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Need for Combination
● In software verification, formulas like the following one arise:  

￼

● Here reasoning is needed over

○ The theory of linear arithmetic (￼ )

○ The theory of arrays (￼ )

○ The theory of equality with uninterpreted functions (￼ )

● Remember that we only consider quantifier-free conjunctions of literals. 

● Given theory solver for the three individual theories, can we combine them to 

obtain one for (￼  ￼  ￼  ￼  ￼ )?

Need for combination

In software verification, formulas like the following one arise:

a=b+ 2 ∧ A=write(B,a+ 1,4) ∧ (read(A,b+ 3)=2 ∨ f (a−1) $= f (b+ 1))

Here reasoning is needed over

The theory of linear arithmetic (TLA)

The theory of arrays (TA)

The theory of uninterpreted functions (TEUF )

Remember that T -solvers only deal with conjunctions of lits.

Given T -solvers for the three individual theories,
can we combine them to obtain one for (TLA∪TA∪TEUF )?

Under certain conditions the Nelson-Oppen combination
method gives a positive answer

SMT Theory and DPLL(T ) – p. 30
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Nelson-Oppen Combination Method
● Under certain conditions, the Nelson-Oppen combination method gives a 

positive answer.



Motivating Example
● Consider the following conjunction of formulae

● There are two theories involved: ￼  and ￼

● FIRST STEP: purify each literal so that it belongs to a single theory

Tℝ TE

Motivating example - Convex case

Consider the following set of literals:

f ( f (x)− f (y)) = a
f (0) = a+2

x = y

There are two theories involved: TLA(R) and TEUF

FIRST STEP: purify each literal so that it belongs to a single theory

f ( f (x)− f (y)) = a =⇒ f (e1) = a =⇒ f (e1) = a
e1 = f (x)− f (y) e1 = e2− e3

e2 = f (x)
e3 = f (y)

SMT Theory and DPLL(T ) – p. 31
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Motivating Example
● SECOND STEP: check satisfiability and exchange entailed equalities

● The two solvers only share ￼ .

● To merge the two models into a single one, the solvers have to agree on equalities 

between shared constants (interface equalities) 

● This can be done by exchanging entailed interface equalities.

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2− e3 = e1
f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5
x = y

The two solvers only share constants: e1,e2,e3,e4,e5,a

To merge the two models into a single one, the solvers have to agree
on equalities between shared constants (interface equalities)

This can be done by exchanging entailed interface equalities

SMT Theory and DPLL(T ) – p. 32
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Motivating Example
● SECOND STEP: check satisfiability and exchange entailed equalities

● The two solvers only share ￼ .

● ￼ -Solver says SAT, and ￼ -Solver says SAT 

● ￼ -Solver says ￼ . 
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TE Tℝ

TE e2 = e3

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2− e3 = e1
f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5
x = y

The two solvers only share constants: e1,e2,e3,e4,e5,a

To merge the two models into a single one, the solvers have to agree
on equalities between shared constants (interface equalities)

This can be done by exchanging entailed interface equalities
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Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2− e3 = e1
f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5 e2 = e3
x = y

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT
Ari-Solver says SAT
EUF |= e2=e3

SMT Theory and DPLL(T ) – p. 33
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Motivating Example
● SECOND STEP: check satisfiability and exchange entailed equalities
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Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2− e3 = e1
f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5
x = y

The two solvers only share constants: e1,e2,e3,e4,e5,a

To merge the two models into a single one, the solvers have to agree
on equalities between shared constants (interface equalities)

This can be done by exchanging entailed interface equalities

SMT Theory and DPLL(T ) – p. 32

TE Tℝ

Tℝ e1 = e4

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2− e3 = e1
f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5
x = y

The two solvers only share constants: e1,e2,e3,e4,e5,a

To merge the two models into a single one, the solvers have to agree
on equalities between shared constants (interface equalities)

This can be done by exchanging entailed interface equalities
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SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2− e3 = e1
f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
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Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2− e3 = e1
f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5 e2 = e3
x = y
e1 = e4

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT
Ari-Solver says SAT
Ari |= e1=e4

SMT Theory and DPLL(T ) – p. 34
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f (e1) = a e2− e3 = e1
f (x) = e2 e4 = 0
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EUF-Solver says SAT
Ari-Solver says SAT
EUF |= a=e5
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Motivating Example
● SECOND STEP: check satisfiability and exchange entailed equalities

● The two solvers only share ￼ .

