CSE405 I: Program Verification Theory Solvers

2025 Fall

Woosuk Lee

Review: First-Order Theories

- A first-order theory T is defined by the two components:
 - **Signature**: a set of nonlogical symbols. Given a signature Σ , a Σ -formula is one whose nonlogical symbols are from Σ . Signature restricts the syntax.
 - \circ **Axioms**: A set of closed FOL formulas whose nonlogical symbols are from Σ . Axioms restrict the interpretations.

Theory Solver

- Decides satisfiability of a formula in a theory
- In this lecture, we only consider quantifier-free & conjunctive fragments.
 - There are various techniques for removing quantifiers such as quantifier instantiation or quantifier elimination.
 - Formulas containing disjunctions can be handled by **DPLL(T)** (will be covered later)

Review: Theory of Equality

• A theory with a fixed interpretation for =. For example, the formula must be valid according to the conventional interpretation of =:

$$\forall x, y, z . (((x = y) \land \neg (y = z)) \implies \neg (x = z))$$

- To fix this interpretation, it is sufficient to enforce the following axioms:
 - Reflexivity: $\forall x . x = x$
 - \circ Symmetry: $\forall x, y . x = y \implies y = x$
 - Transitivity: $\forall x, y, z . x = y \land y = z \implies x = z$
 - 0 ...

Review: Theory of Equality (T_E)

- 0 ...
- \circ Function congruence (for each positive integer n and n-ary function symbol f):

• Predicate congruence (for each positive integer n and n-ary predicate symbol p):

$$\forall \overline{x}, \overline{y}. \left(\bigwedge_{i=1}^{n} x_i = y_i \right) \rightarrow (p(\overline{x}) \leftrightarrow p(\overline{y})) \longleftrightarrow \Rightarrow \text{and} \Leftarrow \right)$$

 Meaning: no matter what functions and predicates are used, if the inputs are the same, the outcomes are also the same.

Eliminating Predicates in T_E

- Let's remove predicates. For each predicate p, rewrite $p(x_1, ..., x_n)$ as $f_p(x_1, ..., x_n) = t$ for a fresh function symbol f_p and variable t.
- Then, axioms are
 - Reflexivity: $\forall x . x = x$
 - $\circ \quad \text{Symmetry: } \forall x, y . x = y \implies y = x$
 - Transitivity: $\forall x, y, z . x = y \land y = z \implies x = z$
 - Function congruence (for each positive integer n and n-ary function symbol f):

$$\forall \overline{x}, \overline{y}. \left(\bigwedge_{i=1}^{n} x_i = y_i \right) \rightarrow f(\overline{x}) = f(\overline{y})$$

Consider
$$F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a \text{ where } f^n(a) = \underbrace{f(f(\cdots(f(a))\cdots))}_{n}$$

ullet Place each atom of F into its own group

$$f^2(a)$$

$$f^3(a)$$

$$f^5(a)$$

$$f^4(a)$$

Consider
$$F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a \text{ where } f^n(a) = f(f(\cdots(f(a))\cdots))$$

• For each positive literal $t_1 = t_2$ in F

$$f^2(a)$$

$$f^3(a)$$

$$f^5(a)$$

$$f^4(a)$$

Consider
$$F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a \text{ where } f^n(a) = f(f(\cdots(f(a))\cdots))$$

- For each positive literal $t_1 = t_2$ in F
 - Merge the groups for t_1 and t_2

$$f(a)$$
 $f^2(a)$

a

$$f^3(a)$$
 $f^5(a)$ f^4

Consider
$$F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a \text{ where } f^n(a) = f(f(\cdots(f(a))\cdots))$$

- For each positive literal $t_1 = t_2$ in F
 - Merge the groups for t_1 and t_2
 - Propagate the resulting equalities

$$f^{2}(a)$$

$$f^{3}(a)$$

$$f^{4}(a)$$

$$f^{3}(a)$$

Consider $F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a \text{ where } f^n(a) = f(f(\cdots(f(a))\cdots))$

- For each positive literal $t_1 = t_2$ in F
 - Merge the groups for t_1 and t_2
 - Propagate the resulting equalities

$$f(a)$$
 a $f^2(a)$

$$f^4(a) f^3(a) f^5(a)$$

Consider $F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a \text{ where } f^n(a) = f(f(\cdots(f(a))\cdots))$

