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Review: First-Order Logic
● FOL is an extension of PL with predicates, functions, and quantifiers. 

● The semantics is determined by an interpretation. 

● An interpretation ￼ consists of a domain (￼ ) and an assignment (￼ ) for free 

variables and nonlogical symbols (functions, predicates, and constants). 

○ ￼  is true under the conventional interpretation but false if we 

interpret ￼  as multiplication. 

I DI AI

∃x . x + 0 = 1

+



First-Order Theories
● In practice, we are NOT interested in pure logical validity (i.e., valid in all 

interpretations) of FOL formulas but in validity in a specific class of 

interpretations. 

○ ￼  under interpretations where + is treated as addition 

○ In many cases, we have a particular meaning of functions/predicates in mind. 

● First-order logic is a general framework for building a specific, restricted logic 

called theories. 

∃x . x + 0 = 1



First-Order Theories
● The restrictions are made on nonlogical symbols and interpretations. For 

instance, in the theory of integers, only + and − are allowed for function 

symbols with their conventional interpretations.

● One natural way for restricting interpretations is to provide a set of axioms; 

we only consider interpretations that satisfy the axioms.



First-Order Theories
● A first-order theory T is defined by the two components:

○ Signature: a set of nonlogical symbols. Given a signature ￼ , a ￼ -formula is 

one whose nonlogical symbols are from ￼ . Signature restricts the syntax.

○ Axioms: A set of closed FOL formulas whose nonlogical symbols are from 

￼ . Axioms restrict the interpretations. 
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Example: The Theory of Heights 
● A theory with a predicate ￼

● Signature ￼  = {￼ }

● Axioms ￼  provide the meaning of the symbols in ￼  (i.e., ￼ )

○ ￼

● An interpretation ￼  where ￼  and 

￼  does not satisfy the axiom.

● An interpretation ￼  where ￼  and 

￼  satisfies the axiom.

taller

ΣH taller

AH ΣH taller

∀x, y . taller(x, y) ⟹ ¬taller(y, x)

I = (DI, AI) DI = {A, B}

AI(taller) = {(A, B) ↦ true, (B, A) ↦ true}

I = (DI, AI) DI = {A, B}

AI(taller) = {(A, B) ↦ true}



Example: The Theory of Equality
● A theory with a fixed interpretation for =. For example, the formula must be 

valid according to the conventional interpretation of =: 

                ￼

● To fix this interpretation, it is sufficient to enforce the following axioms:

○ Reflexivity: ￼

○ Symmetry: ￼

○ Transitivity: ￼

∀x, y, z . (((x = y) ∧ ¬(y = z)) ⟹ ¬(x = z))

∀x . x = x

∀x, y . x = y ⟹ y = x

∀x, y, z . x = y ∧ y = z ⟹ x = z



Satisfiability and Validity
● Instead of pure logical satisfiability / validity under any interpretation, we focus 

on satisfiability / validity under interpretations of interest. 

● Given a theory ￼  with signature ￼  and axioms A, an interpretation ￼ is called  

￼ -interpretation if 

○ ￼  for every ￼      (every axiom in A is valid under ￼)

● A ￼ -formula ￼  is ￼ -satisfiable (or satisfiable modulo ￼ ) if there exists a ￼

-interpretation that satisfies ￼ . 

● A ￼ -formula ￼  is ￼ -valid (or valid modulo ￼ ) if every ￼ -interpretation satisfies ￼  

(we write ￼ ).

● The theory ￼  consists of all closed formulae that are ￼ -valid.

T Σ I
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I ⊧ a a ∈ A I
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Decidability and Completeness
● A theory ￼  is decidable if there exists a procedure that for any ￼ -formula 

(formula consisting of symbols in ￼ ) ￼ , (1) eventually halts and (2) answers yes if 

￼  is ￼ -valid and no otherwise. 

● A theory ￼  is complete if for every closed ￼ -formula ￼ , ￼  or ￼ .

T Σ

Σ F

F T

T Σ F T ⊧ F T ⊧ ¬F



Fragments of Theories
● A theory restricts only the nonlogical symbols. Restrictions on the logical 

symbols or the grammar are done by defining fragments of the logic. Two 

popular fragments:

○ Quantifier-free fragment: the set of Σ-formulas without quantifiers.