● ￼ -Solver says SAT, and ￼ -Solver says UNSAT.

● Therefore, the formula is UNSAT.
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Nelson-Oppen Algorithm

Purification

Equality Propagation

￼ -
formula F
(Σ1 ∪ Σ2)

￼ -formula F1Σ1

￼ -formula F2Σ1

￼
Solver

T1 ￼
Solver

T2



Purification
● Transforms a quantifier-free conjunctive formula ￼  into two quantifier-free 

conjunctive formula, a ￼  formula ￼  and a ￼  formula ￼  such that  

￼  and ￼  in ￼  and ￼  in ￼ . 

● Repeat until 

○ If ￼  (where ￼  or 2) and ￼ , and ￼  is a fresh variable: 

                    ￼

○ If function ￼  (where ￼  or 2) and ￼ , and ￼  is a fresh variable: (similarly 

for predicates) 

￼

F

Σ1 F1 Σ2 F2

F = F1 ∧ F2 F1 T1 F2 T2

s ∈ Σi i = 1 t ∉ Σi w

272 10 Combining Decision Procedures

3. if hd(s) ∈ Σi and hd(t) ∈ Σj ,

F [s = t] =⇒ F [w = t] ∧ w = s

w is a fresh variable in each application of a transformation. Transformation
3 also applies to s $= t literals: replace F [s $= t] with F [w $= t] ∧ w = s.

After applying the transformations, each literal of the resulting formula
falls entirely within the signature of one of the two theories (or possibly within
each if it is just an equality x = y or a disequality x $= y between variables:
such literals are in every signature since they do not have symbols other
than =). Divide the literals into two sets, one for each theory. These sets are
not disjoint when there is a literal that is an equality or disequality between
variables. Then return the conjunction of each set.

Example 10.5. Consider (ΣE ∪ΣZ)-formula

F : 1 ≤ x ∧ x ≤ 2 ∧ f(x) $= f(1) ∧ f(x) $= f(2) .

Since f ∈ Σ= and 1 ∈ ΣZ, replace f(1) by f(w1) and add w1 = 1 by trans-
formation 1. Similarly, replace f(2) by f(w2) and add w2 = 2.

Now, the literals

1 ≤ x, x ≤ 2, w1 = 1, and w2 = 2

are TZ-literals, while the literals

f(x) $= f(w1) and f(x) $= f(w2)

are TE-literals. Hence, construct the ΣZ-formula

FZ : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

and the ΣE-formula

FE : f(x) $= f(w1) ∧ f(x) $= f(w2) .

FZ and FE share the variables x, w1, and w2. FZ∧FE is (TE∪TZ)-equisatisfiable
to F . !

Example 10.6. Consider the (ΣE ∪ΣZ)-formula

F : f(x) = x + y ∧ x ≤ y + z ∧ x + z ≤ y ∧ y = 1 ∧ f(x) $= f(2) .

Intuitively, F is (TE∪TZ)-satisfiable: consider an interpretation in which x = 0,
y = 1, z = 1, f(0) = 1, and f(2) = 2.

In the first literal, hd(f(x)) = f ∈ ΣE and hd(x + y) = + ∈ ΣZ; thus, by
transformation 3, replace the literal with

w1 = x + y ∧ w1 = f(x) .

f ∈ Σi i = 1 t ∉ Σi w

10.2 Nelson-Oppen Method: Nondeterministic Version 271

• αJ = {= !→ =J , . . .}, where for v1, v2 ∈ DJ ,

v1 =J v2
def
=






v1 =I v2 if v1, v2 ∈ DI

$ if v1 is the same element as v2

⊥ otherwise

J is a TE-interpretation satisfying F with infinite domain. Hence, TE is stably
infinite. !

The other theories discussed in this book are also stably infinite.

Example 10.4. Consider the quantifier-free conjunctive (ΣE ∪ΣZ)-formula

F : 1 ≤ x ∧ x ≤ 2 ∧ f(x) )= f(1) ∧ f(x) )= f(2) .

The signatures of TE and TZ only share =. Also, both theories are stably
infinite. Hence, the N-O combination of the decision procedures for TE and TZ

decides the (TE ∪ TZ)-satisfiability of F .
Intuitively, F is (TE ∪ TZ)-unsatisfiable. For the first two literals imply

x = 1 ∨ x = 2 so that f(x) = f(1) ∨ f(x) = f(2). Yet the last two literals
contradict this conclusion. !

