Homework 1 CSE6049 Program Analysis, Spring 2021 Woosuk Lee due: 4/05(Mon), email-to-TA (bbumbuul@yahoo.com)

Exercise 1. Consider a set $T(\ni t)$ inductively defined as follows:

$$t \to \cdot \mid /t, t/ \mid /t, t, t/$$

Let c(t) denote the number of occurrences of "," in t, and s(t) denote the numbers of occurrences of "/" in t.

Prove the following property over every $t \in T$:

$$s(t) \ge c(t)$$

Proof. Proof by structural induction.

Base case: $t = \cdot$:

$$s(t) = 0$$

$$\geq 0$$

$$= c(t)$$

Inductive case 1) $t = /t_1, t_2/$: Inductive hypothesis: $s(t_1) \ge c(t_1)$ and $s(t_2) \ge c(t_2)$.

 $\begin{aligned} s(t) &= s(t_1) + s(t_2) + 2 \\ &\geq c(t_1) + c(t_2) + 2 \\ &\geq c(t_1) + c(t_2) + 1 \\ &= c(t) \end{aligned}$ (by inductive hypothesis)

Inductive case 1) $t = /t_1, t_2, t_3/$: Inductive hypothesis: $s(t_1) \ge c(t_1), s(t_2) \ge c(t_2)$, and $s(t_3) \ge c(t_3)$.

$$s(t) = s(t_1) + s(t_2) + s(t_3) + 2$$

$$\geq c(t_1) + c(t_2) + c(t_3) + 2 \quad \text{(by inductive hypothesis)}$$

$$= c(t)$$

Exercise 2. Consider the set of integer arithmetic expressions which is inductively defined as follows:

$$e \to x \mid e + e \mid e \times e \mid e ? e e$$

where $e_1 ?e_2 e_3$ is a conditional expression which evaluates to e_3 (resp. e_2) if e_1 evaluates to zero (resp. non-zero).

Prove the following property over every arithmetic expression e: if every variable that appears in e holds a multiple of n, the evaluation result of e is also a multiple of n. For example, if x = 4 and y = 2 (both variables hold a multiple of 2), x + y evaluates to 6 which is also a multiple of 2. \Box

Proof. Proof by structural induction. Let $\llbracket e \rrbracket$ denote the evaluation result of e. Base case) e = x:

By the assumption that every variable in e holds a multiple of n, e holds a multiple of n.

Inductive case 1) $e = e_1 + e_2$: Inductive hypothesis: $\llbracket e_1 \rrbracket = nk_1$ and $\llbracket e_2 \rrbracket = nk_2$ for some $k_1, k_2 \in \mathbb{Z}$. $\llbracket e \rrbracket = \llbracket e_1 \rrbracket + \llbracket e_2 \rrbracket = n(k_1 + k_2)$. Therefore, e holds a multiple of n. Inductive case 2) $e = e_1 \times e_2$: Inductive hypothesis: $\llbracket e_1 \rrbracket = nk_1$ and $\llbracket e_2 \rrbracket = nk_2$ for some $k_1, k_2 \in \mathbb{Z}$. $\llbracket e \rrbracket = \llbracket e_1 \rrbracket \times \llbracket e_2 \rrbracket = n \times n(k_1 \times k_2)$. Therefore, e holds a multiple of n. Inductive case 3) $e = e_1$? $e_2 e_3$: Inductive hypothesis: $\llbracket e_1 \rrbracket = nk_1$, $\llbracket e_2 \rrbracket = nk_2$, and $\llbracket e_3 \rrbracket = nk_3$ for some $k_1, k_2, k_3 \in \mathbb{Z}$. $\llbracket e \rrbracket = \llbracket e_2 \rrbracket = nk_2$ if $\llbracket e_1 \rrbracket \neq 0$. $\llbracket e \rrbracket = \llbracket e_3 \rrbracket = nk_3$ if $\llbracket e_1 \rrbracket = 0$. Therefore, no matter which value e_1 evaluates to, e holds a multiple of n.

Exercise 3. Find the least fixpoint for each of the following functions.

- $\lambda x. \ 1 \in \mathbb{Z} \to \mathbb{Z}$
- $\lambda x. x \in \mathbb{Z} \to \mathbb{Z}$
- $\lambda x. x + 1 \in \mathbb{Z} \cup \{\infty\} \to \mathbb{Z} \cup \{\infty\}$
- $\lambda f. (\lambda x. if x = 0 then \ 0 else \ x + f(x 1)) \in (\mathbb{N} \to \mathbb{N}) \to (\mathbb{N} \to \mathbb{N})$
- λX . $\{\epsilon\} \cup \{ax \mid x \in X\} \in 2^S \to 2^S$ where S is the set of finite strings and 2^A denotes the powerset of A for set A.

Solutions:

- 1
- any integer

• ∞

•
$$\lambda x. \frac{x(x+1)}{2}$$

• $\{a^i \mid i \ge 0\} = \{\epsilon, a, aa, aaa, \cdots\}$

Exercise 4. Prove the following:

Given two CPOs (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) , (D, \sqsubseteq) is a CPO where

$$D = D_1 \times D_2 = \{ (d_1, d_2) \mid d_1 \in D_1, d_2 \in D_2 \}$$

and

$$(d_1, d_2) \sqsubseteq (d'_1, d'_2) \iff (d_1 \sqsubseteq_1 d'_1) \land (d_2 \sqsubseteq_1 d'_2).$$

Proof. Let say we have a chain in D which is $(x_0, y_0) \sqsubseteq (x_1, y_1) \sqsubseteq (x_2, y_2) \cdots$ where $\forall i. x_i \in D_1$ and $y_i \in D_2$. We will show that the least upper bound $\bigsqcup_{i>0}(x_i, y_i)$ is in D.

 $\begin{array}{c} \bigsqcup_{i\geq 0}(x_i,y_i) \text{ is in } D. \\ \text{We define } \bigsqcup_{i\geq 0}(x_i,y_i) \text{ to be } (\bigsqcup_{i\geq 0}x_i,\bigsqcup_{i\geq 0}y_i). \text{ Here, } (\bigsqcup_{i\geq 0}x_i,\bigsqcup_{i\geq 0}y_i) \in D \\ \text{because } \bigsqcup_{i\geq 0}x_i \in D_1 \text{ and } \bigsqcup_{i\geq 0}y_i \in D_2 \text{ as } D_1 \text{ and } D_2 \text{ are CPOs.} \end{array}$

		_
L		