
CSE4051: Program Verification
Applications of SMT

2025 Fall

Woosuk Lee

Review: Satisfiability Modulo Theory (SMT)
● A first-order theory T is defined by the two components:

○ Signature: a set of nonlogical symbols. Given a signature ￼ , a ￼ -formula is one whose

nonlogical symbols are from ￼ . Signature restricts the syntax.

○ Axioms: A set of closed FOL formulas whose nonlogical symbols are from ￼ . Axioms restrict

the interpretations.

● Given a theory ￼ with signature ￼ and axioms A, an interpretation ￼ is called  

￼ -interpretation if

○ ￼ for every ￼ (every axiom in A is valid under ￼)

● A ￼ -formula ￼ is ￼ -satisfiable (or satisfiable modulo ￼) if there exists a ￼ -interpretation that

satisfies ￼ .

● An SMT problem is to find a ￼ -interpretation for a given formula in theory ￼ .

Σ Σ

Σ

Σ

T Σ I

T

I ⊧ a a ∈ A I

Σ F T T T

F

T T

Exercises
● In this lecture, we will use Z3 as done in the previous lecture.

Review: Using Z3Py
● Install Z3Py using pip:

● Import Z3Py in your Python script:

● Define Boolean variables:

● Create logical formulas using Z3Py:

● Solve the satisfiability problem:

● The `solve` function will return whether the formula is satisfiable or not, and if it is, it will provide an

interpretation that satisfies the formula.

pip install z3-solver

from z3 import *

a = Bool("a")

b = Bool("b")

f1 = And(Not(a), Not(b))

f2 = Or(a, b)

solve(Not(f1 == f2))

Arithmetic

from z3 import ∗

x=Int(’x’) 
y=Int(’y’) 

solve (x > 2, y < 10, x + 2∗y == 7)

x = Real(’x’) 
y = Real(’y’) 

solve(x∗∗2 + y∗∗2 > 3, x∗∗3 + y < 5)

Bitvectors

x = BitVec(’x’, 32)

y = BitVec(’y’, 32)

solve(x & y == ~y)

solve(x >> 2 == 3)

solve(x << 2 == 3)

solve(x << 2 == 24)

Uninterpreted Functions
x=Int(’x’)

2y=Int(’y’)

f = Function(’f’, IntSort(), IntSort())

s = Solver() 
s.add(f(f(x)) == x, f(x) == y, x != y)

print (s.check())

m = s.model()

print (m)

print (”f(f(x)) =”, m.evaluate(f(f(x))))

print (”f(x) =”, m.evaluate(f(x)))

Program Equivalence with Uninterpreted Functions

● Suppose we want to prove equivalence of the following two programs:

● Let ￼ be return values of fun1 and fun2 respectively.

● We want to prove unsatisfiability of  

 ￼

r1, r2

z = y ∧ w = x ∧ x = z ∧ r1 = x × x ∧ r2 = y × y ∧ ¬(r1 = r2)

int fun1(int y) {

 int x, z, w;

 z = y;

 w = x;

 x = z;

 return x*x;

}

int fun2(int y) {

 return y*y;

}

Program Equivalence with Uninterpreted Functions

● Using an uninterpreted function sqr, we can rewrite the formula as  

 ￼  

which is UNSAT in the theory of equality with uninterpreted functions.

z = y ∧ w = x ∧ x = z ∧ r1 = sqr(x) ∧ r2 = sqr(y) ∧ ¬(r1 = r2)

Eight Queens
● The eight queens puzzle is the problem of placing eight chess queens on an 8x8

chessboard so that no two queens attack each other. Thus, a solution requires

that no two queens share the same row, column, or diagonal.

Example 3: Eight Queens

The eight queens puzzle is the problem of placing eight chess queens on an
8x8 chessboard so that no two queens attack each other. Thus, a solution
requires that no two queens share the same row, column, or diagonal.

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 17 / 33

Encoding for Eight Queens
● Define variables ￼ : the column position of the queen in row ￼

● Each queen is in a column {1, …, 8}: 

 ￼

● No queens share the same column: 

 ￼

● No queens share the same diagonal:  

 ￼

Qi i

8

⋀
i=1

1 ≤ Qi ∧ Qi ≤ 8

8

⋀
i=1

8

⋀
j=1

i ≠ j ⟹ Qi ≠ Qj

8

⋀
i=1

8

⋀
j=1

i ≠ j ⟹ Qi − Qj ≠ i − j ∧ Qi − Qj ≠ j − i

Encoding for Eight Queens
We know each queen must be in a different row.

