
CSE4051: Program Verification
Theory Solvers

2025 Fall

Woosuk Lee

Review: First-Order Theories
● A first-order theory T is defined by the two components:

○ Signature: a set of nonlogical symbols. Given a signature ￼ , a ￼ -formula is

one whose nonlogical symbols are from ￼ . Signature restricts the syntax.

○ Axioms: A set of closed FOL formulas whose nonlogical symbols are from

￼ . Axioms restrict the interpretations.

Σ Σ

Σ

Σ

Theory Solver
● Decides satisfiability of a formula in a theory

● In this lecture, we only consider quantifier-free & conjunctive fragments.

○ There are various techniques for removing quantifiers such as quantifier

instantiation or quantifier elimination.

○ Formulas containing disjunctions can be handled by DPLL(T) (will be

covered later)

Review: Theory of Equality
● A theory with a fixed interpretation for =. For example, the formula must be

valid according to the conventional interpretation of =: 

 ￼

● To fix this interpretation, it is sufficient to enforce the following axioms:

○ Reflexivity: ￼

○ Symmetry: ￼

○ Transitivity: ￼

○ …

∀x, y, z . (((x = y) ∧ ¬(y = z)) ⟹ ¬(x = z))

∀x . x = x

∀x, y . x = y ⟹ y = x

∀x, y, z . x = y ∧ y = z ⟹ x = z

Review: Theory of Equality (￼)TE
○ …

○ Function congruence (for each positive integer ￼ and ￼ -ary function symbol ￼):  

○ Predicate congruence (for each positive integer ￼ and ￼ -ary predicate symbol

￼): 

○ Meaning: no matter what functions and predicates are used, if the inputs are

the same, the outcomes are also the same.

n n f

n n

p

3.2 Equality 71

II of this book. We introduce them in the following sections. In Section 3.7,
we summarize the decidability and complexity results for these theories and
fragments.

3.2 Equality

The theory of equality TE is the simplest first-order theory. Its signature

ΣE : {=, a, b, c, . . . , f, g, h, . . . , p, q, r, . . .}

consists of

• = (equality), a binary predicate;
• and all constant, function, and predicate symbols.

Equality = is an interpreted predicate symbol: its meaning is defined via
the axioms of TE. The other constant, function, and predicate symbols are
uninterpreted except as they relate to equality. The axioms of TE are the
following:

1. ∀x. x = x (reflexivity)
2. ∀x, y. x = y → y = x (symmetry)
3. ∀x, y, z. x = y ∧ y = z → x = z (transitivity)
4. for each positive integer n and n-ary function symbol f ,

∀x, y.

(
n∧

i=1

xi = yi

)

→ f(x) = f(y) (function congruence)

5. for each positive integer n and n-ary predicate symbol p,

∀x, y.

(
n∧

i=1

xi = yi

)

→ (p(x)↔ p(y)) (predicate congruence)

The notation x stands for the list of variables x1, . . . , xn. Axioms (function con-
gruence) and (predicate congruence) are actually axiom schemata. An axiom
schema stands for a set of axioms, each an instantiation of the parameters (f
and p in (function congruence) and (predicate congruence), respectively). For
example, for binary function symbol f2, (function congruence) instantiates to
the following axiom:

∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → f2(x1, x2) = f2(y1, y2) .

The first three axioms state that = is an equivalence relation: it is a
binary predicate that obeys reflexivity, symmetry, and transitivity. The final
two axiom schemata formalize our intuition for the behavior of functions and
predicates under equality. A function (predicate) always evaluates to the same

3.2 Equality 71

II of this book. We introduce them in the following sections. In Section 3.7,
we summarize the decidability and complexity results for these theories and
fragments.

3.2 Equality

The theory of equality TE is the simplest first-order theory. Its signature

ΣE : {=, a, b, c, . . . , f, g, h, . . . , p, q, r, . . .}

consists of

• = (equality), a binary predicate;
• and all constant, function, and predicate symbols.