10.2 Nelson-Oppen Method: Nondeterministic Version

In this section, we discuss the nondeterministic version of the N-O method.
While simple to present, it suffers from high complexity. Section 10.3 refor-
mulates the method to be deterministic and efficient.

Consider a quantifier-free conjunctive (Σ1 ∪ Σ2)-formula F . The N-O
method proceeds in two steps.

10.2.1 Phase 1: Variable Abstraction

The variable abstraction phase transforms a quantifier-free conjunctive for-
mula F into two quantifier-free conjunctive formulae, a Σ1-formula F1 and a
Σ2-formula F2, such that F and F1 ∧ F2 are (T1 ∪ T2)-equisatisfiable. That
is, F is (T1 ∪ T2)-satisfiable iff F1 ∧ F2 is (T1 ∪ T2)-satisfiable. F1 and F2 are
linked via a set of shared variables.

For term t, let hd(t) be the root symbol; e.g., hd(f(x)) = f . Then for
i, j ∈ {1, 2} and i )= j, repeat the following transformations as long as possible:

1. if function f ∈ Σi and hd(t) ∈ Σj ,

F [f(t1, . . . , t, . . . , tn)] =⇒ F [f(t1, . . . , w, . . . , tn)] ∧ w = t

2. if predicate p ∈ Σi and hd(t) ∈ Σj ,

F [p(t1, . . . , t, . . . , tn)] =⇒ F [p(t1, . . . , w, . . . , tn)] ∧ w = t



Example 1
● Consider ￼ - formula 

       ￼

● Since ￼  and ￼ , replace ￼  by ￼  and add ￼  

       ￼

● Since ￼  and ￼ , similarly add ￼  

       ￼

● Done. Construct ￼  formula  

       ￼  

and ￼  formula  

       ￼ .  ￼  and ￼  share variables ￼ , and ￼ . 

ΣE ∪ Σℤ

272 10 Combining Decision Procedures

3. if hd(s) ∈ Σi and hd(t) ∈ Σj ,

F [s = t] =⇒ F [w = t] ∧ w = s

w is a fresh variable in each application of a transformation. Transformation
3 also applies to s $= t literals: replace F [s $= t] with F [w $= t] ∧ w = s.

After applying the transformations, each literal of the resulting formula
falls entirely within the signature of one of the two theories (or possibly within
each if it is just an equality x = y or a disequality x $= y between variables:
such literals are in every signature since they do not have symbols other
than =). Divide the literals into two sets, one for each theory. These sets are
not disjoint when there is a literal that is an equality or disequality between
variables. Then return the conjunction of each set.

Example 10.5. Consider (ΣE ∪ΣZ)-formula

F : 1 ≤ x ∧ x ≤ 2 ∧ f(x) $= f(1) ∧ f(x) $= f(2) .

Since f ∈ Σ= and 1 ∈ ΣZ, replace f(1) by f(w1) and add w1 = 1 by trans-
formation 1. Similarly, replace f(2) by f(w2) and add w2 = 2.

Now, the literals

1 ≤ x, x ≤ 2, w1 = 1, and w2 = 2

are TZ-literals, while the literals

f(x) $= f(w1) and f(x) $= f(w2)

are TE-literals. Hence, construct the ΣZ-formula

FZ : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

and the ΣE-formula

FE : f(x) $= f(w1) ∧ f(x) $= f(w2) .

FZ and FE share the variables x, w1, and w2. FZ∧FE is (TE∪TZ)-equisatisfiable
to F . !

Example 10.6. Consider the (ΣE ∪ΣZ)-formula

F : f(x) = x + y ∧ x ≤ y + z ∧ x + z ≤ y ∧ y = 1 ∧ f(x) $= f(2) .

Intuitively, F is (TE∪TZ)-satisfiable: consider an interpretation in which x = 0,
y = 1, z = 1, f(0) = 1, and f(2) = 2.

