
Homework 2

CSE6049 Program Analysis, Spring 2021

Woosuk Lee

due: 4/19(Mon), email-to-TA

(bbumbuul@yahoo.com)

Please send a ZIP file titled “HW2 [Your Studnet ID].zip” to TA via
email, and the zipped file should contain

• OCaml source files hw1.ml, hw2.ml, hw3.ml, and hw5.ml for Exer-
cises 1, 2, 3, and 5 respectively,

• A PDF document file for Exercises 4 and 6.

Exercise 1 Binary numerals can be represented by lists of 0 and 1:
type digit = ZERO | ONE

type bin = digit list

For example, the binary representations of 11 and 30 are

[ONE; ZERO; ONE; ONE]

and
[ONE; ONE; ONE; ONE; ZERO],

respectively. Write a function

bmul: bin -> bin -> bin

that computes the binary product. For example,

bmul[ONE; ZERO; ONE; ONE][ONE; ONE; ONE; ONE; ZERO]

evaluates to [ONE;ZERO;ONE;ZERO;ZERO;ONE;ZERO;ONE;ZERO].

1



Exercise 2 Consider the formulas of propositional logic:

F → true
| false
| P (variables)
| ¬F (negation “not”)
| F1 ∧ F2 (conjunction “and”)
| F1 ∨ F2 (disjunction “or”)
| F1 =⇒ F2 (implication)

The following algebraic data type characterizes propositional logic.
type formula = True

| False

| Var of string

| Neg of formula

| And of formula * formula

| Or of formula * formula

| Imply of formula * formula

We say a formula F is satisfiable iff there exists a variable assignment that
makes the formula true. For example, the formula P ∧¬Q is satisfiable because
it evaluates to true when P is true and Q is false. The formula P ∧ ¬P is not
satisfiable since it always evaluates to false.

Write a function
sat : formual -> bool

that determines the satisfiability of a given formula. For example,

sat (And (Var "P", Neg (Var "Q")))

returns true.

Exercise 3 Consider the following expressions:

type exp = X

| INT of int

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

| DIV of exp * exp

| SIGMA of exp * exp * exp

Implement a calculator for the expressions:

calculator : exp -> int

2



For instance,
10∑
x=1

(x× x− 1)

is represented by

SIGMA(INT 1, INT 10, SUB(MUL(X, X), INT 1))

and evaluating it should give 375.

Exercise 4 Consider the following simple drawing language used in the lecture:

p → init([l1, u1], [l2, u2]) (initialization with a state (x, y) such that
l1 ≤ x ≤ u1, l2 ≤ y ≤ u2)

| translation(u, v) (translation by vector (u, v))
| rotation(θ) (rotation defined by center (0, 0) and angle θ)
| p ; p (sequence of operations)
| {p}or{p} (non-deterministic choice of branch)
| iter{p} (iteration (the number of iterations is non-deterministic))

Define a big-step operational semantics for the language. A state is a real-value
coordinate (s ∈ State = R × R). You inductively define a set of sentences of
form s ` p ⇒ s′ (given a state s, executing a program p will result in a new
state s′).

The followings are ingredients that may be useful for the definition.

• The new coordinates (x′, y′) of a point (x, y) after rotation at an angle θ
are

x′ = x cos θ − y sin θ
y′ = x sin θ + y cos θ

• The uniform probability distribution is denoted U(0, 1), and a random
variable x ∼ U(0, 1) following the uniform distribution holds a real value
in [0, 1]. Using the notations, we can define the inference rules for non-
deterministic choices as follows:

s ` p1 ⇒ s1 s ` p2 ⇒ s2 r ∼ U(0, 1) r > 0.5

s ` {p1}or{p2} ⇒ s1

s ` p1 ⇒ s1 s ` p2 ⇒ s2 r ∼ U(0, 1) r ≤ 0.5

s ` {p1}or{p2} ⇒ s2

Exercise 5 The following data type characterizes the drawing language.

type pgm = INIT of (float * float) * (float * float)

| TRANSLATE of (float * float)

| ROTATION of float

| SEQ of pgm * pgm

| OR of pgm * pgm

| ITER of pgm

3



Write a function
eval : pgm -> float * float

that returns a final state (i.e., coordinate) after executing a given program pgm.
In OCaml, you can generate a random floating number in [0,1] by

Random.float 1.0

Exercise 6 Define a collecting semantics of the drawing language in a compo-
sitional style. A collecting semantics concerns all possible outcomes of program
executions (whereas operational semantics concerns a single outcome of a single
program execution).

In other words, we are interested in defining a function that takes a set of
initial coordinates and returns a set of resulting output coordinates. Define a
function

[[p]] : 2State → 2State

that returns a set of output states for a given set of input states. For example,
the first two cases are defined as follows:

[[init([l1, u1], [l2, u2])]](S) = {(x, y) | l1 ≤ x ≤ u1, l2 ≤ y ≤ u2}
[[translation(u, v)]](S) = {(x+ u, y + v) | (x, y) ∈ S}

For the other remaining cases, complete the definition of [[p]].

4