Equality = is an interpreted predicate symbol: its meaning is defined via
the axioms of TE. The other constant, function, and predicate symbols are
uninterpreted except as they relate to equality. The axioms of TE are the
following:

1. ∀x. x = x (reflexivity)
2. ∀x, y. x = y → y = x (symmetry)
3. ∀x, y, z. x = y ∧ y = z → x = z (transitivity)
4. for each positive integer n and n-ary function symbol f ,

∀x, y.

(
n∧

i=1

xi = yi

)

→ f(x) = f(y) (function congruence)

5. for each positive integer n and n-ary predicate symbol p,

∀x, y.

(
n∧

i=1

xi = yi

)

→ (p(x)↔ p(y)) (predicate congruence)

The notation x stands for the list of variables x1, . . . , xn. Axioms (function con-
gruence) and (predicate congruence) are actually axiom schemata. An axiom
schema stands for a set of axioms, each an instantiation of the parameters (f
and p in (function congruence) and (predicate congruence), respectively). For
example, for binary function symbol f2, (function congruence) instantiates to
the following axiom:

∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → f2(x1, x2) = f2(y1, y2) .

The first three axioms state that = is an equivalence relation: it is a
binary predicate that obeys reflexivity, symmetry, and transitivity. The final
two axiom schemata formalize our intuition for the behavior of functions and
predicates under equality. A function (predicate) always evaluates to the same

￼ : list of variables
￼

x
x1, …, xn

￼ : ￼ and ￼↔ ⇒ ⇐

Eliminating Predicates in ￼TE

● Let’s remove predicates. For each predicate ￼ , rewrite ￼ as

￼ for a fresh function symbol ￼ and variable ￼.

● Then, axioms are

○ Reflexivity: ￼

○ Symmetry: ￼

○ Transitivity: ￼

○ Function congruence (for each positive integer ￼ and ￼ -ary function symbol ￼):

p p(x1, …, xn)

fp(x1, …, xn) = t fp t

∀x . x = x

∀x, y . x = y ⟹ y = x

∀x, y, z . x = y ∧ y = z ⟹ x = z

n n f

3.2 Equality 71

II of this book. We introduce them in the following sections. In Section 3.7,
we summarize the decidability and complexity results for these theories and
fragments.

3.2 Equality

The theory of equality TE is the simplest first-order theory. Its signature

ΣE : {=, a, b, c, . . . , f, g, h, . . . , p, q, r, . . .}

consists of

• = (equality), a binary predicate;
• and all constant, function, and predicate symbols.

Equality = is an interpreted predicate symbol: its meaning is defined via
the axioms of TE. The other constant, function, and predicate symbols are
uninterpreted except as they relate to equality. The axioms of TE are the
following:

1. ∀x. x = x (reflexivity)
2. ∀x, y. x = y → y = x (symmetry)
3. ∀x, y, z. x = y ∧ y = z → x = z (transitivity)
4. for each positive integer n and n-ary function symbol f ,

∀x, y.

(
n∧

i=1

xi = yi

)

→ f(x) = f(y) (function congruence)

5. for each positive integer n and n-ary predicate symbol p,

∀x, y.

(
n∧

i=1

xi = yi

)

→ (p(x)↔ p(y)) (predicate congruence)

The notation x stands for the list of variables x1, . . . , xn. Axioms (function con-
gruence) and (predicate congruence) are actually axiom schemata. An axiom
schema stands for a set of axioms, each an instantiation of the parameters (f
and p in (function congruence) and (predicate congruence), respectively). For
example, for binary function symbol f2, (function congruence) instantiates to
the following axiom:

∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → f2(x1, x2) = f2(y1, y2) .

