# CSE405 I: Program Verification Combining Multiple Theories

2025 Fall

Woosuk Lee

#### Need for Combination

• In software verification, formulas like the following one arise:

$$a = b + 2 \land A = write(B, a + 1, 4) \land (read(A, b + 3) = 2 \lor f(a - 1) \neq f(b + 1))$$

- Here reasoning is needed over
  - The theory of linear arithmetic  $(T_{\mathbb{Z}})$
  - $\circ$  The theory of arrays  $(T_A)$
  - $\circ$  The theory of equality with uninterpreted functions  $(T_E)$
- Remember that we only consider quantifier-free conjunctions of literals.
- Given theory solver for the three individual theories, can we combine them to obtain one for  $(T_{\mathbb{Z}} \cup T_A \cup T_F)$ ?

## Nelson-Oppen Combination Method

• Under certain conditions, the Nelson-Oppen combination method gives a positive answer.

Consider the following conjunction of formulae

$$f(f(x) - f(y)) = a$$

$$f(0) = a + 2$$

$$x = y$$

- ullet There are two theories involved:  $T_{\mathbb{R}}$  and  $T_{E}$
- FIRST STEP: purify each literal so that it belongs to a single theory

$$f(f(x) - f(y)) = a \implies f(e_1) = a$$

$$e_1 = f(x) - f(y)$$

$$\Rightarrow f(e_1) = a$$

$$e_1 = e_2 - e_3$$

$$e_2 = f(x)$$

$$e_3 = f(y)$$

$$T_{E}$$
  $T_{R}$ 
 $f(e_{1}) = a$   $e_{2} - e_{3} = e_{1}$ 
 $f(x) = e_{2}$   $e_{4} = 0$ 
 $f(y) = e_{3}$   $e_{5} = a + 2$ 
 $f(e_{4}) = e_{5}$ 
 $x = y$ 

- The two solvers only share  $e_1, e_2, e_3, e_4, e_5, a$ .
- To merge the two models into a single one, the solvers have to agree on equalities between shared constants (interface equalities)
- This can be done by exchanging entailed interface equalities.



- The two solvers only share  $e_1, e_2, e_3, e_4, e_5, a$ .
- ullet  $T_E$ -Solver says SAT, and  $T_{\mathbb{R}}$ -Solver says SAT
- $T_E$ -Solver says  $e_2 = e_3$ .

$$f(e_1) = a$$
  $e_2 - e_3 = e_1$   
 $f(x) = e_2$   $e_4 = 0$   
 $f(y) = e_3$   $e_5 = a + 2$   
 $f(e_4) = e_5$   $e_2 = e_3$   
 $x = y$   
 $e_1 = e_4$ 

- The two solvers only share  $e_1, e_2, e_3, e_4, e_5, a$ .
- ullet  $T_E$ -Solver says SAT, and  $T_{\mathbb{R}}$ -Solver says SAT
- $T_{\mathbb{R}}$ -Solver says  $e_1 = e_4$ .

$$T_{E}$$
  $T_{R}$ 
 $f(e_{1}) = a$   $e_{2} - e_{3} = e_{1}$ 
 $f(x) = e_{2}$   $e_{4} = 0$ 
 $f(y) = e_{3}$   $e_{5} = a + 2$ 
 $f(e_{4}) = e_{5}$   $e_{2} = e_{3}$ 
 $x = y$   $a = e_{5}$ 
 $e_{1} = e_{4}$ 

- The two solvers only share  $e_1, e_2, e_3, e_4, e_5, a$ .
- ullet  $T_E$ -Solver says SAT, and  $T_{\mathbb{R}}$ -Solver says SAT
- $T_E$ -Solver says  $a = e_5$ .



- The two solvers only share  $e_1, e_2, e_3, e_4, e_5, a$ .
- ullet  $T_E$ -Solver says SAT, and  $T_{\mathbb{R}}$ -Solver says UNSAT.
- Therefore, the formula is **UNSAT**.

# Nelson-Oppen Algorithm





#### Purification

- Transforms a quantifier-free conjunctive formula F into two quantifier-free conjunctive formula, a  $\Sigma_1$  formula  $F_1$  and a  $\Sigma_2$  formula  $F_2$  such that  $F = F_1 \wedge F_2$  and  $F_1$  in  $F_2$  and  $F_2$  in  $F_2$ .
- Repeat until
  - If  $s \in \Sigma_i$  (where i = 1 or 2) and  $t \notin \Sigma_i$ , and w is a fresh variable:

$$F[s=t] \implies F[w=t] \land w=s$$

o If function  $f \in \Sigma_i$  (where i=1 or 2) and  $t \notin \Sigma_i$ , and w is a fresh variable: (similarly for predicates)

$$F[f(t_1, \ldots, t_n, t_n)] \Longrightarrow F[f(t_1, \ldots, w, \ldots, t_n)] \land w = t$$

## Example I

• Consider  $\Sigma_E \cup \Sigma_{\mathbb{Z}}$ - formula

$$F: 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$$

• Since  $f \in \Sigma_E$  and  $1 \in \Sigma_Z$ , replace f(1) by  $f(w_1)$  and add  $w_1 = 1$ 

$$1 \le x \land x \le 2 \land f(x) \ne f(w_1) \land f(x) \ne f(2) \land w_1 = 1$$

• Since  $f \in \Sigma_E$  and  $2 \in \Sigma_Z$ , similarly add  $w_2 = 2$ 

$$1 \le x \land x \le 2 \land f(x) \ne f(w_1) \land f(x) \ne f(w_2) \land w_1 = 1 \land w_2 = 2$$

ullet Done. Construct  $\Sigma_{\mathbb{Z}}$  formula

$$F_{\mathbb{Z}}: 1 \leq x \wedge x \leq 2 \wedge w_1 = 1 \wedge w_2 = 2$$

and  $\Sigma_E$  formula

$$F_E: f(x) \neq f(w_1) \land f(x) \neq f(w_2).$$
  $F_Z$  and  $F_E$  share variables  $x, w_1$ , and  $w_2$ .

