations			Substitution
int	=	t_x	t_0	=	$(int o int) o (t_x o int)$
int	=	int	$\mid t_1$	=	$t_x ightarrow$ int
			t_3	=	int
			t_4	=	int
			t_2	=	int
			$ t_f $	=	int \rightarrow int

Switch the sides of the first equation and move it to the substitution:

Equations		Substitution
int = int	$t_0 =$	$(int \rightarrow int) \rightarrow (int \rightarrow int)$
	$\mid t_1 \mid =$	int \rightarrow int
	$t_3 =$	int
	$\mid t_4 \mid =$	int
	$t_2 =$	int
	$ t_f =$	int \rightarrow int
	$ t_x =$	int

The final substitution is the solution of the original equations.

Solving as usual, we encounter a problem:

Equations	Substitution
$t_f = t_f ightarrow ext{int}$	$t_0 = t_f ightarrow$ bool
	t_1 = bool
	t_2 = int

- There is no type t_f that satisfies the equation, because the right-hand side of the equation is always larger than the left.
- If we ever deduce an equation of the form $t = \dots t \dots$ where the type variable t occurs in the right-hand side, we must conclude that there is no solution. This is called *occurrence check*.

Unification Algorithm

For each equation in turn,

- Apply the current substitution to the equation.
- If the equation is always true (e.g. int = int), discard it.
- If the left- and right-hand sides are contradictory (e.g. bool = int), the algorithm fails.
- If neither side is a variable (e.g. int $\rightarrow t_1 = t_2 \rightarrow$ bool), simplify the equation, which eventually generates an equation whose left- or right-hand side is a variable.
- If the left-hand side is not a variable, switch the sides.
- If the left-hand side variable occurs in the right-hand side, the algorithm fails.
- Otherwise, move it to the substitution and substitute the right-hand side for each occurrence of the variable in the substitution.

Substitutions

Solutions of type equations are represented by substitution:

$$S \in Subst = TyVar \rightarrow T$$

Applying a substitution to a type:

$$egin{array}{rll} S({
m int})&=&{
m int}\ S({
m bool})&=&{
m bool}\ S(lpha)&=&iggl\{ egin{array}{rll} t&{
m if}\ lpha\mapsto t\in S\ lpha&{
m otherwise}\ S(T_1 o T_2)&=&S(T_1) o S(T_2) \end{array}$$

Applying the substitution

$$S = \{t_1 \mapsto \mathsf{int}, t_2 \mapsto \mathsf{int} o \mathsf{int}\}$$

to to the type $(t_1 \rightarrow t_2) \rightarrow (t_3 \rightarrow int)$:

$$S((t_1 \to t_2) \to (t_3 \to \text{int}))$$

= $S(t_1 \to t_2) \to S(t_3 \to \text{int})$
= $(S(t_1) \to S(t_2)) \to (S(t_3) \to S(\text{int}))$
= $(\text{int} \to (\text{int} \to \text{int})) \to (t_3 \to \text{int})$

Unification Algorithm

Update the current substitution with equality $t_1 \doteq t_2$.

unify : $T \times T \times Subst \rightarrow Subst$

$$\begin{array}{rcl} {\rm unify}({\rm int,\,int,\,S}) &=& S\\ {\rm unify}({\rm bool,\,bool,\,S}) &=& S\\ {\rm unify}(\alpha,\alpha,S) &=& S\\ {\rm unify}(\alpha,t,S) &=& \left\{ \begin{array}{ll} {\rm fail} & \alpha \ {\rm occurs\,\,in}\ t\\ {\rm extend}\ S \ {\rm with}\ \alpha \doteq t \ {\rm otherwise} \\ {\rm unify}(t,\alpha,S) &=& {\rm unify}(\alpha,t,S)\\ {\rm unify}(t_1 \rightarrow t_2,t_1' \rightarrow t_2',S) &=& {\rm let}\ S' = {\rm unify}(t_1,t_1',S) \ {\rm in} \\ {\rm let}\ S'' = {\rm unify}(S'(t_2),S'(t_2'),S') \ {\rm in} \\ S''' \\ {\rm unify}(_{-,-,-}) &=& {\rm fail} \end{array} \right.$$

Unification Algorithm

$$\begin{array}{rl} \text{unifyall}: \ TyEqn \rightarrow Subst \rightarrow Subst \\ & \text{unifyall}(\emptyset,S) &= S \\ \text{unifyall}((t_1 \doteq t_2) \ \land \ u,S) &= \ \text{let} \ S' = \text{unify}(S(t_1),S(t_2),S) \\ & \text{in unifyall}(u,S') \end{array}$$

Let \mathcal{U} be the final unification algorithm:

 $\mathcal{U}(u) = \mathsf{unifyall}(u, \emptyset)$

Automatic Type Inference

$\mathsf{typeof}: E \to T$

The final type inference algorithm that composes equation derivation (\mathcal{V}) and equation solving (\mathcal{U}) :

$$egin{aligned} \mathsf{typeof}(E) = \ \mathsf{let}\ S = \mathcal{U}(\mathcal{V}(\emptyset, E, lpha)) & (\mathsf{new}\ lpha) \ \mathsf{in}\ S(lpha) \end{aligned}$$

typeof((proc (x) x) 1)

Correctness of Automatic Type Inference

Theorem (Correctness of the algorithm)

Solving the equations \equiv proving in the simple type system

Limitations

- For target languages that lack a sound static type system, we have to invent it.
 - Design a finite proof system
 - Prove the soundness of the proof system
 - Design its algorithm that automates proving
 - Prove the correctness of the algorithm
- What if the unification procedure is not enough?
 - For some properties, the algorithm can generate constraints that are unsolvable by the unification procedure
- For some conventional imperative language, sound and precise-enough static type systems are elusive.