○ Conjunctive fragment: the set of formulas where the only boolean 

connective that is allowed is conjunction.

● Many first-order theories are undecidable while their quantifier-free fragments 

are decidable. In practice, we are mostly interested in the satisfiability problem 

of the quantifier-free fragment of first-order theories.



Example
Recall the theory of heights ￼ .

● An interpretation ￼  where ￼  and 

￼  is NOT a ￼ -interpretation. 

● An interpretation ￼  where ￼  and 

￼  is a ￼ -interpretation. 

● The following formula is ￼ -valid.  

                               ￼

TH

I = (DI, AI) DI = {A, B}

AI(taller) = {(A, B) ↦ true, (B, A) ↦ true} TH

I = (DI, AI) DI = {A, B}

AI(taller) = {(A, B) ↦ true} TH

TH

∀x . ¬taller(x, x)



First-Order Theories for Programs
● When reasoning in SW, we have particular structures in mind (e.g., numbers, lists, 

arrays, …)

● First-order theories formalize these structures to enable reasoning about them. 

● These theories include a theory of

○ Equality

○ Integers

○ Rationals and reals

○ Arrays

○ Bitvectors

○ …



Theory of Equality with Uninterpreted Functions (￼ )TE

● The simplest first-order theory 

● Signature ￼  consisting of 

○ = (equality), a binary predicate, 

○ and all other symbols (constant, function, and predicate symbols)

● Equality = is interpreted predicate symbol: its meaning will be defined via axioms.

● The other functions, predicates, and constants are left unspecified (uninterpreted)

● Axioms ￼  :

○ Reflexivity: ￼                  

○ Symmetry: ￼

○ Transitivity: ￼

○ … 

ΣE

AE

∀x . x = x

∀x, y . x = y ⟹ y = x

∀x, y, z . x = y ∧ y = z ⟹ x = z



Theory of Equality with Uninterpreted Functions (￼ )TE

○ …

○ Function congruence (for each positive integer ￼  and ￼ -ary function symbol ￼):  

○ Predicate congruence (for each positive integer ￼  and ￼ -ary predicate symbol 

￼ ): 

○ Meaning: no matter what functions and predicates are used, if the inputs are 

the same, the outcomes are also the same. 

n n f

n n

p
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II of this book. We introduce them in the following sections. In Section 3.7,
we summarize the decidability and complexity results for these theories and
fragments.

3.2 Equality

The theory of equality TE is the simplest first-order theory. Its signature

ΣE : {=, a, b, c, . . . , f, g, h, . . . , p, q, r, . . .}

consists of

• = (equality), a binary predicate;
• and all constant, function, and predicate symbols.

Equality = is an interpreted predicate symbol: its meaning is defined via
the axioms of TE. The other constant, function, and predicate symbols are
uninterpreted except as they relate to equality. The axioms of TE are the
following:

1. ∀x. x = x (reflexivity)
2. ∀x, y. x = y → y = x (symmetry)
3. ∀x, y, z. x = y ∧ y = z → x = z (transitivity)
4. for each positive integer n and n-ary function symbol f ,

∀x, y.

(
n∧

i=1

xi = yi

)

→ f(x) = f(y) (function congruence)

5. for each positive integer n and n-ary predicate symbol p,

∀x, y.

(
n∧

i=1

xi = yi

)

→ (p(x)↔ p(y)) (predicate congruence)

The notation x stands for the list of variables x1, . . . , xn. Axioms (function con-
gruence) and (predicate congruence) are actually axiom schemata. An axiom
schema stands for a set of axioms, each an instantiation of the parameters (f
and p in (function congruence) and (predicate congruence), respectively). For
example, for binary function symbol f2, (function congruence) instantiates to
the following axiom:

∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → f2(x1, x2) = f2(y1, y2) .

The first three axioms state that = is an equivalence relation: it is a
binary predicate that obeys reflexivity, symmetry, and transitivity. The final
two axiom schemata formalize our intuition for the behavior of functions and
predicates under equality. A function (predicate) always evaluates to the same
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￼  : list of variables 
￼  

x
x1, …, xn

￼  : ￼  and ￼↔ ⇒ ⇐



● Prove that                                                                    is ￼  -valid (proof by 

contradiction)

TE

Example
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value (truth value) for a given set of argument values. They assert that = is
a congruence relation.