In the first literal, hd(f(x)) = f ∈ ΣE and hd(x + y) = + ∈ ΣZ; thus, by
transformation 3, replace the literal with

w1 = x + y ∧ w1 = f(x) .

f ∈ ΣE 1 ∈ Σℤ f(1) f(w1) w1 = 1

1 ≤ x ∧ x ≤ 2 ∧ f(x) ≠ f(w1) ∧ f(x) ≠ f(2) ∧ w1 = 1

f ∈ ΣE 2 ∈ Σℤ w2 = 2

1 ≤ x ∧ x ≤ 2 ∧ f(x) ≠ f(w1) ∧ f(x) ≠ f(w2) ∧ w1 = 1 ∧ w2 = 2

Σℤ

Fℤ : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

ΣE

FE : f(x) ≠ f(w1) ∧ f(x) ≠ f(w2) Fℤ FE x, w1 w2



Example 2
● Consider ￼ - formula 

       ￼

● Since ￼  and ￼ , 

      ￼     

● Since ￼  and ￼ , 

      ￼

● Done. Construct ￼  formula  

       ￼  

and ￼  formula  

       ￼ .  ￼  and ￼  share variables ￼  and ￼ . 

ΣE ∪ Σℤ
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3. if hd(s) ∈ Σi and hd(t) ∈ Σj ,

F [s = t] =⇒ F [w = t] ∧ w = s

w is a fresh variable in each application of a transformation. Transformation
3 also applies to s $= t literals: replace F [s $= t] with F [w $= t] ∧ w = s.

After applying the transformations, each literal of the resulting formula
falls entirely within the signature of one of the two theories (or possibly within
each if it is just an equality x = y or a disequality x $= y between variables:
such literals are in every signature since they do not have symbols other
than =). Divide the literals into two sets, one for each theory. These sets are
not disjoint when there is a literal that is an equality or disequality between
variables. Then return the conjunction of each set.

Example 10.5. Consider (ΣE ∪ΣZ)-formula

F : 1 ≤ x ∧ x ≤ 2 ∧ f(x) $= f(1) ∧ f(x) $= f(2) .

Since f ∈ Σ= and 1 ∈ ΣZ, replace f(1) by f(w1) and add w1 = 1 by trans-
formation 1. Similarly, replace f(2) by f(w2) and add w2 = 2.

Now, the literals

1 ≤ x, x ≤ 2, w1 = 1, and w2 = 2

are TZ-literals, while the literals

f(x) $= f(w1) and f(x) $= f(w2)

are TE-literals. Hence, construct the ΣZ-formula

FZ : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

and the ΣE-formula

FE : f(x) $= f(w1) ∧ f(x) $= f(w2) .

FZ and FE share the variables x, w1, and w2. FZ∧FE is (TE∪TZ)-equisatisfiable
to F . !

Example 10.6. Consider the (ΣE ∪ΣZ)-formula

F : f(x) = x + y ∧ x ≤ y + z ∧ x + z ≤ y ∧ y = 1 ∧ f(x) $= f(2) .

Intuitively, F is (TE∪TZ)-satisfiable: consider an interpretation in which x = 0,
y = 1, z = 1, f(0) = 1, and f(2) = 2.

In the first literal, hd(f(x)) = f ∈ ΣE and hd(x + y) = + ∈ ΣZ; thus, by
transformation 3, replace the literal with

w1 = x + y ∧ w1 = f(x) .

f ∈ ΣE + ∈ Σℤ

f(x) = x + y ⟹ w1 = x + y ∧ w1 = f(x)

f ∈ ΣE 2 ∈ Σℤ

f(x) ≠ f(2) ⟹ f(x) ≠ f(w2) ∧ w2 = 2

Σℤ

Fℤ : w1 = x + y ∧ x ≤ y + z ∧ x + z ≤ y ∧ y = 1 ∧ w2 = 2

ΣE

FE : w1 = f(x) ∧ f(x) ≠ f(w2) Fℤ FE x w2



Nelson-Oppen Algorithm
  function Nelson-Oppen(￼) { 

1:  Purify ￼ into ￼ 

2:  ￼ := Run ￼  solver on ￼ 

3:  ￼ := Run ￼  solver on ￼ 

4:  if ￼ = UNSAT or ￼ = UNSAT then return UNSAT 

5:  if there exists shared variables ￼  such that  
6:     ￼  but ￼ does not for ￼ 


    then 

7:     ￼ 


8:     Goto line 2

9: return SAT

F
F F1 ∧ F2

r1 T1 F1
r2 T2 F2

r1 r2
x, y

Fi ⇒ x = y Fj i, j ∈ {1,2}

Fj := Fj ∧ x = y



Example

● Consider ￼ -formula 

￼

● Phase 1 Purification : Purify ￼  into  

￼  

and 

￼  

with shared variables ￼ . 