The first three axioms state that = is an equivalence relation: it is a
binary predicate that obeys reflexivity, symmetry, and transitivity. The final
two axiom schemata formalize our intuition for the behavior of functions and
predicates under equality. A function (predicate) always evaluates to the same

Congruence Closure Algorithm for ￼TE

●
Consider ￼ where ￼

● Place each atom of ￼ into its own group

F : f3(a) = a ∧ f 5(a) = a ∧ f(a) ≠ a f n(a) = f(f(⋯(f

n

(a))⋯)

F

￼a ￼f(a)

￼f 5(a)￼f3(a)

￼f2(a)

￼f 4(a)

Congruence Closure Algorithm for ￼TE

●
Consider ￼ where ￼

● For each positive literal ￼ in ￼

F : f3(a) = a ∧ f 5(a) = a ∧ f(a) ≠ a f n(a) = f(f(⋯(f

n

(a))⋯)

t1 = t2 F

￼a ￼f(a)

￼f 5(a)￼f3(a)

￼f2(a)

￼f 4(a)

Congruence Closure Algorithm for ￼TE

●
Consider ￼ where ￼

● For each positive literal ￼ in ￼

○ Merge the groups for ￼ and ￼

F : f3(a) = a ∧ f 5(a) = a ∧ f(a) ≠ a f n(a) = f(f(⋯(f

n

(a))⋯)

t1 = t2 F

t1 t2

￼a

￼f(a)

￼f 5(a)￼f3(a)

￼f2(a)

￼f 4(a)

Congruence Closure Algorithm for ￼TE

●
Consider ￼ where ￼

● For each positive literal ￼ in ￼

○ Merge the groups for ￼ and ￼

○ Propagate the resulting equalities

F : f3(a) = a ∧ f 5(a) = a ∧ f(a) ≠ a f n(a) = f(f(⋯(f

n

(a))⋯)

t1 = t2 F

t1 t2

￼a

￼f 5(a) ￼f3(a)

￼f(a)

￼f 4(a)

￼f

￼f2(a)

￼f

Congruence Closure Algorithm for ￼TE

●
Consider ￼ where ￼

● For each positive literal ￼ in ￼

○ Merge the groups for ￼ and ￼

○ Propagate the resulting equalities

F : f3(a) = a ∧ f 5(a) = a ∧ f(a) ≠ a f n(a) = f(f(⋯(f

n

(a))⋯)

t1 = t2 F

t1 t2

￼a

￼f 5(a)￼f3(a)

￼f(a)

￼f 4(a)

￼f2(a)

Congruence Closure Algorithm for ￼TE

●
Consider ￼ where ￼

● For each positive literal ￼ in ￼

○ Merge the groups for ￼ and ￼

○ Propagate the resulting equalities

F : f3(a) = a ∧ f 5(a) = a ∧ f(a) ≠ a f n(a) = f(f(⋯(f

n

(a))⋯)

t1 = t2 F

t1 t2

￼a

￼f 5(a)￼f3(a)

￼f(a)

￼f 4(a)

￼f2(a)

￼f

Congruence Closure Algorithm for ￼TE

●
Consider ￼ where ￼

● For each positive literal ￼ in ￼

○ Merge the groups for ￼ and ￼

○ Propagate the resulting equalities

F : f3(a) = a ∧ f 5(a) = a ∧ f(a) ≠ a f n(a) = f(f(⋯(f

n

(a))⋯)

t1 = t2 F

t1 t2

￼a

￼f 5(a)￼f3(a)

￼f(a)

￼f 4(a)

￼f2(a)

Congruence Closure Algorithm for ￼TE

●
Consider ￼ where ￼

● For each positive literal ￼ in ￼

○ Merge the groups for ￼ and ￼

○ Propagate the resulting equalities

○ If ￼ has a negative literal ￼ with both terms in the same group, output

UNSAT. Otherwise, output SAT

F : f3(a) = a ∧ f 5(a) = a ∧ f(a) ≠ a f n(a) = f(f(⋯(f

n

(a))⋯)

t1 = t2 F

t1 t2

F t1 ≠ t2

￼a

￼f 5(a)￼f3(a)

