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Goal of This Lecture

• Learn practical alternatives to the aforementioned 
general, abstract interpretation framework

• For simple languages and properties, there are 
frameworks that are simple yet powerful enough

• But with several limitations



Static Analysis by Monotonic ClosureSpecialized Frameworks

Static Analysis by Monotonic Closure (1/2)

Static analysis = setting up initial facts then collecting new facts by a
kind of chain reaction

I has rules for collecting initial facts

I has rules for generating new facts from existing facts

the initial facts immediate from the program text
the chain reaction steps simulate the program semantics
the universe of facts are finite for each program
analysis accumulates facts until no more possible
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Representative Example: Pointer Analysis
Motivating Example

Reasoning about any real programs needs pointer reasoning: e.g.,

x = 1;

y = 2;

*p = 3;

*q = 4;

What is the value of x + y after the last statement?

p = &x and q = &y:

p = &x and q 6= &y:

p 6= &x and q = &y:

p 6= &x and q 6= &y:
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Pointer Analysis

• Static program analysis that computes the set of memory 
locations (objects) that a pointer variable may point to at 
runtime.

• One of the most important static analyses: all interesting 
questions on program reasoning eventually need pointer 
analysis.

• E.g., control-flows, data-flows, types, information-flows, etc



Example: (Flow-insensitive) Pointer Analysis
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10.2.1 Pointer Analysis
Let us consider the following simple C-like imperative language. A program is a collection
of assignments.

P ::= C program
C ::= statement

| L := R assignment
| C ; C sequence
| B C while-loop

L ::= x | *x target to assign to
R ::= n | x | *x | &x value to assign
B Boolean expression

The left- or right-hand side of an assignment may be a variable(x), the dereference (*x)
of a variable, or the location (&x) of a variable. Let the semantics of these reference and
dereference constructs be the same as in the C language. A variable may store an integer
or the location of a variable.

Target Property Suppose that we are interested in the set of locations that each pointer
variable may store during program execution. Computing such a set is reduced to collecting
all possible “points-to” facts between two variables: which variable can store the location
of which variable. We hence represent each points-to fact by a pair of two variables: a! b

denotes that variable a can point to (can have the address of) variable b. The set of such
points-to facts is finite for each program because a program has a finite number of variables.

Rules The analysis globally collects the set of possible points-to facts that can happen
during the program execution. We start from an initially empty set. We apply the following
rules to add new facts to the global set. This collection (hence the analysis) terminates
when no more addition is possible. The rule has the form

C i1 · · · ik
j

and dictates that, if the program text has component C, and the current solution set has
i1 · · · ik, then add j to the solution set [58]. The i1 · · · ik part can be omitted.

The initial facts that are obvious from the program text are collected by this rule:
x := &y

x ! y

That is, for each assignment statement of the form x := &y, add the fact that x points to y.
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Specialized Frameworks

Example: Pointer Analysis (1/3)

P ::= C program
C ::= statement

| L := R assignment
| C ; C sequence
| while B C while-loop

L ::= x | *x target to assign to
R ::= n | x | *x | &x value to assign
B Boolean expression

Goal: estimate all “points-to” relations between variables that can
occur during executions
a ! b: variable a can point to (can have the address of) variable b
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Rules

• The analysis globally collects the set of possible points-
to facts that can happen during the program execution.

• Starting from the empty set, we apply rules of the 
following form to add new facts to the global set.  
 

                                

• This collection terminates when no more addition is 
possible. 
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C i1 · · · ik
j

and dictates that, if the program text has component C, and the current solution set has
i1 · · · ik, then add j to the solution set [58]. The i1 · · · ik part can be omitted.

The initial facts that are obvious from the program text are collected by this rule:
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That is, for each assignment statement of the form x := &y, add the fact that x points to y.