So, we represent each queen by a single integer: the column position

Q = [Int('Q_%i' % (i + 1)) for i in range(8)]

Each queen is in a column {1, ... 8 }

val_c = [And(1 <= Q[i], Q[i] <= 8) for i in range(8)]

At most one queen per column

col_c = [Distinct(Q)]

Diagonal constraint

diag_c = [If(i == j,

 True,

 And(Q[i] - Q[j] != i - j, Q[i] - Q[j] != j - i))

 for i in range(8) for j in range(i)]

solve(val_c + col_c + diag_c)

Bit Tricks
● Low level hacks (http://graphics.stanford.edu/~seander/bithacks.html) are very

popular with C programmers.

● Power of two: this hack is frequently used in C programs to test whether a

machine integer is a power of two. We can use Z3 to prove it really works. The

claim is that x != 0 && !(x & (x - 1)) is true if and only if x is a power of two.
x = BitVec('x', 32)

powers = [2**i for i in range(32)]

fast = And(x != 0, x & (x - 1) == 0)

slow = Or([x == p for p in powers])

print (fast)

prove(fast == slow)

print ("trying to prove buggy version...")

fast = x & (x - 1) == 0

prove(fast == slow)

def prove(f):

 s = Solver()

 s.add(Not(f))

 if s.check() == unsat:

 print (“proved")

 else:

 print ("failed to prove")

http://graphics.stanford.edu/~seander/bithacks.html

Bit Tricks
● Opposite signs: The following simple hack can be used to test whether two

machine integers have opposite signs.

x = BitVec('x', 32)

y = BitVec('y', 32)

Claim: (x ^ y) < 0 iff x and y have opposite signs

trick = (x ^ y) < 0

Naive way to check if x and y have opposite signs

opposite = Or(And(x < 0, y >= 0),

 And(x >= 0, y < 0))

prove(trick == opposite)

Sudoku
● Insert the numbers in the 9 × 9 board so that each row, column, and 3 × 3

boxes must contain digits 1 through 9 exactly once.

Example 4: Sudoku

Insert the numbers in the 9 ⇥ 9 board so that each row, column, and
3 ⇥ 3 boxes must contain digits 1 through 9 exactly once.

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 22 / 33

9x9 matrix of integer variables

X = [[Int("x_%s_%s" % (i+1, j+1)) for j in range(9)]

 for i in range(9)]

each cell contains a value in {1, ..., 9}

cells_c = [And(1 <= X[i][j], X[i][j] <= 9)

 for i in range(9) for j in range(9)]

each row contains a digit at most once

rows_c = [Distinct(X[i]) for i in range(9)]

each column contains a digit at most once

cols_c = [Distinct([X[i][j] for i in range(9)])

 for j in range(9)]

each 3x3 square contains a digit at most once

sq_c = [Distinct([X[3*i0 + i][3*j0 + j]

 for i in range(3) for j in range(3)])

 for i0 in range(3) for j0 in range(3)]

sudoku_c = cells_c + rows_c + cols_c + sq_c

sudoku instance, we use '0' for empty cells

instance = ((0,0,0,0,9,4,0,3,0),

 (0,0,0,5,1,0,0,0,7),

 (0,8,9,0,0,0,0,4,0),

 (0,0,0,0,0,0,2,0,8),

 (0,6,0,2,0,1,0,5,0),

 (1,0,2,0,0,0,0,0,0),

 (0,7,0,0,0,0,5,2,0),

 (9,0,0,0,6,5,0,0,0),

 (0,4,0,9,7,0,0,0,0))

instance_c = [If(instance[i][j] == 0,

 True,

 X[i][j] == instance[i][j])

 for i in range(9) for j in range(9)]

s = Solver()

s.add(sudoku_c + instance_c)

if s.check() == sat:

 m = s.model()

 r = [[m.evaluate(X[i][j]) for j in range(9)]

 for i in range(9)]

 print_matrix(r)

else:

 print ("failed to solve")

Encoding for Sudoku

