Homework 2
CSE6049 Program Analysis, Spring 2021
Woosuk Lee
due: 4/19(Mon), email-to-TA
(bbumbuul@yahoo.com)

Please send a ZIP file titled “HW2_[Your Studnet ID].zip” to TA via
email, and the zipped file should contain

e OCaml source files hwi.ml, hw2.ml, hw3.ml, and hw5.ml for Exer-
cises 1, 2, 3, and 5 respectively,

e A PDF document file for Exercises 4 and 6.

Exercise 1 Binary numerals can be represented by lists of 0 and 1:
type digit = ZERO | ONE
type bin = digit list
For example, the binary representations of 11 and 30 are
[ONE; ZERO; ONE; DNE]

and
[ONE; ONE; ONE; ONE; ZERO),

respectively. Write a function
bmul: bin -> bin -> bin
that computes the binary product. For example,
bmul[ONE; ZERO; ONE; ONE|[ONE; ONE; ONE; ONE; ZERQ)]

evaluates to [ONE;ZERO;ONE;ZERO; ZERO; ONE; ZERO; ONE; ZERO] .



Exercise 2 Consider the formulas of propositional logic:

The following algebraic data type characterizes propositional logic.

F — true
| false

| P

| -F

| FAF
| RAVE

| F, = Fy

type formula = True

We say a formula F is satisfiable iff there exists a variable assignment that
makes the formula true. For example, the formula P A =@ is satisfiable because
it evaluates to true when P is true and @ is false. The formula P A =P is not

False
Var of string
Neg of formula

And of formula * formula
Or of formula * formula
Imply of formula * formula

satisfiable since it always evaluates to false.
Write a function

that determines the satisfiability of a given formula. For example,

(disjunction “or
(implication

(variables

)

(negation “not”)
(conjunction “and”)
)
)

b))

sat : formual -> bool

sat (And (Var "P", Neg (Var "Q")))

returns true.

Exercise 3 Consider the following expressions:

type exp

=X

| INT of int
| ADD of exp
| SUB of exp
| MUL of exp
| DIV of exp
| SIGMA of exp

* X X ¥

exp
exp
exp
exp
* exp * exp

Implement a calculator for the expressions:

calculator :

exp —> int



For instance,
10

Z(wxx—l)

x=1

is represented by
SIGMA(INT 1, INT 10, SUB(MUL(X, X), INT 1))
and evaluating it should give 375.

Exercise 4 Consider the following simple drawing language used in the lecture:

p — init([ly,u1], [l2,us]) (initialization with a state (z,y) such that
h <z <uyl <y<us)

| translation(u,wv) (translation by vector (u,v))

| rotation(f) (rotation defined by center (0,0) and angle 0)

| p;p (sequence of operations)

| {p}tor{p} (non-deterministic choice of branch)

| iter{p} (iteration (the number of iterations is non-deterministic))

Define a big-step operational semantics for the language. A state is a real-value
coordinate (s € State = R x R). You inductively define a set of sentences of
form s b p = s’ (given a state s, executing a program p will result in a new
state s').

The followings are ingredients that may be useful for the definition.

e The new coordinates (z’,y’) of a point (x,y) after rotation at an angle
are
2’ = xcos —ysinb
y = xsinf + ycosb

e The uniform probability distribution is denoted U(0,1), and a random
variable x ~ U(0, 1) following the uniform distribution holds a real value
in [0,1]. Using the notations, we can define the inference rules for non-
deterministic choices as follows:

skpr= s skpes=sy r~U0,1) r>05
st {p1}tor{pa} = s1

skEp1= s skpe=s r~UuU0,1) r<0.5
st {p1}or{pa} = s2




Solutions:

/
sk init(R) = ¢ SER

s=(zy) §=@tuyto)
s translation(u,v) = s’

s=(z,y) & =(",y) 2/ =xcosf—ysinh y =axsinb+ ycosh
s F rotation(d) = ¢’

skpr =5 s'Fpy=s"
skp1;p2=s"

skpL = s skpy=sy r~Uu0,1) r>0.5
st A{p1}tor{pa} = s1

skpr= s skpe=sy r~U0,1) r<0.5
st {p1}or{pz} = s2

r~Uu(0,1) r>05
st iter{p} =s

skp=s s Fiter{p}=s" r~U(0,1) r<05
st iter{p} = 5"

Exercise 5 The following data type characterizes the drawing language.

type pgm = INIT of (float * float) * (float * float)
| TRANSLATE of (float * float)

| ROTATION of float

| SEQ of pgm * pgm

|
|

OR of pgm * pgm
ITER of pgm

Write a function
eval : pgm -> float * float

that returns a final state (i.e., coordinate) after executing a given program pgm.
In OCaml, you can generate a random floating number in [0,1] by

Random.float 1.0

Exercise 6 Define a collecting semantics of the drawing language in a compo-
sitional style. A collecting semantics concerns all possible outcomes of program
executions (whereas operational semantics concerns a single outcome of a single
program execution).

In other words, we are interested in defining a function that takes a set of
initial coordinates and returns a set of resulting output coordinates. Define a



function
[[p] . QState N QState

that returns a set of output states for a given set of input states. For example,
the first two cases are defined as follows:

[init([ly,w], [l2, u2])](S) = {(z,y) [h <z <ulo <y <ug)
[translation(u,v)](S) = {(z+u,y+v)]|(z,y) €S}

For the other remaining cases, complete the definition of [p].

Solutions:
[init([l1,u1], [l2,u2])](S) = {(z,y) |l <2 <wup,lp <y <us}
[translation(u,v)](S) = {(z+u,y+v)]|(z,y) €S}
[rotation(8)](S) = {(zcosf —ysinf,xsinf+ ycosh) | (z,y) € S}
[p1; p2(S) = [p20([p11(9))
Kptor{p}](5) = [pI(S)U[p2](5)
[iter{p}](5) = 1fp>\X- X U [p)(X)