If program text has 
component C

and the current solution set 
has i1 … ik,

Then, add j to the 
solution set



Rules for Pointer Analysis
Specialized Frameworks

Example: Pointer Analysis (2/3)

The initial facts that are obvious from the program text are collected by
this rule:

x := &y
x ! y

The chain-reaction rules are as follows for other cases of assignments:

x := y y ! z
x ! z

x := *y y ! z z ! w
x ! w

*x := y x ! w y ! z
w ! z

*x := *y x ! w y ! z z ! v
w ! v

*x := &y x ! w
w ! y
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Rules for Pointer Analysis
Specialized Frameworks
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*x := &y — Syntactic sugar:  
Can be transformed to  

t := &y; *x := t for a new temp var t 

*x := *y — Syntactic sugar:  
Can be transformed to  

t := *y; *x := t for a new temp var t 



Example
Specialized Frameworks

Example: Pointer Analysis (3/3)

Example (Pointer analysis steps)

x := &a ; y := &x ;
while B

*y := &b ;
*x := *y

Initial facts are from the first two assignments:

x ! a, y ! x

From y ! x and the while-loop body, add

x ! b

From the last assignment:
I from x ! a and y ! x, add a ! a
I from x ! b and y ! x, add b ! b
I from x ! a, y ! x, and x ! b, add a ! b
I froom x ! b, y ! x, and x ! a, add b ! a
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General Algorithm
Specialized Frameworks

Static Analysis by Monotonic Closure (2/2)

let R be the set of the chain-reaction rules
let X0 be the initial fact set
let Facts be the set of all possible facts

Then, the analysis result is [

i�0

Yi,

where
Y0 = X0,

Yi+1 = Y such that Yi `R Y.

Or, equivalently, the analysis result is the least fixpoint
[

i�0

�i(;)

of monotonic function � : }(Facts) ! }(Facts) :

�(X) = X0 [ (Y such that X `R Y ).
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Static Analysis by Monotonic Closure as Datalog

• We can express the rules in Datalog.

• Datalog: a declarative logic programming language

• Not Turing-complete: Subset of Prolog, or SQL with 
recursion => efficient algorithms to evaluate Datalog 
programs 

• Originated as query language for databases 

• Later applied in many other domains: program analysis, 
data mining, network, security, … 



Benefits of Using Datalog

• Separates analysis design from implementation

• Analysis designer can focus on “what” rather than 
“how”

• By leveraging powerful, off-the-shelf solver engines

• many implementations: Souffle, Bddbddb, Paddle, 
Logicblox, … 



Syntax of DatalogSyntax of Datalog

A Datalog program is a sequence of constraints:

P ::= c̄

A constraint consists of a head of a literal and a body of a list of
literals:

c ::= l :- l̄

A constraint represents a horn clause (a disjunction of literals with at
most one positive, unnegated, literal):

l _ ¬l1 _ ¬l2 _ · · · _ ¬ln () l l1 ^ l2 ^ · · · ^ ln

A literal is a relation with arguments:

l ::= r(ā)

where an argument is either a variable or constant.
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Syntax of Datalog: Example

We* will* now* present* the* syntax* of* Datalog* by* means* of* an* example* program* that* computes*
reachability*in*a*directed*graph.*
*
The*problem*of*graph*reachability*is*to*determine*all*pairs*of*nodes*in*a*graph*that*are*connected*by*a*
path.*
*
To*express*this*problem*as*a*program*in*Datalog,*we*need*to*define*three*things:*
*
H  the*form*of*the*input*to*the*Datalog*program,*
H  the*form*of*the*output*of*the*Datalog*program,*and*
H  the*rules*of*inference*comprising*the*Datalog*program*that*compute*the*output*from*the*input.*
*

10*



Syntax of Datalog: Example

A* Datalog* program’s* inputs* and* outputs* are* defined* in* terms* of* relaBons,* which* are* declaraBve*
statements*that*some*number*of*objects*are*related*in*some*way.*
*
A*relaBon*is*similar*to*a*table*in*a*relaBonal*database,*and*a*tuple*in*a*relaBon*is*similar*to*a*row*in*the*
table:*it*asserts*that*the*relaBon*holds*among*some*number*of*objects.*
*
*

11*



Syntax of Datalog: Example

For*the*graphHreachability*problem,*the*input*is*a*single*binary*relaBon*called*edge(n:N,*m:N),*where*n*
and*m*are*variables*of*type*Node,*denoted*by*N,*the*set*of*all*nodes.**This*relaBon*encodes*the*edges*
in*the*input*graph.**For*example,*for*the*graph*shown*here,*the*edge*relaBon*contains*tuples*(0,1)*and*
(2,3),*but*not*tuples*(3,4),*(0,3),*or*(2,0).*
*
The*four*tuples*(0,1),*(0,2),*(2,3),*and*(2,4)*are*sufficient*to*establish*the*enBre*structure*of*the*graph.*
*
The*output*of*this*Datalog*program*is*a*single*binary*relaBon*called*path(n:N,*m:N),*which* is* true* iff*
there*is*a*directed*path*in*the*graph*from*n*to*m.* *So,*for*the*graph*shown,*the*path*relaBon*should*
contain*tuples*(0,4)*and*(0,3),*but*not*tuples*(3,0)*or*(1,4).*
*
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Syntax of Datalog: Example