￼f(a)

￼f 4(a)

￼f2(a)UNSAT

Congruence Closure Algorithm for ￼TE

● Consider ￼

● For each positive literal ￼ in ￼

○ Merge the groups for ￼ and ￼

○ Propagate the resulting equalities

○ If ￼ has a negative literal ￼ with both terms in the same group, output

UNSAT. Otherwise, output SAT

F : f(x) = f(y) ∧ x ≠ y

t1 = t2 F

t1 t2

F t1 ≠ t2

￼y

￼f(y)

￼x

￼f(x)

Congruence Closure Algorithm for ￼TE

● Consider ￼

● For each positive literal ￼ in ￼

○ Merge the groups for ￼ and ￼

○ Propagate the resulting equalities

○ If ￼ has a negative literal ￼ with both terms in the same group, output

UNSAT. Otherwise, output SAT

F : f(x) = f(y) ∧ x ≠ y

t1 = t2 F

t1 t2

F t1 ≠ t2

￼y

￼f(y)

￼x

￼f(x)

Congruence Closure Algorithm for ￼TE

● Consider ￼

● For each positive literal ￼ in ￼

○ Merge the groups for ￼ and ￼

○ Propagate the resulting equalities

○ If ￼ has a negative literal ￼ with both terms in the same group, output

UNSAT. Otherwise, output SAT

F : f(x) = f(y) ∧ x ≠ y

t1 = t2 F

t1 t2

F t1 ≠ t2

￼y

￼f(y)

￼x

￼f(x)

SAT

Congruence Closure Algorithm for ￼ in GeneralTE

● A binary relation (predicate) ￼ is an equivalence relation if it’s reflexive,

symmetric, and transitive.

● An equivalence relation ￼ is a congruence relation if for every n-ary function ￼,  

 ￼

● The equivalence closure of ￼ over set ￼ is the complete set of all equivalences.

Suppose ￼ and ￼ , then the equivalence closure is  

￼

R

R f

∀x, y . (
n

⋀
i=1

xi R yi) ⟹ f(x) R f(y)

R S

S = {a, b, c} a R b, b R c

{aRb, bRa, aRa, bRb, bRc, cRb, aRc, cRa, cRc}

Quiz
● If ￼ and ￼ , then what is the equivalence closure

of = over ￼ ?  

{a=b, b=a, a=a, b=b, b=c, c=b, c=c, a=c, c=a, d=d}

S = {a, b, c, d} a = b, b = c, d = d

S

Congruence Closure Algorithm for ￼ in GeneralTE

● The congruence closure of ￼ over set ￼ is the complete set of all congruence

relations.

● The sub term set ￼ of formula ￼ is the set that contains all the sub terms of ￼ .

○ The sub term set of ￼ is  

￼ .

○ The congruence closure of = over ￼ is  

￼

R S

SF F F

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}

SF

{f(a, b) = a, b = b . f(f(a, b), b) = f(a, b), …}

Congruence Closure Algorithm for ￼ in GeneralTE

● Algorithm

1. Given a formula  

 ￼  

construct the congruence closure of = of  

 ￼  

over ￼ .

2. If ￼ according to the closure for any ￼ , return UNSAT.

3. Otherwise, return SAT.

F : s1 = t1 ∧ … ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ … ∧ sn ≠ tn

{s1 = t1, …, sm = tm}

SF

si = ti i ∈ {m + 1,…, n}

Review: Theory of Rationals
● The theory of rationals ￼ has signature ￼  

 ￼

● Axioms ￼  

 

 

 

 

 

 

…

Tℝ Σℚ

82 3 First-Order Theories

17. for each odd integer n,

∀x. ∃y. yn + x1y
n−1 + · · · + xn−1y + xn = 0 (at least one root)

Example 3.12. The method of quantifier elimination, which we study
in Chapter 7, eliminates quantifiers from a formula to produce an equivalent
quantifier-free formula. If a formula F contains free variables, then a quantifier
elimination procedure produces an equivalent quantifier-free formula F ′ such
that free(F ′) ⊆ free(F). For example, when is the formula

F : ∃x. ax2 + bx + c = 0

satisfiable? That is, what are the conditions on a, b, and c such that a quadratic
polynomial has a real root? Recall that the discriminant must be nonnegative:

F ′ : b2 − 4ac ≥ 0 .

