
Homework 3

CSE6049 Program Analysis, Spring 2021

Woosuk Lee

due: 5/10(Mon), email-to-TA

(bbumbuul@yahoo.com)

• The goal of this assignment is to design and implement a language
interpreter and a sound static analyzer for the simple imperative
language covered in the lecture.

• Skeleton code is provided and accessible through the course web-
site. Before you start, see README.md to understand how to pro-
ceed.

• You have to heavily use OCaml modules. You may refer to an
introduction to the concept from slides http://psl.hanyang.ac.
kr/~wslee/courses/cse6049/ocaml_module.pdf.

• Please send a ZIP file titled “HW3 [Your Student ID].zip” to TA
via email, and the zipped file should contain

– OCaml source files interpreter.ml and domains.ml for Ex-
ercises 1,2,3, and 5

– A PDF document file for Exercises 4

Background. Consider the miniC language used in the lectures. The lan-
guage features arithmetic operations, loops, and conditionals.

The syntax is depicted in Figure 1. The input command reads an integer
from external input. You may assume the value from external input ranges
between −5 and 5.

The language is represented as the following data type in OCaml.

type var = string

type program = cmd

1

n ∈ V scalar values
x ∈ X program variables
� ::= + | − | ∗ binary operators
< ::= < | ≤ | == | > | 6= comparison operators
E ::= scalar expressions

| n scalar constant
| x variable
| E � E binary operation

B ::= boolean expressions
| x < n comparison of a variable with a constant
| ¬ B negated condition

C ::= commands
| skip command that ”does nothing”
| C ; C sequence of commands
| x := E assignment command
| input(x) command reading of a value
| if(B){C }else{C } conditional command
| while(B){C } loop command
| print(E) print command

Figure 1: Grammar of the miniC language

and cmd =

| SKIP

| IF of cond * cmd * cmd

| WHILE of cond * cmd

| ASSIGN of var * exp

| READ of var (* input(x) *)

| SEQ of cmd * cmd

| PRINT of exp

and exp =

| CONST of int

| VAR of var

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

and cond =

| TRUE

| FALSE

| LE of var * int

| EQ of var * int

| GT of var * int

2

| NEQ of var * int

| NOT of cond

A program generates an output memory state for a given input memory
state. The set of memory states M is defined by:

M = X→ V⊥

where V⊥ is the “lifted” (also called flat) integer domain (i.e., V⊥ = V ∪ {⊥})
which is a CPO.

Throughout this assignment, the following module signature will be used to
define the interface for CPOs.

module type DOMAIN =

sig

type elt (* the type of abstract domain elements *)

val bot: elt

val join: elt -> elt -> elt (* least upper bound *)

val leq: elt -> elt -> bool (* less than or equal to *)

val string_of_elt: elt -> string

val add: elt -> elt -> elt (* addition between elements *)

val sub: elt -> elt -> elt (* subtraction between elements *)

val mul: elt -> elt -> elt (* multiplication between elements *)

end

The lifted integer domain that follows the DOMAIN interface is already defined
in the skeleton code by the following OCaml module.

module IntCPO : DOMAIN =

struct

type elt = Bot | Int of int

...

end

The following functor MakeMemCPO returns a module that can be used for
function domain X→ D for a given CPO D.

module VarMap = Map.Make (struct

type t = var

let compare = String.compare

end)

module MakeMemCPO (D : DOMAIN) =

struct

(* see https://ocaml.org/api/Map.Make.html *)

include VarMap

type t = D.elt VarMap.t (* type : string -> D.elt *)

...

3

The data structure for memories is also defined in the skeleton code by

module Mem = MakeMemCPO(IntCPO).

Exercise 1 Implement a language interpreter by writing a function

interpret : program -> Mem.t -> Mem.t

that takes a program and an input memory state (initially empty memory)
and returns an output memory state. The function should be defined in file
interpreter.ml.

Exercise 2 Implement a collecting semantics-based interpreter that collects
all possible values that may be computed during program execution for each
variable. In other words, it should compute a collecting state in X→ 2V.

The power set of values (i.e., integers) can be defined by any module that
follows the following interface.

module type INTSET_DOMAIN =

sig

include DOMAIN

val filter: (int -> bool) -> elt -> elt

val make: int list -> elt

end

where filter f s returns the set of all elements in s that satisfy predicate f

and make generates a set of integers from a list of integers. The filter function
will be useful for handling conditional commands.

Define a module

module IntsetCPO : INTSET_DOMAIN

in file domains.ml. Then, the function domain for states in X → 2V can be
defined by

module IntsetMem = MakeMemCPO(IntsetCPO)

Then, write a function

interpret_collect : program -> IntsetMem.t -> IntsetMem.t.

The function should be defined in file interpreter.ml.

Exercise 3 Design an abstract interpreter (i.e., static analyzer) that deter-
mines the parity (i.e., evenness or oddness) of a value of each program variable
after the program execution. The parity abstract domainDP = {⊥, even, odd,>}
is characterized by the following hasse diagram and galois connection.

4

2Z −−−−→←−−−−
αP

γP
DP

where

αP (Z) =


⊥ (Z = ∅)
even (Z ⊆ Zeven)
odd (Z ⊆ Zodd)
> (otherwise)

γP (P) =


∅ (P = ⊥)
Zeven (P = even)
Zodd (P = odd)
Z (otherwise)

and Zeven (resp. Zodd) is the set of even (resp. odd) integers.
Define the abstract semantics for the parity analysis and prove the soundness

of the static analysis.

Exercise 4 Implement your own abstract interpreter for the parity analysis.
The parity domain can be defined by any module that follows the following
interface.

module type PARITY_DOMAIN =

sig

include DOMAIN

val top: elt

val meet: elt -> elt -> elt (* greatest lower bound *)

val make: int -> elt

end

where the meet function is for computing the greatest lower bound (u) of two
elements. For example, > u even = even and even u odd = ⊥. The meet

function will be useful for handling conditionals.
Define a module

module ParityCPO : PARITY_DOMAIN

in file domains.ml. Then, the function domain for states in X → DP can be
defined by

module ParityMem = MakeMemCPO(ParityCPO)

Then, write a function

interpret_parity : program -> ParityMem.t -> ParityMem.t

The function should be defined in file interpreter.ml.

Exercise 5 Implement an abstract interpreter based on the intervals abstrac-
tion.

The interval abstract domain DI can be defined by any module that follows
the following interface.

5

module type INTERVAL_DOMAIN =

sig

include DOMAIN

type bound = Z of int | Pinfty | Ninfty

val top: elt

val meet: elt -> elt -> elt (* greatest lower bound *)

val make: bound -> bound -> elt

val widen: elt -> elt -> elt

val narrow: elt -> elt -> elt

end

where the make function is for constructing an abstract element (i.e., interval).
For example, one can construct an interval [1,+∞] by make (Z 1) Pinfty

and [−∞, 0] by make Ninfty (Z 0). The widen and narrow functions are for
widening and narrowing respectively.

Define a module

module IntervalCPO : INTERVAL_DOMAIN

in file domains.ml. Then, the function domain for states in X → DI can be
defined by

module IntervalMem = MakeMemCPO(IntervalCPO)

Then, write a function

interpret_interval : program -> IntervalMem.t -> IntervalMem.t

The function should be defined in file interpreter.ml.

6