In*order*for*the*Datalog*program*to*compute*the*output*relaBons*from*the* input*relaBons,*we*must*
provide* rules* of* inference.* * These* are* deducBve* rules* that* hold* universally.* They* specify* logical* “ifH
then”*statements.*
*

13*



Syntax of Datalog: Example

The*rules*of*inference*that*we*will*define*for*this*problem*are*(in*English):*
*
First:*There*is*always*a*path*from*each*node*x*to*itself,*which*in*Datalog*syntax*takes*the*form*
*
path(x,*x).*
*
Second:*If*there*is*a*path*from*node*x*to*node*z*and*an*edge*from*node*z*to*node*y,*then*there*is*a*
path*from*node*x*to*node*y.**In*Datalog*syntax,*this*rule*takes*the*form*
*
path(x,*z)*:H*path(x,*y),*edge(y,*z).*
*
The* rules* of* inference* are* wriken* in* the* opposite* order* that* they* are* typically* wriken* in:* the*
hypothesis*of*an*implicaBon*is*wriken*on*the*rightHhand*side,*and*the*conclusion*is*wriken*on*the*le3H
hand*side.* *RelaBons*separated*by*a*comma*are*ANDed*together.* *The*first*inference*rule,*because*it*
has*no*hypotheses,*acts*as*an*axiomaBc*statement.**Finally,*a*period*is*used*to*end*each*inference*rule.*
*
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Syntax of Datalog: Example

Now*that*you’re*familiar*with*the*syntax*of*Datalog*programs,*I*will*illustrate*the*semanBcs*of*Datalog*
programs,* using* the* graphHreachability* example.* Conceptually,* we* start* out* with* the* empty* path*
relaBon,*and*apply*each*of*these*two*rules,*growing*the*path*relaBon*with*each*applicaBon.* *We*stop*
when*the*path*relaBon*stops*growing.*
*
A*slight*variant*of*this*algorithm*is*depicted*here*[point*to*box].**It*starts*out*by*applying*the*first*rule,*
which*involves*adding*to*the*path*relaBon*each*tuple*(x,*x)*for*each*node*x*in*the*graph,*capturing*the*
intent* of* this* rule* that* there* exists* a* path* from*each* node* to* itself.* * It* then* repeatedly* applies* the*
second*rule,*which*involves*adding*to*the*path*relaBon*each*tuple*(x,*z)*whenever*there*exists*a*node*y*
such*that*tuple*(x,*y)*exists*in*the*current*path*relaBon*and*tuple*(y,*z)*exists*in*the*input*edge*relaBon.**
This*captures*the*intent*of*the*second*rule,*that*there*exists*a*path*from*node*x*to*node*z*if*there*exists*
a*path*from*node*x*to*some*node*y,*and*there*exists*an*edge*from*that*node*y*to*node*z.*
*
This* naive* algorithm* is* essenBally* the* chaoBc* iteraBon* algorithm* used* for* dataflow* analyses* and*
pointer*analysis.* In*pracBce,*Datalog* solvers*have*much*more*efficient*algorithms* for* compuBng* the*
output*relaBons*from*the*input*relaBons*and*inference*rules.*The*key*is*that*if*there*are*mulBple*rules,*
the*order*in*which*the*rules*are*applied*does*not*maker.*
*
AddiBonally,*the*result*of*the*algorithm,*like*that*of*chaoBc*iteraBon,*is*the*least*soluBon:*the*smallest*
path*relaBon*that*saBsfies*all*the*rules.*The*least*soluBon*typically*corresponds*to*what*the*user*wants*
to* compute* in* many* problems.* An* example* of* a* nonHleast* soluBon* to* this* problem* would* be* that*
path(x,y)* holds* for* all* nodes* x* and* y.*While* this* relaBon* doesn’t* violate* any* rules,* it* contains*many*
nonsensical*paths*that*would*not*be*desired*by*a*user.*
*
*
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Syntax of Datalog: Example