TE is just as undecidable as full FOL because it allows all constant, func-
tion, and predicate symbols. In particular, any FOL formula F can be en-
coded as a ΣE-formula F ′ simply by replacing occurrences of the symbol =
with a fresh symbol. Since = does not occur in this transformed formula F ′,
the axioms of TE are irrelevant; hence, F ′ is TE-satisfiable iff F ′ is first-order
satisfiable.

However, the quantifier-free fragment of TE is both interesting and effi-
ciently decidable, as we show in Chapter 9.

Example 3.1. Without quantifiers, free variables and constants play the
same role. In the formula

F : a = b ∧ b = c → g(f(a), b) = g(f(c), a) ,

a, b, and c are constants, while in

F ′ : x = y ∧ y = z → g(f(x), y) = g(f(z), x) ,

x, y, and z are free variables. F is TE-valid iff F ′ is TE-valid; F is TE-satisfiable
iff F ′ is TE-satisfiable. !

It is often useful to reason about the T -satisfiability or T -validity of a Σ-
formula F in a structured but informal way. We show how to use the semantic
argument method with TE.

Example 3.2. To prove that

F : a = b ∧ b = c → g(f(a), b) = g(f(c), a)

is TE-valid, assume otherwise: there exists a TE-interpretation I such that
I #|= F :

1. I #|= F assumption
2. I |= a = b ∧ b = c 1, →
3. I #|= g(f(a), b) = g(f(c), a) 1, →
4. I |= a = b 2, ∧
5. I |= b = c 2, ∧
6. I |= a = c 4, 5, (transitivity)
7. I |= f(a) = f(c) 6, (function congruence)
8. I |= b = a 4, (symmetry)
9. I |= g(f(a), b) = g(f(c), a) 7, 8 (function congruence)
10. I |= ⊥ 3, 9

Our assumption is apparently false: F is TE-valid. !
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It is often useful to reason about the T -satisfiability or T -validity of a Σ-
formula F in a structured but informal way. We show how to use the semantic
argument method with TE.

Example 3.2. To prove that

F : a = b ∧ b = c → g(f(a), b) = g(f(c), a)

is TE-valid, assume otherwise: there exists a TE-interpretation I such that
I #|= F :

1. I #|= F assumption
2. I |= a = b ∧ b = c 1, →
3. I #|= g(f(a), b) = g(f(c), a) 1, →
4. I |= a = b 2, ∧
5. I |= b = c 2, ∧
6. I |= a = c 4, 5, (transitivity)
7. I |= f(a) = f(c) 6, (function congruence)
8. I |= b = a 4, (symmetry)
9. I |= g(f(a), b) = g(f(c), a) 7, 8 (function congruence)
10. I |= ⊥ 3, 9

Our assumption is apparently false: F is TE-valid. !
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value (truth value) for a given set of argument values. They assert that = is
a congruence relation.

TE is just as undecidable as full FOL because it allows all constant, func-
tion, and predicate symbols. In particular, any FOL formula F can be en-
coded as a ΣE-formula F ′ simply by replacing occurrences of the symbol =
with a fresh symbol. Since = does not occur in this transformed formula F ′,
the axioms of TE are irrelevant; hence, F ′ is TE-satisfiable iff F ′ is first-order
satisfiable.

However, the quantifier-free fragment of TE is both interesting and effi-
ciently decidable, as we show in Chapter 9.
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Uninterpreted Functions
● In ￼ , function symbols are uninterpreted since the axioms do not assign 

meaning to them. 

● The only thing we know about them is that they are functions.

● A main use of uninterpreted functions is to abstract complex formulas that are 

otherwise difficult to automatically reason about.

TE



Uninterpreted Functions for Program Equivalence
● Suppose we want to prove equivalence of the following two programs:

● Let ￼  be return values of fun1 and fun2 respectively. 

● We want to prove unsatisfiability of  

          ￼

r1, r2

z = y ∧ w = x ∧ x = z ∧ r1 = x × x ∧ r2 = y × y ∧ ¬(r1 = r2)

int fun1(int y) { 

  int x, z, w;

  z = y;

  w = x;

  x = z; 

  return x*x;

}

int fun2(int y) { 

 return y*y;

}



Uninterpreted Functions for Program Equivalence
● We can solve it by reducing the problem into a SAT problem by treating 

variables x,z,w,y as 32-bit bit vectors.