F ′ is the quantifier-free formula that is TR-equivalent to F . !

Tarski proved that TR was decidable in the 1930s, although the Second
World War prevented his publishing the result until 1956. Collins proposed the
more efficient technique of cylindrical algebraic decomposition (CAD) in
1975. Unfortunately, even the most efficient decision procedures for TR have

prohibitively high time complexity: CAD runs in time proportionate to 22k|F |

,
for some constant k and for |F | the length of ΣR-formula F .

3.4.2 Theory of Rationals

Given the high complexity of deciding TR-validity (and the high intellectual
complexity of Tarski’s and subsequent decision procedures for TR), we turn to
a simpler theory without multiplication, the theory of rationals TQ. It has
signature

ΣQ : {0, 1, +, −, =, ≥} ,

where

• 0 and 1 are constants;
• + (addition) is a binary function;
• − (negation) is a unary function;
• and = (equality) and ≥ (weak inequality) are binary predicates.

Its axioms are the following:

1. ∀x, y. x ≥ y ∧ y ≥ x → x = y (antisymmetry)
2. ∀x, y, z. x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
3. ∀x, y. x ≥ y ∨ y ≥ x (totality)

Aℚ

82 3 First-Order Theories

17. for each odd integer n,

∀x. ∃y. yn + x1y
n−1 + · · · + xn−1y + xn = 0 (at least one root)

Example 3.12. The method of quantifier elimination, which we study
in Chapter 7, eliminates quantifiers from a formula to produce an equivalent
quantifier-free formula. If a formula F contains free variables, then a quantifier
elimination procedure produces an equivalent quantifier-free formula F ′ such
that free(F ′) ⊆ free(F). For example, when is the formula

F : ∃x. ax2 + bx + c = 0

satisfiable? That is, what are the conditions on a, b, and c such that a quadratic
polynomial has a real root? Recall that the discriminant must be nonnegative:

F ′ : b2 − 4ac ≥ 0 .

F ′ is the quantifier-free formula that is TR-equivalent to F . !

Tarski proved that TR was decidable in the 1930s, although the Second
World War prevented his publishing the result until 1956. Collins proposed the
more efficient technique of cylindrical algebraic decomposition (CAD) in
1975. Unfortunately, even the most efficient decision procedures for TR have

prohibitively high time complexity: CAD runs in time proportionate to 22k|F |

,
for some constant k and for |F | the length of ΣR-formula F .

3.4.2 Theory of Rationals

Given the high complexity of deciding TR-validity (and the high intellectual
complexity of Tarski’s and subsequent decision procedures for TR), we turn to
a simpler theory without multiplication, the theory of rationals TQ. It has
signature

ΣQ : {0, 1, +, −, =, ≥} ,

where

• 0 and 1 are constants;
• + (addition) is a binary function;
• − (negation) is a unary function;
• and = (equality) and ≥ (weak inequality) are binary predicates.