Let’s*look*at*a*run*of*this*Datalog*program*on*an*example*input.*
*
Suppose* the* input* is* the* following* directed* graph,* encoded* by* the* following* edge* relaBon,* which*
contains*four*tuples:*(0,1),*(0,2),*(2,3)*and*(2,4).*
*
The*output*of*this*Datalog*program*on*this*input*is*as*follows:*
*

16*



Syntax of Datalog: Example

Applying*the*first*rule,*path(x,x),*produces*all*paths*of*length*0,*represented*by*the*following*tuples*in*
the*path*relaBon:(0,0),*(1,1),*(2,2),*(3,3),*and*(4,4).*
*

17*



Syntax of Datalog: Example

Applying*the*second*rule*at*this*Bme*yields*all*paths*of*length*1,*represented*by*the*following*tuples*in*
the*path*relaBon:*(0,1),*(0,2),*(2,3),*and*(2,4).*

18*



Syntax of Datalog: Example

Applying*the*second*rule*again*yields*all*paths*of*length*two:*(0,3)*and*(0,4).*
*
Because* the* path* relaBon* doesn’t* change* a3er* applying* either* of* these* rules* again,* the* algorithm*
terminates,*yielding*the*least*soluBon*seen*here.*
*

19*



Formal Semantics of DatalogSemantics of Datalog

A Datalog program denotes a set of ground literals:

[[P ]] 2 }(G)

where G is the set of ground literals (literals without variables).

A Datalog rule l :- l1, . . . , ln denotes the function:

fl :- l1,...,ln(X) = {�(l0) | �(lk) 2 X for 1  k  n}

where � is a variable substitution.

The semantics of P is defined as the least fixed point of FP :

[[P ]] = lfpFP where FP (X) = X [
[

c2P

fc(X)

The semantics is monotone:

P1 ✓ P2 =) [[P1]] ✓ [[P2]]

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 9 / 31



Program as Relations

• A program can be represented by a set of input relations:

•x := &y — new(x:X, y:X) 

•x := y — assign(x:X, y:X) 

•x := *y — load(x:X, y:X) 

• *x := y — store(x:X, y:X)  
 

where X is the set of variables 



Target Properties as Relations

• Points-to facts can be represented as output relations 

•x → y — points(x:X, y:X)



Datalog Rules

• Datalog rule for 

• points(x, y) :- new(x, y). 

• Datalog rule for 

• points(x, z) :- assign(x, y), points(y, z).
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10.2.1 Pointer Analysis
Let us consider the following simple C-like imperative language. A program is a collection
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The left- or right-hand side of an assignment may be a variable(x), the dereference (*x)
of a variable, or the location (&x) of a variable. Let the semantics of these reference and
dereference constructs be the same as in the C language. A variable may store an integer
or the location of a variable.

Target Property Suppose that we are interested in the set of locations that each pointer
variable may store during program execution. Computing such a set is reduced to collecting
all possible “points-to” facts between two variables: which variable can store the location
of which variable. We hence represent each points-to fact by a pair of two variables: a! b

denotes that variable a can point to (can have the address of) variable b. The set of such
points-to facts is finite for each program because a program has a finite number of variables.

Rules The analysis globally collects the set of possible points-to facts that can happen
during the program execution. We start from an initially empty set. We apply the following
rules to add new facts to the global set. This collection (hence the analysis) terminates
when no more addition is possible. The rule has the form

C i1 · · · ik
j

and dictates that, if the program text has component C, and the current solution set has
i1 · · · ik, then add j to the solution set [58]. The i1 · · · ik part can be omitted.

The initial facts that are obvious from the program text are collected by this rule:
x := &y

x ! y

That is, for each assignment statement of the form x := &y, add the fact that x points to y.
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The chain-reaction rules are as follows for other cases of assignments:
x := y y ! z

x ! z
x := *y y ! z z ! w

x ! w

*x := y x ! w y ! z
w ! z

*x := *y x ! w y ! z z ! v
w ! v

*x := &y x ! w
w ! y

Soundness It is easy to see that the above rules will collect every possible points-to fact
of the input program. The easiness comes from the simple semantics of the target language.
The six rules follow, in terms of the points-to information, from the semantics of all six
cases of the assignment statements. Consider the last rule, for example. The assignment
statement *x := &y stores the location &y of y to the location that x points to. Thus, the
rule adds w ! y if x points to w. It is similarly straightforward to see the soundness of
other rules.