- For each positive literal $t_1 = t_2$ in F
 - Merge the groups for t_1 and t_2
 - Propagate the resulting equalities

Consider
$$F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a \text{ where } f^n(a) = f(f(\cdots(f(a))\cdots))$$

- For each positive literal $t_1 = t_2$ in F
 - Merge the groups for t_1 and t_2
 - Propagate the resulting equalities

$$f(a)$$
 a $f^2(a)$

$$f^4(a) f^3(a) f^5(a)$$

Consider
$$F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a$$
 where $f^n(a) = f(f(\cdots(f(a))\cdots)$

- For each positive literal $t_1 = t_2$ in F
 - Merge the groups for t_1 and t_2
 - Propagate the resulting equalities
 - If F has a negative literal $t_1 \neq t_2$ with both terms in the same group, output UNSAT. Otherwise, output SAT UNSAT f(a) a $f^2(a)$

$$f^4(a) f^3(a) f^5(a)$$

- Consider $F: f(x) = f(y) \land x \neq y$
- For each positive literal $t_1 = t_2$ in F
 - Merge the groups for t_1 and t_2
 - Propagate the resulting equalities
 - If F has a negative literal $t_1 \neq t_2$ with both terms in the same group, output UNSAT. Otherwise, output SAT

x

f(x) f(y)

- Consider $F: f(x) = f(y) \land x \neq y$
- For each positive literal $t_1 = t_2$ in F
 - Merge the groups for t_1 and t_2
 - Propagate the resulting equalities
 - If F has a negative literal $t_1 \neq t_2$ with both terms in the same group, output UNSAT. Otherwise, output SAT

x y

f(x) f(y)

- Consider $F: f(x) = f(y) \land x \neq y$
- For each positive literal $t_1 = t_2$ in F
 - Merge the groups for t_1 and t_2
 - Propagate the resulting equalities
 - If F has a negative literal $t_1 \neq t_2$ with both terms in the same group, output UNSAT. Otherwise, output SAT SAT

x y

f(x) f(y)

Congruence Closure Algorithm for T_E in General

- A binary relation (predicate) R is an equivalence relation if it's reflexive, symmetric, and transitive.
- ullet An equivalence relation R is a congruence relation if for every n-ary function f,

$$\forall \overline{x}, \overline{y}. (\bigwedge_{i=1}^{n} x_i \ R \ y_i) \implies f(\overline{x}) \ R f(\overline{y})$$

• The equivalence closure of R over set S is the complete set of all equivalences. Suppose $S = \{a, b, c\}$ and a R b, b R c, then the equivalence closure is $\{aRb, bRa, aRa, bRb, bRc, cRb, aRc, cRa, cRc\}$

Quiz

• If $S = \{a, b, c, d\}$ and a = b, b = c, d = d, then what is the equivalence closure of = over S?

{a=b, b=a, a=a, b=b, b=c, c=b, c=c, a=c, c=a, d=d}

Congruence Closure Algorithm for T_E in General

- The congruence closure of R over set S is the complete set of all congruence relations.
- The sub term set S_F of formula F is the set that contains all the sub terms of F.
 - The sub term set of $F: f(a,b) = a \land f(f(a,b),b) \neq a$ is $S_F = \{a,b,f(a,b),f(f(a,b),b)\}.$
 - The congruence closure of = over S_F is $\{f(a,b)=a,b=b.f(f(a,b),b)=f(a,b),\ldots\}$

Congruence Closure Algorithm for T_E in General

- Algorithm
 - I. Given a formula

$$F: s_1 = t_1 \land ... \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land ... \land s_n \neq t_n$$

construct the congruence closure of = of

$${s_1 = t_1, ..., s_m = t_m}$$

over S_F .

- 2. If $s_i = t_i$ according to the closure for any $i \in \{m+1, ..., n\}$, return UNSAT.
- 3. Otherwise, return SAT.

