
Homework 4

CSE6049 Program Analysis, Spring 2021

Woosuk Lee

due: 6/9(Wed), email-to-TA

(bbumbuul@yahoo.com)

• The goal of this assignment is to implement a sound static analyzer
based on a transitional semantics. In particular, the main goal is
to implement the worklist algorithm.

• Skeleton code is provided and accessible through the course web-
site. Before you start, see README.md to understand how to pro-
ceed.

• Please send a ZIP file titled “HW4 [Your Student ID].zip” to TA
via email, and the zipped file should contain OCaml source files
interpreter.ml and domains.ml.

Consider the extended version of the miniC language used in the previous
assignment. The language is almost identical to the previous language except
the goto statement whose target label is not fixed in the program text but to
be computed during execution by its argument expression. The label statement
is used for specifying potential jumped-to locations. The syntax is depicted in
Figure 1.

Given a program, each statement is assigned a unique label as an integer.
The language is represented as the following data type in OCaml.

type label = int

type var = string

type stmt = cmd * label

and cmd =

| ...

| GOTO of exp

| LABEL of label

1

n ∈ V scalar values
x ∈ X program variables
� ::= + | − | ∗ binary operators
< ::= < | ≤ | == | > | 6= comparison operators
E ::= scalar expressions

| n scalar constant
| x variable
| E � E binary operation

B ::= boolean expressions
| x < n comparison of a variable with a constant
| ¬ B negated condition

C ::= commands
| · · · ... same as before ...
| goto E goto with dynamically computed label
| label n user-specified label

Figure 1: Grammar of the extended miniC language

...

In this setting, our goal is to build a static analyzer for obtaining label-wise
abstraction; we want to obtain a table from each program label to an abstract
memory

L→M#

where M# = X → DI is the space of abstract memories based on the intervals
abstract domain DI . The Table module in file domains.ml

module Table =

struct

include LabelMap (* implemented in c.ml *)

let string_of_t t = ...

end

implements the space L → M# and the module IntervalMem implements the
space of interval abstract memories.

Exercise 1 Implement the transitional-style abstract interpreter based on the
intervals abstraction.

In particular, you first implement the function abs_trans in file interpreter.ml
which implements the abstract state transition relation ↪→# defined at page 45
of the lecture slide at http://psl.hanyang.ac.kr/~wslee/courses/cse6049/
lecture8.pdf. You can use the following helper functions already implemented
and provided to the abs_trans function as arguments.

•
next: label -> label

nextTrue: label -> label

nextFalse: label -> label

2

These functions will give a next label to be executed for a given label
(if no successor label exists for a given label, the exception NoSuccessor

will be raised). The functions determine the execution order between the
statements except for the goto statement.

•
cmdOf : label -> cmd

This function gives a command associated with a given program label.

•
all_labels : label list

list of all program labels of a given input program.

Then, using the abstract state transition relation, implement analyze func-
tion in interpreter.ml. Implement the worklist algorithms with widening/-
narrowing at pages 83 – 84 in the lecture slides.

You can use the option -pp to check how labels are assigned to statements
of a program. For example, for a program test1.c in the test folder in the
skeleton code

read(x);

x := x + x;

y := x * 2

if you type the following

$./run -pp test/test9.c

you will see the following result showing how each individual statement is as-
signed a label.

[5: [4: [2: [0: read x]; [1: x := x + x]]; [3: y := x * 2]]; [-1: skip]]

3