Given the global set of facts, applying all the possible rules to the set is a monotonic
operation; every rule always adds new facts, if any, to the global set. The analysis result is
the least fixpoint of this applying-all-rules function.

The over-approximation comes from two sources. First, the rules ignore the conditional
execution of the while-loop. Regardless of the while-loop condition, the rules are applied
to the assignments in the loop body. Second, we collect the points-to facts into a single
global set. This means that a points-to fact from any statement in the input program can
trigger a new points-to fact at any statement.

Example 10.2 (Pointer analysis) Consider the following program:

x := &a ;

y := &x ;

B
*y := &b ;

*x := *y

Initial facts are from the first two assignments:

x! a, y! x

From y! x and the assignment body of the while-loop, the analysis can apply the last rule to add

x! b.

For the last assignment and the hitherto collected facts, the analysis can apply the second-to-the-last
rule and add new facts as follows: from x! a and y! x, the analysis can add a! a; from x! b



Datalog Rules

• Datalog rule for 

• points(x, w) :- load(x, y), points(y, z),  
                points(z, w).  

• Datalog rule for 

• points(w, z) :- store(x, y), points(x, w),  
                points(y, z). 
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of the input program. The easiness comes from the simple semantics of the target language.
The six rules follow, in terms of the points-to information, from the semantics of all six
cases of the assignment statements. Consider the last rule, for example. The assignment
statement *x := &y stores the location &y of y to the location that x points to. Thus, the
rule adds w ! y if x points to w. It is similarly straightforward to see the soundness of
other rules.

Given the global set of facts, applying all the possible rules to the set is a monotonic
operation; every rule always adds new facts, if any, to the global set. The analysis result is
the least fixpoint of this applying-all-rules function.

The over-approximation comes from two sources. First, the rules ignore the conditional
execution of the while-loop. Regardless of the while-loop condition, the rules are applied
to the assignments in the loop body. Second, we collect the points-to facts into a single
global set. This means that a points-to fact from any statement in the input program can
trigger a new points-to fact at any statement.

Example 10.2 (Pointer analysis) Consider the following program:

x := &a ;

y := &x ;

B
*y := &b ;

*x := *y

Initial facts are from the first two assignments:

x! a, y! x

From y! x and the assignment body of the while-loop, the analysis can apply the last rule to add

x! b.

For the last assignment and the hitherto collected facts, the analysis can apply the second-to-the-last
rule and add new facts as follows: from x! a and y! x, the analysis can add a! a; from x! b
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The chain-reaction rules are as follows for other cases of assignments:
x := y y ! z

x ! z
x := *y y ! z z ! w

x ! w

*x := y x ! w y ! z
w ! z

*x := *y x ! w y ! z z ! v
w ! v

*x := &y x ! w
w ! y

Soundness It is easy to see that the above rules will collect every possible points-to fact
of the input program. The easiness comes from the simple semantics of the target language.
The six rules follow, in terms of the points-to information, from the semantics of all six
cases of the assignment statements. Consider the last rule, for example. The assignment
statement *x := &y stores the location &y of y to the location that x points to. Thus, the
rule adds w ! y if x points to w. It is similarly straightforward to see the soundness of
other rules.

Given the global set of facts, applying all the possible rules to the set is a monotonic
operation; every rule always adds new facts, if any, to the global set. The analysis result is
the least fixpoint of this applying-all-rules function.

The over-approximation comes from two sources. First, the rules ignore the conditional
execution of the while-loop. Regardless of the while-loop condition, the rules are applied
to the assignments in the loop body. Second, we collect the points-to facts into a single
global set. This means that a points-to fact from any statement in the input program can
trigger a new points-to fact at any statement.

Example 10.2 (Pointer analysis) Consider the following program:

x := &a ;

y := &x ;

B
*y := &b ;

*x := *y

Initial facts are from the first two assignments:

x! a, y! x

From y! x and the assignment body of the while-loop, the analysis can apply the last rule to add

x! b.