Its axioms are the following:

1. ∀x, y. x ≥ y ∧ y ≥ x → x = y (antisymmetry)
2. ∀x, y, z. x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
3. ∀x, y. x ≥ y ∨ y ≥ x (totality)

3.4 Rationals and Reals 83

4. ∀x, y, z. (x + y) + z = x + (y + z) (+ associativity)
5. ∀x. x + 0 = x (+ identity)
6. ∀x. x + (−x) = 0 (+ inverse)
7. ∀x, y. x + y = y + x (+ commutativity)
8. ∀x, y, z. x ≥ y → x + z ≥ y + z (+ ordered)

9. for each positive integer n,

∀x. nx = 0 → x = 0 (torsion-free)

10. for each positive integer n,

∀x. ∃y. x = ny (divisible)

By nx we mean x added to itself n times: x + · · · + x. The first eight axioms
are a subset of the axioms of TR. They state that every TQ-interpretation is
an ordered abelian group. ≥ is a total order by the first three axioms. Identity
0, addition +, additive inverse −, and equality = comprise an abelian group
by the next four axioms. The eighth axiom asserts that the abelian group is
ordered.

The axiom schema (torsion-free) states that only 0 can be added to itself to
produce 0. The name “torsion-free” comes from the following mathematical
context. In a group, the order of an element v is the integer n such that nv
is the identity element 0: nv = 0. If no such n exists, then the element v has
infinite order. A group is torsion-free if the only element with finite order is
the identity 0.

Finally, the axiom schema (divisible) asserts that all elements of the domain
DI of a TQ-interpretation I are divisible. That is, for every positive integer n,
every element v ∈ DI is the sum of n of some other element w ∈ DI .

Thus, every TQ-interpretation is a divisible torsion-free abelian group. In
particular, the rationals and reals with +, −, =, and ≥ are divisible torsion-
free abelian groups. As TQ-interpretations, the rationals and reals are ele-
mentarily equivalent: there does not exist a ΣQ-formula that distinguishes
between a real TQ-interpretation (an interpretation with domain R) and a
rational TQ-interpretation (an interpretation with domain Q).

This characteristic makes sense, intuitively: no linear expression with only
integer coefficients can capture, say,

√
2 without also being satisfied by some

rational values. When junior high students solve linear algebra problems, they
apply addition, subtraction, multiplication, and division; but they do not take
roots.

In contrast, TR is a theory of reals: the ΣR-formula x·x = 2 is only satisfied
by TR-interpretations I in which αI [x] = −

√
2 or αI [x] =

√
2.

Example 3.13. Strict inequality is simple to express in TQ. Write

∀x, y. ∃z. x + y > z

Linear Programming
● Linear Programming: we want to find a solution for ￼ maximizing

objective function ￼ subject to linear inequality constraints  

 ￼  

 ￼  

 …  

 ￼

● Very important problem: production management, finance, transportation,

scheduling, …

x1, …, xn

c1x1 + … + cnxn

a11x1 + a12x2 + … + a1nxn ≤ c1 ∧

a21x1 + a22x2 + … + a2nxn ≤ c2 ∧

an1x1 + an2x2 + … + annxn ≤ cn

Linear Programming
● Maximize ￼ subject to ￼3x + 2y x + y ≤ 4 ∧ x ≤ 2 ∧ x, y ≥ 0

Deciding ￼ as Linear ProgrammingTℚ

● Suppose we have a quantifier-free conjunctive ￼ formula ￼  

 ￼ ￼ ￼ ￼

● Rewrite each atomic formula into one only with “￼ ” and “￼ ”

○ ￼ ➞ ￼ ➞ ￼

○ ￼ ➞ ￼

○ ￼ ➞ ￼

● And obtain ￼ ￼ ￼ ￼ ￼

Tℚ F

F : ¬(x ≥ 4) ∧ −x ≥ − 2 ∧ x ≥ 0

≤ > 0

¬(x ≥ 4) x < 4 x + y ≤ 4 ∧ y > 0

−x ≥ − 2 x ≤ 2

x ≥ 0 −x ≤ 0

x + y ≤ 4 ∧ y > 0 ∧ x ≤ 2 ∧ −x ≤ 0

Deciding ￼ as Linear ProgrammingTℚ

● Solve a linear programming problem  

maximize ￼  

subject to  

 ￼ ￼ ￼ ￼ ￼

● The optimal solution is 4  

which is > 0, therefore ￼ is  

satisfiable.

y

x + y ≤ 4 ∧ x ≤ 2 ∧ −x ≤ 0

F

￼ is maximized to 4

when ￼
y

x = 0

Deciding ￼ as Linear Programming in GeneralTℚ

● Consider a generic ￼ formula 

 ￼  

Equalities can be written as two inequalities (e.g., ￼ ➞ ￼).

