Specialized Static Analysis Framework: Datalog Analysis

Woosuk Lee

CSE 6049 Program Analysis

Hanyang University, Korea

Some slides are borrowed from http://rightingcode.org/slides/7.pdf

Goal of This Lecture

- Learn practical alternatives to the aforementioned general, abstract interpretation framework
- For simple languages and properties, there are frameworks that are simple yet powerful enough
- But with several limitations

Static Analysis by Monotonic Closure

- Static analysis = setting up initial facts then collecting new facts by a kind of chain reaction
 - has rules for collecting initial facts
 - has rules for generating new facts from existing facts
- the initial facts immediate from the program text
- the chain reaction steps simulate the program semantics
- the universe of facts are finite for each program
- analysis accumulates facts until no more possible

Representative Example: Pointer Analysis

Reasoning about any real programs needs pointer reasoning: e.g.,

x = 1; y = 2; *p = 3; *q = 4;

What is the value of x + y after the last statement?

- p = &x and q = &y:
- p = &x and $q \neq \&y$:
- $p \neq \&x$ and q = &y:
- $p \neq \&x$ and $q \neq \&y$:

Pointer Analysis

- Static program analysis that computes the set of memory locations (objects) that a pointer variable may point to at runtime.
- One of the most important static analyses: all interesting questions on program reasoning eventually need pointer analysis.
 - E.g., control-flows, data-flows, types, information-flows, etc

Example: (Flow-insensitive) Pointer Analysis

- P ::= C program
- C ::= statement
 - | L := R assignment
 - C; C sequence
- L ::= x | *x target to assign to
- R ::= n | x | *x | &x value to assign

- Goal: estimate all "points-to" relations between variables that can occur during executions
- $a \rightarrow b$: variable a can point to (can have the address of) variable b

- The analysis globally collects the set of possible pointsto facts that can happen during the program execution.
- Starting from the empty set, we apply rules of the following form to add new facts to the global set.

This collection terminates when no more addition is possible.

Rules for Pointer Analysis

The initial facts that are obvious from the program text are collected by this rule:

$$\frac{x := \& y}{x \to y}$$

The chain-reaction rules are as follows for other cases of assignments:

$$\frac{x := y \quad y \to z}{x \to z} \qquad \frac{x := *y \quad y \to z \quad z \to w}{x \to w}$$

$$\frac{*x := y \quad x \to w \quad y \to z}{w \to z} \qquad \frac{*x := *y \quad x \to w \quad y \to z \quad z \to v}{w \to v}$$

$$\frac{*x := \& y \quad x \to w}{w \to y}$$

Rules for Pointer Analysis

The initial facts that are obvious from the program text are collected by this rule:

$$\frac{x := \& y}{x \to y}$$

The chain-reaction rules are as follows for other cases of assignments:

$$\frac{x := y \quad y \to z}{x \to z} \qquad \frac{x := *y \quad y \to z \quad z \to w}{x \to w}$$

$$\frac{*x := y \quad x \to w \quad y \to z}{w \to z} \qquad \frac{*x := *y \quad x \to w \quad y \to z \quad z \to v}{w \to v}$$

$$\frac{*x := \&y - Syntactic sugar:}{Can be transformed to}$$

$$\frac{*x := \&y \quad x \to w}{w \to y} \qquad \begin{array}{c} & & \\ & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline & & \hline \hline \hline \\ \hline \hline \hline &$$

Example

Example (Pointer analysis steps)

• Initial facts are from the first two assignments:

 ${\tt x}
ightarrow {\tt a}, {\tt y}
ightarrow {\tt x}$

 \bullet From $y \to x$ and the while-loop body, add

 $\mathtt{x}\to \mathtt{b}$

- From the last assignment:
 - from $x \rightarrow a$ and $y \rightarrow x$, add $a \rightarrow a$
 - from $x \rightarrow b$ and $y \rightarrow x$, add $b \rightarrow b$
 - from $x \rightarrow a$, $y \rightarrow x$, and $x \rightarrow b$, add $a \rightarrow b$
 - froom $x \rightarrow b$, $y \rightarrow x$, and $x \rightarrow a$, add $b \rightarrow a$

General Algorithm

- let R be the set of the chain-reaction rules
- let X_0 be the initial fact set
- let *Facts* be the set of all possible facts

Then, the analysis result is

$$\bigcup_{i\geq 0} Y_i,$$

where

$$Y_0 = X_0,$$

$$Y_{i+1} = Y \text{ such that } Y_i \vdash_R Y.$$

Or, equivalently, the analysis result is the least fixpoint

$$\bigcup_{i\geq 0}\phi^i(\emptyset)$$

of monotonic function $\phi: \wp(\mathit{Facts}) \to \wp(\mathit{Facts}):$

 $\phi(X) = X_0 \ \cup \ (Y \text{ such that } X \vdash_R Y).$

Static Analysis by Monotonic Closure as Datalog

- We can express the rules in **Datalog**.
- Datalog: a declarative logic programming language
- Not Turing-complete: Subset of Prolog, or SQL with recursion => efficient algorithms to evaluate Datalog programs
- Originated as query language for databases
- Later applied in many other domains: program analysis, data mining, network, security, ...

Benefits of Using Datalog

- Separates analysis design from implementation
 - Analysis designer can focus on "what" rather than "how"
- By leveraging powerful, off-the-shelf solver engines
 - many implementations: Souffle, Bddbddb, Paddle, Logicblox, ...