For the last assignment and the hitherto collected facts, the analysis can apply the second-to-the-last
rule and add new facts as follows: from x! a and y! x, the analysis can add a! a; from x! b
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be joined with the value v]2 to store (called “weak update”):
G

a2l]
m]{a 7! m](a)t v]2}.

Theorem 8.1 (Safety of ,!] for the pointer language) Consider the concrete one-step transition
of Section 8.1.1 and the abstract transition relation of Section 8.1.2. If the semantic operators satisfy
the following safety properties:

√(evalE )� gM ✓ gV � eval]E
√(updatex)�⇥� (gM ,gV ) ✓ gM �update]x

√(fetch)�⇥� (gM ,gV ) ✓ gV � fetch]

√(filterB )� gM ✓ gM �filter]B

then √̆(,!)� g v √̆(g)� ,!].

8.2 For a Language with Functions

8.2.1 Language and Concrete Semantics
Let us consider an imperative language that allows functions. We extend the imperative
language in Chapter 4 (Figure 4.3) with recursive function definitions and calls.

We consider only “flat” function definitions (no nested function definitions) as in the C
language. Hence, variables other than function parameters are all global variables. Return-
ing a value from a function is to be programmed as an assignment to a global variable. We
assume that names in a program for the functions and their parameters are unique and that
every function has one parameter. We let function names be first-class values: program-
mers can store function names in program variables or pass them as parameters to other
functions. Hence, like function pointers in C, functions are not necessarily called by their
defined names. The function part of the call statement can thus be any expression only if
its value is a function name. The function to call is determined at run-time.

Expression E ::= · · · as before (Figure 4.3)
| f function id

Statement C ::= · · · as before (Figure 4.3)
| E (E ) function call
| return from call

Function F ::= f(x) = C function definition
Program P ::= F +C

8.2.1.1 Semantic Domains Because of recursive calls, the parameter of the recursive func-
tion can have multiple instances alive in the memory. At each recursive call a new instance

<latexit sha1_base64="uyzAnLCaHA05ux13pFtTGkowPf4=">AAACBHicbZDLSgMxFIYz9VbrbdRlN8Ei1E2ZEVERhKIblxXsBdqhZNJMG5q5kJwRyzALN76KGxeKuPUh3Pk2ptNZaOuBkI//P4fk/G4kuALL+jYKS8srq2vF9dLG5tb2jrm711JhLClr0lCEsuMSxQQPWBM4CNaJJCO+K1jbHV9P/fY9k4qHwR1MIub4ZBhwj1MCWuqb5aQHgCcpvrjEGXppNbsf0qO+WbFqVlZ4EewcKiivRt/86g1CGvssACqIUl3bisBJiAROBUtLvVixiNAxGbKuxoD4TDlJtkSKD7UywF4o9QkAZ+rviYT4Sk18V3f6BEZq3puK/3ndGLxzJ+FBFAML6OwhLxYYQjxNBA+4ZBTERAOhkuu/YjoiklDQuZV0CPb8yovQOq7ZpzX79qRSv8rjKKIyOkBVZKMzVEc3qIGaiKJH9Ixe0ZvxZLwY78bHrLVg5DP76E8Znz88RZcy</latexit>

y := f(x)
<latexit sha1_base64="uPJ82rqAqTL46CJeZ+jYvJkULC8=">AAACAnicbVDLSgNBEJyNrxhfUU/iZTAInsKuiApegl48RjAPyIYwO+kkQ2Znl5leSViCF3/FiwdFvPoV3vwbJ4+DJhY0FFXddHcFsRQGXffbySwtr6yuZddzG5tb2zv53b2qiRLNocIjGel6wAxIoaCCAiXUYw0sDCTUgv7N2K89gDYiUvc4jKEZsq4SHcEZWqmVP/ARBoiYasBEq5F/RVMfkQ5GrXzBLboT0EXizUiBzFBu5b/8dsSTEBRyyYxpeG6MzZRpFFzCKOcnBmLG+6wLDUsVC8E008kLI3pslTbtRNqWQjpRf0+kLDRmGAa2M2TYM/PeWPzPayTYuWymQsUJguLTRZ1EUozoOA/aFho4yqEljGthb6W8xzTjaFPL2RC8+ZcXSfW06J0XvbuzQul6FkeWHJIjckI8ckFK5JaUSYVw8kieySt5c56cF+fd+Zi2ZpzZzD75A+fzBwz/l9c=</latexit>

return x



Inter-procedural Pointer Analysis

f(v) = { 

  u = v; 

  return u; 

}; 

x = &h; 

y = f(x)

Parameter passing and return 
can be treated as assignments.