ΣE ∪ Σℚ
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α(V, E) = E ∧
∧

ui=vi ∈ S

(ui "= vi) ,

and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w

F
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α(V, E) = E ∧
∧

ui=vi ∈ S

(ui "= vi) ,

and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
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ui=vi ∈ S

(ui "= vi) ,

and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w

x, y, z, u, v, w



Example
● Phase 2 Equality Propagation

● Shared variables: ￼ .

● ￼ -Solver says SAT, and ￼ -Solver says SAT 

● ￼ -Solver says ￼

x, y, z, u, v, w

TE Tℚ

Tℚ x = y

TℚTE
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α(V, E) = E ∧
∧

ui=vi ∈ S

(ui "= vi) ,

and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
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(ui "= vi) ,

and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w

x = y



Example
● Phase 2 Equality Propagation

● Shared variables: ￼ .

● ￼ -Solver says SAT, and ￼ -Solver says SAT 

● ￼ -Solver says ￼

x, y, z, u, v, w

TE Tℚ

TE u = v

TℚTE
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α(V, E) = E ∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
∧

ui=vi ∈ S

(ui "= vi) ,

and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w

x = y u = v
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● Phase 2 Equality Propagation

● Shared variables: ￼ .

● ￼ -Solver says SAT, and ￼ -Solver says SAT 

● ￼ -Solver says ￼

x, y, z, u, v, w
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Tℚ z = w
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α(V, E) = E ∧
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ui=vi ∈ S
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w

x = y u = vz = w



Example
● Phase 2 Equality Propagation

● Shared variables: ￼ .

● ￼ -Solver says SAT, and ￼ -Solver says SAT 

● ￼ -Solver says ￼

x, y, z, u, v, w

TE Tℚ

Tℚ z = w

TℚTE
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α(V, E) = E ∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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∧

ui=vi ∈ S

(ui "= vi) ,

and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.

Phase 1 separates F into two formulae. According to transformation 1, it
replaces f(x) by u, f(y) by v, and u− v by w, resulting in ΣE-formula

FE : f(w) "= f(z) ∧ u = f(x) ∧ v = f(y)

and ΣQ-formula

FQ : x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w = u− v ,

with

V = shared(FE, FQ) = {x, y, z, u, v, w} .

Recall that TE and TQ are convex theories. The decision procedure PQ for
TQ discovers

FQ ⇒ x = y

from x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z, so

E1 : x = y .

Then PE discovers the new congruence f(x) = f(y) from x = y, so that

FE ∧ E1 ⇒ u = v ,

yielding

E2 : x = y ∧ u = v .

But then

FQ ∧ E2 ⇒ z = w

since w = u− v = 0, according to u = v, and z = 0. Propagating this equality
back to PE via

E3 : x = y ∧ u = v ∧ z = w
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α(V, E) = E ∧
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and F is (T1 ∪ T2)-satisfiable.

Example 10.13. Consider the (ΣE ∪ΣQ)-formula

F : f(f(x)− f(y)) "= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z .

F is (TE∪TQ)-unsatisfiable: the final three literals imply that z = 0 and x = y,
so that f(x) = f(y). But then from the first literal, f(0) "= f(0) since both
f(x)− f(y) and z equal 0.
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Example
● Phase 2 Equality Propagation

● Shared variables: ￼ .

● ￼ -Solver says UNSAT.

● Therefore, the formula is UNSAT.

x, y, z, u, v, w

TE

TℚTE
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Nelson-Oppen Restrictions
● Two theories can be combined when 

○ Both are decidable, quantifier-free conjunctive fragments

○ Equality (=) is the only symbol in the intersection of their signatures.

○ Both are stably infinite  

(not covered in this lecture; see textbook if you feel interested)

● The algorithm shown in this lecture is the deterministic version of Nelson-Oppen 

method. Only applicable when theories are convex

○ The nondeterministic version is applicable when theories are not convex 

(not covered in this lecture; see textbook if you feel interested)



Summary
● Nelson-Oppen Method

● Purification

● Equality propagation

● Some parts borrowed from  

Albert Oliveras, SMT Theory and DPLL(T), 1st SAT/SMT solver summer school 

2011