Syntax of Datalog

• A Datalog program is a sequence of constraints:

$$P ::= \bar{c}$$

 A constraint consists of a head of a literal and a body of a list of literals:

$$c::=l:=\overline{l}$$

A constraint represents a horn clause (a disjunction of literals with at most one positive, unnegated, literal):

$$l \lor \neg l_1 \lor \neg l_2 \lor \cdots \lor \neg l_n \iff l \leftarrow l_1 \land l_2 \land \cdots \land l_n$$

• A literal is a relation with arguments:

$$l ::= r(\bar{a})$$

where an argument is either a variable or constant.

Input Relations: edge(n:N, m:N)

Output Relations:

path(n:N, m:N)

Rules:

```
path(x, x).
path(x, z) :- path(x, y), edge(y, z).
```


Rules:

```
path(x, x).
path(x, z) :- path(x, y), edge(y, z).
```


Input Relations: edge(n:N, m:N)

Output Relations:

path(n:N, m:N)

Rules:

path(x, x).
path(x, z) :- path(x, y), edge(y, z).

Deductive rules that hold universally (i.e., variables like x, y, z can be replaced by any constant). Specify "if ... then ... " logic.

Input Relations:
edge(n:N, m:N)

Output Relations:
path(n:N, m:N)

Rules:

path(x, x).
path(x, z) :- path(x, y), edge(y, z).

Input Relations:
edge(n:N, m:N)

Output Relations: path(n:N, m:N)

Input Tuples: edge(0, 1), edge(0, 2), edge(2, 3), edge(2, 4)

Output Tuples: path(0, 0), path(1, 1), path(2, 2), path(3, 3), path(4, 4), path(0, 1), path(0, 2), path(2, 3), path(2, 4), path(0, 3), path(0, 4)

Rules:

path(x, x).
path(x, z) :- path(x, y), edge(y, z).

path(x, z) :- path(x, y), edge(y, z).

Formal Semantics of Datalog

• A Datalog program denotes a set of ground literals:

 $[\![P]\!]\in \wp(G)$

where G is the set of ground literals (literals without variables). • A Datalog rule $l := l_1, \ldots, l_n$ denotes the function:

$$f_l := l_1, ..., l_n(X) = \{\sigma(l_0) \mid \sigma(l_k) \in X ext{ for } 1 \leq k \leq n\}$$

where σ is a variable substitution.

• The semantics of P is defined as the least fixed point of F_P :

$$\llbracket P
rbracket = lfpF_P$$
 where $F_P(X) = X \cup \bigcup_{c \in P} f_c(X)$

• The semantics is monotone:

$$P_1 \subseteq P_2 \implies \llbracket P_1 \rrbracket \subseteq \llbracket P_2 \rrbracket$$

Program as Relations

• A program can be represented by a set of input relations:

where X is the set of variables

Target Properties as Relations

• Points-to facts can be represented as output relations

•
$$x \rightarrow y - points(x:X, y:X)$$

Datalog Rules

• Datalog rule for
$$\frac{x := \& y}{x \to y}$$

• Datalog rule for
$$\frac{x := y \quad y \to z}{x \to z}$$

• points(x, z) :- assign(x, y), points(y, z).

Datalog Rules

• Datalog rule for
$$\frac{x := *y \quad y \to z \quad z \to w}{x \to w}$$

• Datalog rule for
$$\frac{*x := y \quad x \to w \quad y \to z}{w \to z}$$

Extended Language for Functions

Statement
$$C$$
 $::=$ \cdots $|$ $y := f(x)$ function call $|$ return xreturn from callFunction F $::=$ $f(x) = C$ Frogram P $::=$ F^+C

Inter-procedural Pointer Analysis

Inter-procedural Pointer Analysis

Input Relations:

- new(x:X, y:X)
- assign(x:X, y:X)
- load(x:X, y:X)
- store(x:X, y:X)
- arg(f:F, v:X)
- ret(f:F, u:X)
- call(y:X, f:F, x:V)

Output Relations:

• points(x:X, y:X)

Inter-procedural Pointer Analysis

Rules:

 $f(v) = \{$

x = &h;

y = f(x)

};

u = v;

return u;

- points(x, y) :- new(x, y).

points(v, h) :- call(_, f, x), arg(f, v), points(x, h).
 Wild card, "don't care"
 points(y, h) :- call(y, f, _), ret(f, u), points(u, h).

Context Sensitivity

Context Sensitivity

Context Sensitivity

Achieves context sensitivity by inlining procedure calls

Varying the Context-Sensitivity

- Context-sensitivity can be achieved by inlining function calls.
- However, we cannot inline recursive function calls.
- Cloning-Based Context-Sensitive Pointer Alias Analysis Using Binary Decision Diagrams, PLDI'04

Limitation

Not powerful enough for arbitrary language

- sound rules?
 - error prone for complicated features of modern languages
 - e.g. function call/return, function as a data, dynamic method dispatch, exception, pointer manipulation, dynamic memory allocation, ...
- accuracy problem
 - consider program a set of statements, with no order between them
 - rules do not consider the control flow
 - the analysis blindly collects every possible facts when rules hold
 - accuracy improvement by more elaborate rules, but no systematic way for soundness proof