
Course Overview

Woosuk Lee

2021 Spring Semester

CSE 6049 Program Analysis

To appear at POPL’21Hanyang University, Korea

About Me

• Instructor: Woosuk Lee (이우석, woosuk@hanyang.ac.kr)

• Research Area: Program Analysis, Program Synthesis

• Homepage: http://psl.hanyang.ac.kr

• Office: Rm403, 3rd Engineering Building

• Office Hours: Thu 10:00 - 12:00

mailto:woosuk@hanyang.ac.kr
http://psl.hanyang.ac.kr

Course Information

• Course website: http://psl.hanyang.ac.kr/courses/cse6049_2021s/

• Time: Monday 16:00 — 19:00

• TA: Baljiniam Bassan Ochir (shortly Baska)

• Email: bbumbuul@yahoo.com

• Textbook: Xavier Rival and Kwangkeun Yi, Introduction to Static
Analysis: an Abstract Interpretation Perspective, MIT Press, 2020.

http://psl.hanyang.ac.kr/courses/cse6049_2021s/
mailto:bbumbuul@yahoo.com

Why Take This Course?

• Learn principled approaches for estimating SW
behaviors

• Learn how to build specialized tools for software
diagnosis

• Can be applied to improve reliability, security,
performance, etc.

History of SW Bugs
— The Ariane Rocket Disaster (1996)

h"ps://youtu.be/PK_yguLapgA?t=80s

https://youtu.be/PK_yguLapgA?t=80s
https://www.youtube.com/watch?v=PK_yguLapgA

History of SW Bugs
— The Ariane Rocket Disaster (1996)

• Caused due to numeric overflow error

• Attempt to fit 64-bit format data into 16-bit space

• Cost

• $100M for loss of mission

• Multi-year set back to the Ariane program

• Read more at : http://www.around.com/ariane.html

http://www.around.com/ariane.html

History of SW Bugs
— Heartbleed (2014)

• A security bug in the
OpenSSL cryptography
library

• Released: 2012 Feb

• Discovered: 2014 April

• Due to buffer-overflow
error

History of SW Bugs

Nissan Airbag Malfunction (2014)
— 1 Million Vehicles Recalled

Boeing 747 Max Crashes
— 350 people died

. . . Countless software projects failed in history.

• (1998) NASA’s Mars climate orbiter lost in space. Cost: $125 million
• (2000) Accidents in radiation therapy system. Cost: 8 patients died
• (2007) Air control system shutdown in LA airport. Cost: 6,000 passengers

stranded

Knight Capital Trading Glitch (2012)
— $ 440M

Damage of SW Bugs

• According to CISION PR Newswire (2020. 05), SW bugs
cost $ 61 Billion loss in productivity annually.

• According to Software Fails Watch (Tricentis, 2017), SW
bugs lead to $ 1.7 Trillion revenue lost.

https://www.prnewswire.com/news-releases/study-software-failures-cost-the-enterprise-software-market-61b-annually-301066579.html

https://www.tricentis.com/news/tricentis-software-fail-watch-finds-3-6-billion-people-affected-and-1-7-trillion-revenue-lost-by-software-failures-last-year/

Why Software Fails?

1. Introduction IS593 / KAIST Kihong Heo / 28

Why Software Still Fails?

9

Size of Linux Kernel
28MLOC

Kernel Version

M
ill

io
n

Li
ne

s
of

 C
od

e

10KLOC

Avg. Size of Android Apps

Jan, 2013 Jan, 2014 Jan, 2015 Jan, 2016 Jan, 2017

Av
g

AP
K

Si
ze

 (M
Bs

)

1x

6x

10M+ New Developers
44M+ New Repositories
87M+ New Pull Requests

in 2019

X

From https://github.com/prosyslab-classroom/is593-2020-spring/blob/master/slides/lecture1.pdf

https://github.com/prosyslab-classroom/is593-2020-spring/blob/master/slides/lecture1.pdf

SW Complexity

1. Introduction IS593 / KAIST Kihong Heo / 28

Software Complexity

10

less-382 (23,822 LOC)

Program Analysis

• Body of work to discover useful facts about programs

• Broadly classified into three kinds:

• Dynamic (execution time)

• Static (compile-time)

• Hybrid (combines dynamic and static)

Dynamic Analysis

• Infer facts of program by monitoring its runs

• Examples:

• Purify: array bound checking

• Eraser: datarace detection

• Valgrind: memory leak detection

Static Program Analysis
(focus of this course)

Static Program Analysis

A general method for
automatic and sound approximation of

sw run-time behaviors
before the execution

“before”: statically, without running sw

“automatic”: sw analyzes sw

“sound”: all possibilities into account

“approximation”: cannot be exact

“general”: for any source language and property
I C, C++, C#, F#, Java, JavaScript, ML, Scala, Python, JVM, Dalvik,

x86, Excel, etc
I “bu↵er-overrun?”, “memory leak?”, “type errors?”, “x = y at line 2?”,

“memory use 2K?”, etc

Hakjoo Oh AAA616 2016 Fall, Lecture 3 October 3, 2016 2 / 44

G'p'�_� 3lq≥ ï∏Ω®

“ôË·‘‡‘J?#Q MRI” “ôË·‘‡‘J?#Q fMRI” “ôË·‘‡‘J?#Q PET”

s�F�g�H ôË·‘‡‘J?#Q ¡∫��⌃&h⌥ É⇢⌅Ω®G'p'�

SW MRI SW fMRI SW PET

Various Static Analysis Tools

1. Introduction IS593 / KAIST Kihong Heo / 28

Success Stories

14

Domain-specific
Verification

Astrée

Microsoft

ENS / AbsInt

Windows Device Driver

Airbus Controller

General-purpose
Bug-finding

SNU / Fasoo.comFacebookStanford / Synopsys

Semmle / GithubGrammaTech

Mathworks

JuliaSoft

Course Objective: Theory

Abstract Interpretation: A powerful theoretical framework
for designing correct static analysis

• “framework” : correct static analysis comes out, reusable

• “powerful” : all static analyses are understood in this
framework

• “simple” : prescription is simple

• “eye-opening” : any static analysis is an abstract interpretation

Course Objective: Practice

Programming assignments

• 4 main + 1 pre-requisite

• You will write static analyzers in OCaml (https://ocaml.org)

• Simple, safe, realistic and high-level programming language

• Submit yours to TA via email

https://ocaml.org