Tℚ

8.3 Linear Programs 217

Therefore, we seek the right δ. Now consider multiplying the rows of Ax ≤ b
by nonnegative rationals and then summing the multiplied rows together. The
resulting inequality is satisfied by any x satisfying Ax ≤ b; in other words, it
is implied by Ax ≤ b. Mathematically, consider any nonnegative vector y ≥ 0;
then

Ax ≤ b ⇒ yTAx ≤ yTb .

Hence, to prove

Ax ≤ b ⇒ cTx ≤ δ

for a fixed δ, find y ≥ 0 such that

yTA = cT and yTb = δ .

That is,

Ax ≤ b ⇒ cT
︸︷︷︸
yTA

x ≤ δ︸︷︷︸
yTb

.

But we want to find a minimal δ such that the implication holds, not just
prove it for a fixed δ. Thus, choose y ≥ 0 such that yTA = cT and that
minimizes yTb. This equivalence between maximizing cTx and minimizing yTb
is the one claimed by Theorem 8.6.

We refer the reader in Bibliographic Remarks to texts that contain the
proof of this theorem.

TQ-Satisfiability

Consider a generic ΣQ-formula

F :
m∧

i=1

ai1x1 + · · · + ainxn ≤ bi

∧
!∧

i=1

αi1x1 + · · · + αinxn < βi

with both weak and strict inequalities. Equalities can be written as two in-
equalities. F is TQ-equivalent to the ΣQ-formula

F ′ :
m∧

i=1

ai1x1 + · · · + ainxn ≤ bi

∧
!∧

i=1

αi1x1 + · · · + αinxn + xn+1 ≤ βi

∧ xn+1 > 0

x = 0 x ≥ 0 ∧ x ≤ 0

Deciding ￼ as Linear Programming in GeneralTℚ

● ￼ is equivalent to  

￼  

where ￼ a fresh new variable.

F

8.3 Linear Programs 217

Therefore, we seek the right δ. Now consider multiplying the rows of Ax ≤ b
by nonnegative rationals and then summing the multiplied rows together. The
resulting inequality is satisfied by any x satisfying Ax ≤ b; in other words, it
is implied by Ax ≤ b. Mathematically, consider any nonnegative vector y ≥ 0;
then

Ax ≤ b ⇒ yTAx ≤ yTb .

Hence, to prove

Ax ≤ b ⇒ cTx ≤ δ

for a fixed δ, find y ≥ 0 such that

yTA = cT and yTb = δ .

That is,

Ax ≤ b ⇒ cT
︸︷︷︸
yTA

x ≤ δ︸︷︷︸
yTb

.

But we want to find a minimal δ such that the implication holds, not just
prove it for a fixed δ. Thus, choose y ≥ 0 such that yTA = cT and that
minimizes yTb. This equivalence between maximizing cTx and minimizing yTb
is the one claimed by Theorem 8.6.

We refer the reader in Bibliographic Remarks to texts that contain the
proof of this theorem.

TQ-Satisfiability

Consider a generic ΣQ-formula

F :
m∧

i=1

ai1x1 + · · · + ainxn ≤ bi

∧
!∧

i=1

αi1x1 + · · · + αinxn < βi

with both weak and strict inequalities. Equalities can be written as two in-
equalities. F is TQ-equivalent to the ΣQ-formula

F ′ :
m∧

i=1

ai1x1 + · · · + ainxn ≤ bi

∧
!∧

i=1

αi1x1 + · · · + αinxn + xn+1 ≤ βi

∧ xn+1 > 0

xn+1

Deciding ￼ as Linear Programming in GeneralTℚ

● Deciding satisfiability of ￼ is to solve the following linear programming problem 

 ￼

● If the optimum is positive (i.e., max of ￼) , ￼ is satisfiable.