Review: Theory of Rationals

ullet The theory of rationals $T_{\mathbb{R}}$ has signature $\Sigma_{\mathbb{Q}}$

$$\Sigma_{\mathbb{Q}}: \{0, 1, +, -, =, \geq\}$$

ullet Axioms $A_{\mathbb Q}$

```
1. \forall x, y. \ x \geq y \land y \geq x \rightarrow x = y
```

2.
$$\forall x, y, z. \ x \geq y \land y \geq z \rightarrow x \geq z$$

3.
$$\forall x, y. \ x \geq y \ \lor \ y \geq x$$

4.
$$\forall x, y, z$$
. $(x + y) + z = x + (y + z)$

5.
$$\forall x. \ x + 0 = x$$

6.
$$\forall x. \ x + (-x) = 0$$

7.
$$\forall x, y. \ x + y = y + x$$

8.
$$\forall x, y, z. \ x \ge y \rightarrow x + z \ge y + z$$

• • •

Linear Programming

• Linear Programming: we want to find a solution for $x_1, ..., x_n$ maximizing objective function $c_1x_1 + ... + c_nx_n$ subject to linear inequality constraints

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le c_1 \land a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le c_2 \land \dots$$
...
$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \le c_n$$

 Very important problem: production management, finance, transportation, scheduling, ...

Linear Programming

• Maximize 3x + 2y subject to $x + y \le 4 \land x \le 2 \land x, y \ge 0$

Deciding $T_{\mathbb{Q}}$ as Linear Programming

ullet Suppose we have a quantifier-free conjunctive $T_{\mathbb Q}$ formula F

$$F: \neg (x \ge 4) \land -x \ge -2 \land x \ge 0$$

• Rewrite each atomic formula into one only with " \leq " and ">0"

$$\circ \quad -x \ge -2 \ \rightarrow \ x \le 2$$

$$\circ \quad x \ge 0 \ \rightarrow \ -x \le 0$$

• And obtain $x + y \le 4 \land y > 0 \land x \le 2 \land -x \le 0$

Deciding $T_{\mathbb{Q}}$ as Linear Programming

Solve a linear programming problem

maximize y
subject to

$$x + y \le 4 \land x \le 2 \land -x \le 0$$

y is maximized to 4 when x = 0

The optimal solution is 4
 which is > 0, therefore F is satisfiable.

ullet Consider a generic $T_{\mathbb Q}$ formula

$$F: \bigwedge_{\substack{i=1\\\ell}}^{m} a_{i1}x_1 + \dots + a_{in}x_n \leq b_i$$

$$\wedge \bigwedge_{\substack{i=1\\i=1}}^{m} \alpha_{i1}x_1 + \dots + \alpha_{in}x_n < \beta_i$$

Equalities can be written as two inequalities (e.g., $x = 0 \rightarrow x \ge 0 \land x \le 0$).

ullet F is equivalent to

$$F': \bigwedge_{\substack{i=1\\\ell}}^{m} a_{i1}x_1 + \dots + a_{in}x_n \le b_i$$

$$\wedge \bigwedge_{\substack{i=1\\k}}^{n} \alpha_{i1}x_1 + \dots + \alpha_{in}x_n + x_{n+1} \le \beta_i$$

$$\wedge x_{n+1} > 0$$

where x_{n+1} a fresh new variable.

ullet Deciding satisfiability of F is to solve the following linear programming problem

subject to
$$\bigcap_{i=1}^{m} a_{i1}x_1 + \dots + a_{in}x_n \leq b_i$$

$$\bigwedge_{i=1}^{\ell} \alpha_{i1}x_1 + \dots + \alpha_{in}x_n + x_{n+1} \leq \beta_i$$

• If the optimum is positive (i.e., max of $x_{n+1} > 0$), F is satisfiable.

ullet Suppose we have a quantifier-free conjunctive $T_{\mathbb Q}$ formula of the form:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \bowtie c_1 \land$$
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \bowtie c_2 \land$
...

where $a_{i1}, ..., a_{in}, c_i$ are constants and $\bowtie \in \{ =, \geq \}$.

- First, convert $T_{\mathbb{Q}}$ formula to NNF.
- In this form, every atomic formula is of the form:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \bowtie' c$$
 where $\bowtie' \in \{ =, \neq, \geq, < \}$ (why?)

• Second, rewrite it as the one only with \leq and > 0

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = c_i \rightarrow$$

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le c_i \land -a_{i1}x_1 - a_{i2}x_2 - \dots - a_{in}x_n + c_i \le 0$$

$$\circ \quad a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \neq c_i \rightarrow$$

(transformation of
$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n < c_i$$
) \vee

(transformation of
$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n > c_i$$
)

Summary

- Congruence closure algorithm for theory of equality
- Linear programming for theory of rationals