● But a SAT solver fails to solve within 5 minutes because multiplication makes 

the problem hard. 

● Using an uninterpreted function sqr, we can rewrite the formula as  

          ￼  

which is UNSAT in the theory of equality with uninterpreted functions. 

● Therefore, the two programs are equal (why?)

z = y ∧ w = x ∧ x = z ∧ r1 = sqr(x) ∧ r2 = sqr(y) ∧ ¬(r1 = r2)



Theory of Peano Arithmetic
● The theory of Peano arithmetic   has signature .

○ 0, 1 : constants,                 ￼ (addition & multiplication) : binary functions 

○ = : binary predicate 

● Axioms ￼  define addition, multiplication and equality over natural numbers.

TPA ΣPA = {0,1, + , ⋅ , = }

+, ⋅

APA
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3.3 Natural Numbers and Integers

Arithmetic involving the addition and multiplication of the natural numbers
N = {0, 1, 2, . . .} is perhaps the oldest of mathematical theories. In this section
we describe three theories of arithmetic. Peano arithmetic allows addition
and multiplication over natural numbers, while Presburger arithmetic is
restricted to addition over natural numbers. The final theory, the theory of
integers, is convenient for automated reasoning but is no more expressive
than Presburger arithmetic.

3.3.1 Peano Arithmetic

The theory of Peano arithmetic TPA, or first-order arithmetic, has
signature

ΣPA : {0, 1, +, ·, =} ,

where

• 0 and 1 are constants;
• + (addition) and · (multiplication) are binary functions;
• and = (equality) is a binary predicate.

Its axioms are the following:

1. ∀x. ¬(x + 1 = 0) (zero)
2. ∀x, y. x + 1 = y + 1 → x = y (successor)
3. F [0] ∧ (∀x. F [x]→ F [x + 1]) → ∀x. F [x] (induction)
4. ∀x. x + 0 = x (plus zero)
5. ∀x, y. x + (y + 1) = (x + y) + 1 (plus successor)
6. ∀x. x · 0 = 0 (times zero)
7. ∀x, y. x · (y + 1) = x · y + x (times successor)

These axioms concisely define addition, multiplication, and equality over nat-
ural numbers. Informally, axioms (zero), (plus zero), and (times zero) define
0 as we understand it: it is the minimal element of the natural numbers; it
is the identity for addition (x + 0 = x); and under multiplication, it maps
any number to 0 (x · 0 = 0). Axioms (zero), (successor), (plus zero), and (plus
successor) define addition. Axioms (times zero) and (times successor) define
multiplication: in particular, (times successor) defines multiplication in terms
of addition.

(induction) is an axiom schema: it stands for the set of axioms obtained
by substituting for F each ΣPA-formula that has precisely one free variable.
It asserts that every TPA-interpretation I obeys induction: if I satisfies F [0]
and ∀x. F [x]→ F [x + 1], then I also satisfies ∀x. F [x].

For convenience, we usually do not write the “·” for multiplication. For
example, we write xy rather than x · y.

￼  : When ￼  has one 
free variable, a formula 
obtained by replacing the 
free variable by ￼

F[x] F

x



Example
● The formula ￼  can be written using ￼  as  

              ￼  

or  

         ￼

● The formula ￼  can be written as  

                  ￼

● The formula ￼  can be written as 

                  ￼

3x + 5 = 2y ΣPA

x + x + x + 1 + 1 + 1 + 1 + 1 = y + y

(1 + 1 + 1) ⋅ x + 1 + 1 + 1 + 1 + 1 = (1 + 1) ⋅ y

3x + 5 > 2y

∃z . ¬(z = 0) ∧ 3x + 5 = 2y + z

3x + 5 ≥ 2y

∃z.3x + 5 = 2y + z



Example
● Pythagorean Theorem:  

￼

● Fermat’s Last Theorem: 

￼
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The intended interpretations of TPA have domain N and assignments
αI defining 0, 1, +, ·, and = as we understand them in everyday arithmetic.
In particular,

• αI [0] is 0N: αI maps the symbols “0” to 0N ∈ N;
• αI [1] is 1N: αI maps the symbols “1” to 1N ∈ N;
• αI [+] is +N, addition over N;
• αI [·] is ·N, multiplication over N;
• αI [=] is =N, equality over N.