F

218 8 Quantifier-Free Linear Arithmetic

with only weak inequalities except for xn+1 > 0. To decide the TQ-satisfiability
of F ′, and thus of F , pose and solve the following linear program:

max xn+1

subject to
m∧

i=1

ai1x1 + · · · + ainxn ≤ bi

!∧

i=1

αi1x1 + · · · + αinxn + xn+1 ≤ βi

F ′ is TQ-satisfiable iff the optimum is positive.
When F does not contain any strict inequality literals, the optimization

problem is just a satisfiability problem because xn+1 is not introduced. This
situation corresponds to a linear program with a constant objective value:

max 1
subject to

m∧

i=1

ai1x1 + · · · + ainxn ≤ bi

According to convention, the optimum is −∞ iff the constraints are TQ-
unsatisfiable and 1 otherwise. This form of linear program is sometimes called
a linear feasibility problem.

8.4 The Simplex Method

Consider the generic linear program

M : max cTx
subject to

G : Ax ≤ b

The simplex method solves the linear program in two main steps. In the
first step, it obtains an initial vertex v1 of Ax ≤ b. In the second step, it
iteratively traverses the vertices of Ax ≤ b, beginning at v1, in search of the
vertex that maximizes the objective function. On each iteration of the second
step, it determines if the current vertex vi has a greater objective value than
the vertices adjacent to vi. If not, it moves to one of the adjacent vertices with
a greater objective value. If so, it halts and reports vi as the optimum point
with value cTvi.

vi is a local optimum since its adjacent vertices have lesser objective
values. But because the space defined by Ax ≤ b is convex, vi is also the
global optimum: it is the highest value attained by any point that satisfies
the constraints.

xn+1 > 0 F

￼F′￼

Deciding ￼ as Linear Programming in GeneralTℚ

● Suppose we have a quantifier-free conjunctive ￼ formula of the form:  

 ￼  

 ￼  

 …  

where ￼ are constants and￼ .

● First, convert ￼ formula to NNF.

● In this form, every atomic formula is of the form:  

 ￼  

where￼ (why?)

Tℚ

a11x1 + a12x2 + … + a1nxn ⋈ c1 ∧

a21x1 + a22x2 + … + a2nxn ⋈ c2 ∧

ai1, …, ain, ci ⋈ ∈ { = , ≥ }

Tℚ

a1x1 + a2x2 + … + anxn ⋈′￼ c

⋈′￼ ∈ { = , ≠ , ≥ , < }

Deciding ￼ as Linear Programming in GeneralTℚ

● Second, rewrite it as the one only with ￼ and ￼

○ ￼ ➞ ￼

○ ￼ ➞ ￼

○ ￼ ➞  

 ￼ ￼

○ ￼ ➞  

 (transformation of ￼) ￼  

 (transformation of ￼)

≤ > 0

ai1x1 + ai2x2 + … + ainxn ≥ ci −ai1x1 − ai2x2 − … − ainxn + ci ≤ 0

ai1x1 + ai2x2 + … + ainxn < ci ai1x1 + ai2x2 + … + ainxn + y ≤ ci ∧ y > 0

ai1x1 + ai2x2 + … + ainxn = ci

ai1x1 + ai2x2 + … + ainxn ≤ ci ∧ −ai1x1 − ai2x2 − … − ainxn + ci ≤ 0

ai1x1 + ai2x2 + … + ainxn ≠ ci

ai1x1 + ai2x2 + … + ainxn < ci ∨

ai1x1 + ai2x2 + … + ainxn > ci

Summary
● Congruence closure algorithm for theory of equality

● Linear programming for theory of rationals