• Consider  $\Sigma_E \cup \Sigma_{\mathbb{Z}}$ - formula

$$F: f(x) = x + y \land x \le y + z \land x + z \le y \land y = 1 \land f(x) \ne f(2)$$

• Since  $f \in \Sigma_E$  and  $+ \in \Sigma_{\mathbb{Z}}$ ,

$$f(x) = x + y \implies w_1 = x + y \land w_1 = f(x)$$

• Since  $f \in \Sigma_E$  and  $2 \in \Sigma_{\mathbb{Z}}$ ,

$$f(x) \neq f(2) \implies f(x) \neq f(w_2) \land w_2 = 2$$

ullet Done. Construct  $\Sigma_{\mathbb{Z}}$  formula

$$F_{\mathbb{Z}}: w_1 = x + y \land x \le y + z \land x + z \le y \land y = 1 \land w_2 = 2$$

and  $\Sigma_E$  formula

$$F_E: w_1 = f(x) \land f(x) \neq f(w_2)$$
.  $F_Z$  and  $F_E$  share variables  $x$  and  $w_2$ .

# Nelson-Oppen Algorithm

```
function Nelson-Oppen (F)
1: Purify F into F_1 \wedge F_2
2: r_1 := Run T_1 solver on F_1
3: r_2 := Run T_2 solver on F_2
4: if r_1 = UNSAT or r_2 = UNSAT then return UNSAT
  if there exists shared variables x, y such that
       F_i \Rightarrow x = y but F_i does not for i, j \in \{1, 2\}
6:
    then
F_i := F_i \wedge x = y
        Goto line 2
9: return SAT
```

• Consider  $\Sigma_E \cup \Sigma_{\mathbb{Q}}$ -formula

$$F: f(f(x) - f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$$

 $\bullet$  Phase I Purification: Purify F into

$$F_{\mathsf{E}}: f(w) \neq f(z) \land u = f(x) \land v = f(y)$$

and

$$F_{\mathbb{Q}}: x \leq y \land y + z \leq x \land 0 \leq z \land w = u - v$$

with shared variables x, y, z, u, v, w.

Phase 2 Equality Propagation

$$T_{E}$$
  $T_{\mathbb{Q}}$ 
 $f(w) \neq f(z)$   $x \leq y$ 
 $y + z \leq x$ 
 $v = f(y)$   $0 \leq z$ 
 $w = u - v$ 
 $x = y$ 

- Shared variables: x, y, z, u, v, w.
- ullet  $T_E$ -Solver says SAT, and  $T_{\mathbb Q}$ -Solver says SAT
- $T_{\mathbb{Q}}$ -Solver says x = y

Phase 2 Equality Propagation

$$T_{E}$$
  $T_{\mathbb{Q}}$ 
 $f(w) \neq f(z)$   $x \leq y$ 
 $y + z \leq x$ 
 $0 \leq z$ 
 $v = f(y)$ 
 $x = y$ 
 $w = u - v$ 
 $u = v$ 

- Shared variables: x, y, z, u, v, w.
- ullet  $T_E$ -Solver says SAT, and  $T_{\mathbb Q}$ -Solver says SAT
- $T_E$ -Solver says u = v

• Phase 2 Equality Propagation

$$f(w) \neq f(z)$$

$$u = f(x)$$

$$v = f(y)$$

$$x \leq y$$

$$0 \leq z$$

$$w = u - v$$

$$z = w$$

- Shared variables: x, y, z, u, v, w.
- ullet  $T_E$ -Solver says SAT, and  $T_{\mathbb O}$ -Solver says SAT
- $T_{\mathbb{Q}}$ -Solver says z = w

• Phase 2 Equality Propagation

$$f(w) \neq f(z)$$
 $u = f(x)$ 
 $v = f(y)$ 
 $x \leq y$ 
 $0 \leq z$ 
 $w = u - v$ 
 $z = w$ 
 $u = v$ 

- Shared variables: x, y, z, u, v, w.
- ullet  $T_E$ -Solver says SAT, and  $T_{\mathbb O}$ -Solver says SAT
- $T_{\mathbb{Q}}$ -Solver says z = w

Phase 2 Equality Propagation

$$f(w) \neq f(z)$$

$$u = f(x)$$

$$v = f(y)$$

$$x = y$$

$$z = w$$

- Shared variables: x, y, z, u, v, w.
- $T_E$ -Solver says UNSAT.
- Therefore, the formula is **UNSAT**.

$$x \leq y$$

$$y + z \leq x$$

$$0 \leq z$$

$$w = u - v$$

$$u = v$$

#### Nelson-Oppen Restrictions

- Two theories can be combined when
  - Both are decidable, quantifier-free conjunctive fragments
  - $\circ$  Equality (=) is the only symbol in the intersection of their signatures.
  - Both are stably infinite
     (not covered in this lecture; see textbook if you feel interested)
- The algorithm shown in this lecture is the *deterministic* version of Nelson-Oppen method. Only applicable when theories are *convex* 
  - The *nondeterministic* version is applicable when theories are not convex (not covered in this lecture; see textbook if you feel interested)

# Summary

- Nelson-Oppen Method
- Purification
- Equality propagation
- Some parts borrowed from

Albert Oliveras, SMT Theory and DPLL(T), 1st SAT/SMT solver summer school

2011