Example 3.3. The formula 3x + 5 = 2y can be written using the signature
ΣPA as

x + x + x + 1 + 1 + 1 + 1 + 1 = y + y

or as

(1 + 1 + 1) · x + 1 + 1 + 1 + 1 + 1 = (1 + 1) · y .

In practice, we use the abbreviated notation 3x + 5 = 2y. !

Example 3.4. Rather than augmenting TPA with axioms defining inequality
>, we can transform formulae with inequality into formulae over the restricted
signature ΣPA. Write

3x + 5 > 2y as ∃z. z #= 0 ∧ 3x + 5 = 2y + z ,

where z #= 0 abbreviates ¬(z = 0). The latter formula is a ΣPA-formula. Weak
inequality can be similarly transformed. Write

3x + 5 ≥ 2y as ∃z. 3x + 5 = 2y + z .

!

Example 3.5. The ΣPA-formula

∃x, y, z. x #= 0 ∧ y #= 0 ∧ z #= 0 ∧ xx + yy = zz

is TPA-valid. It asserts that there exists a triple of positive integers fulfilling
the Pythagorean Theorem. The formula

∃x, y, z. x #= 0 ∧ y #= 0 ∧ z #= 0 ∧ xxx + yyy = zzz

is the cubic analogue. For constant n, let xn represent n multiplications of x;
then every formula of the set

{∀x, y, z. x #= 0 ∧ y #= 0 ∧ z #= 0 → xn + yn #= zn : n > 2 ∧ n ∈ Z}

is TPA-valid, as claimed by Fermat’s Last Theorem and proved by Andrew
Wiles in 1994. !
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Decidability and Completeness
● Validity in ￼  is NOT decidable: there does NOT exist a procedure that for 

any ￼  formula ￼ , (1) eventually halts and (2) answers “yes” if ￼  is ￼ -valid 

and answers “no” otherwise. 

● Validity in even the quantifier-free fragment ￼  (i.e., ￼  without quantifiers) is 

not decidable. 

● ￼  is incomplete: Not all valid ￼ -formulae can be proved to be valid using 

the axioms ￼ . 

● To be decidable and complete, we need to drop multiplication. 

TPA

ΣPA F F TPA

TPA TPA

TPA ΣPA

APA



Theory of Presburger Arithmetic
● The theory of Presburger arithmetic   has signature .

○ 0, 1 : constants,                 ￼  (addition) : binary function

○ = : binary predicate 

● Axioms ￼  define addition, multiplication and equality over natural numbers.

● ￼  is both complete and decidable.

Tℕ Σℕ = {0,1, + , = }

+

Aℕ

Tℕ
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Remark 3.6. Gödel’s first incompleteness theorem (see Bibliographic Re-
marks of Chapter 2) implies that Peano arithmetic TPA does not capture true
arithmetic: there exist closed ΣPA-formulae representing valid propositions of
number theory that are TPA-invalid. Gödel’s proof constructs such a formula:
it encodes the assertion that the formula itself cannot be proved. Now, either
this formula can be proved from the axioms of TPA (contradicting itself so that
TPA is inconsistent) or it cannot be proved (so that TPA is incomplete).

Satisfiability and validity in TPA is undecidable. Therefore, we turn to a
more restricted theory of arithmetic that does not allow multiplication.

3.3.2 Presburger Arithmetic

The theory of Presburger arithmetic TN has signature

ΣN : {0, 1, +, =} ,

where

• 0 and 1 are constants;
• + (addition) is a binary function;
• and = (equality) is a binary predicate.

Its axioms are a subset of the axioms of TPA:

1. ∀x. ¬(x + 1 = 0) (zero)
2. ∀x, y. x + 1 = y + 1 → x = y (successor)
3. F [0] ∧ (∀x. F [x]→ F [x + 1]) → ∀x. F [x] (induction)
4. ∀x. x + 0 = x (plus zero)
5. ∀x, y. x + (y + 1) = (x + y) + 1 (plus successor)

Again, (induction) is an axiom schema standing for the set of axioms obtained
by replacing F with each ΣN-formula that has precisely one free variable.