Parameter passing and 
return can be treated as 

assignments.



Inter-procedural Pointer Analysis

f(v) = { 

  u = v; 

  return u; 

}; 

x = &h; 

y = f(x)

Parameter 
passing 

and return 
can be 

v = x; 
u = v; 
y = u

Input Relations:
• new(x:X, y:X) 

• assign(x:X, y:X) 

• load(x:X, y:X) 

• store(x:X, y:X) 

• arg(f:F, v:X) 

• ret(f:F, u:X) 

• call(y:X, f:F, x:V)

Output Relations:

• points(x:X, y:X)



Inter-procedural Pointer Analysis

f(v) = { 

  u = v; 

  return u; 

}; 

x = &h; 

y = f(x)

Rules:

• points(x, y) :- new(x, y). 

• points(w, z) :- store(x, y), points(x, w),  
                points(y, z).  

• points(x, w) :- load(x, y), points(y, z),  
                points(z, w).  

• points(w, z) :- store(x, y), points(x, w),  
                points(y, z).  

• points(v, h) :- call(_, f, x), arg(f, v),  
                points(x, h). 

• points(y, h) :- call(y, f, _), ret(f, u), 
                points(u, h).

Wild card,  
“don’t care”



Context Sensitivity

Let’s*build*the*pointsHto*graph*that*would*correspond*to*the*pointer*analysis*as*we’ve*defined*it*so*far.*
*
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Context Sensitivity

NoBce* that* w* may* point* to* h1* and* y* may* point* to* h2* in* this* pointsHto* graph.* * This* introduces*
imprecision*into*the*pointer*analysis*we've*defined*so*far:*w*can*never*point*to*the*object*allocated*at*
h1,*and*y*can*never*point*to*the*object*allocated*at*h2.*
*
*
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Context Sensitivity

One*way* to* add* context* sensiBvity* to* the* analysis* is* through*what* is* called* "cloning".* * It* achieves*
context* sensiBvity* by* reproducing* the* bodies* of* the* procedure* inHline* with* disBnguished* variable*
names.*
*
For*example,*in*this*program,*instead*of*replacing*y*=*f(x);*by*v*=*x;*u*=*v;*y*=*u;*and*w*=*f(z);*by*v*=*z;*u*
=*v;*w*=*u;,*we*could*introduce*different*copies*of*the*variables*v*and*u*(say,*vi*and*ui*versus*vj*and*uj)*
for*each*call*to*f.**In*this*way,*we*avoid*imprecisely*claiming*that*w*may*point*to*h1*or*that*y*may*point*
to* h2.* Instead,* we*would* have* an* equivalent* program* for* which* pointer* analysis* would* generate* a*
precise*pointsHto*graph.*
*
We* can* achieve* greater* precision* by* allowing* cloning* to* be* used* for* more* levels* in* the* call* stack.*
However,*the*tradeoff*for*precision*via*cloning*is*scalability.* *The*deeper*we*allow*funcBon*calls*to*be*
cloned,*the*more*space*and*Bme*we*need*to*allow*for*the*resulBng*analysis.**If*each*funcBon*calls*just*
two*other*funcBons,*the*resources*needed*for*a*precise*analysis*becomes*exponenBal*in*the*depth*of*
the*stack*of*nested*funcBon*calls.*
*
*
*

59*

  & 
  & 



Varying the Context-Sensitivity

• Context-sensitivity can be achieved by inlining function 
calls. 

• However, we cannot inline recursive function calls. 

• Cloning-Based Context-Sensitive Pointer Alias Analysis Using 
Binary Decision Diagrams, PLDI’04



LimitationSpecialized Frameworks

Limitations

Not powerful enough for arbitrary language
sound rules?

I error prone for complicated features of modern languages

I e.g. function call/return, function as a data, dynamic method dispatch,

exception, pointer manipulation, dynamic memory allocation, ...

accuracy problem
I consider program a set of statements, with no order between them

I rules do not consider the control flow

I the analysis blindly collects every possible facts when rules hold

I accuracy improvement by more elaborate rules, but no systematic way

for soundness proof
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