The intended interpretations of TN have domain N and are such that

• αI [0] is 0N ∈ N;
• αI [1] is 1N ∈ N;
• αI [+] is +N, addition over N;
• αI [=] is =N, equality over N.

How does one reason about all integers, Z = {. . . ,−2,−1, 0, 1, 2, . . .}? Such
formulae can be encoded as ΣN-formulae.

Example 3.7. Consider the formula

F0 : ∀w, x. ∃y, z. x + 2y − z − 13 > −3w + 5 ,

where − is meant to be interpreted as standard subtraction, and w, x, y, and
z are intended to range over Z. The formula



Encoding Negative Numbers
● How can we reason about all integers ￼  (including negative numbers?) 

● Consider  

where ￼  is meant to be subtraction, and all variables are intended to range over 

￼ .  The formula  

 

 

introduces two variables, ￼  and ￼  for each variable ￼  in ￼  (each ￼  and ￼  can 

only range over ￼ , ￼  should range over ￼ . Then, how is ￼  interpreted?

ℤ

−

ℤ

vp vn v F0 vp vn

ℕ vp − vn ℤ −
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z are intended to range over Z. The formula
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F1 :
∀wp, wn, xp, xn. ∃yp, yn, zp, zn.

(xp − xn) + 2(yp − yn)− (zp − zn)− 13 > −3(wp − wn) + 5

introduces two variables, vp and vn, for each variable v of F0. While each of vp

and vn can only range over N, vp−vn should range over the integers. But how
is − interpreted? Moving negated terms to the other side of the inequality
eliminates −:

F2 :
∀wp, wn, xp, xn. ∃yp, yn, zp, zn.

xp + 2yp + zn + 3wp > xn + 2yn + zp + 13 + 3wn + 5 .

The final transformation eliminates constant coefficients and strict inequality:

F3 :

∀wp, wn, xp, xn. ∃yp, yn, zp, zn. ∃u.
¬(u = 0) ∧
xp + yp + yp + zn + wp + wp + wp

= xn + yn + yn + zp + wn + wn + wn + u
+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 .

!

Presburger showed in 1929 that TN is decidable. Therefore, the “theory
of (negative and positive) integers” that we loosely constructed above is also
decidable via the syntactic rewriting of formulae into ΣN-formulae. Rather
than using this cumbersome rewriting, however, we next study a theory of
integers.

3.3.3 Theory of Integers

The theory of integers TZ has signature

ΣZ : {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . , +, −, =, >} ,

where

• . . . , −2, −1, 0, 1, 2, . . . are constants, intended to be assigned the obvious
corresponding values in the intended domain of integers Z;

• . . . , −3·, −2·, 2·, 3·, . . . are unary functions, intended to represent con-
stant coefficients (e.g., 2 · x, abbreviated 2x);

• + and − are binary functions, intended to represent the obvious corre-
sponding functions over Z;

• = and > are binary predicates, intended to represent the obvious corre-
sponding predicates over Z.

Since Example 3.7 shows that ΣZ-formulae can be reduced to ΣN-formulae, we
do not axiomatize TZ. TZ is merely a convenient representation for reasoning
about addition over all integers.



Encoding Negative Numbers
● Moving negated terms to the other side eliminates ￼ :

● The final transformation eliminates constant coefficients and strict inequality:

−
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+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
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17. for each odd integer n,

∀x. ∃y. yn + x1y
n−1 + · · · + xn−1y + xn = 0 (at least one root)

Example 3.12. The method of quantifier elimination, which we study
in Chapter 7, eliminates quantifiers from a formula to produce an equivalent
quantifier-free formula. If a formula F contains free variables, then a quantifier
elimination procedure produces an equivalent quantifier-free formula F ′ such
that free(F ′) ⊆ free(F ). For example, when is the formula

F : ∃x. ax2 + bx + c = 0

satisfiable? That is, what are the conditions on a, b, and c such that a quadratic
polynomial has a real root? Recall that the discriminant must be nonnegative:

F ′ : b2 − 4ac ≥ 0 .

F ′ is the quantifier-free formula that is TR-equivalent to F . !

Tarski proved that TR was decidable in the 1930s, although the Second
World War prevented his publishing the result until 1956. Collins proposed the
more efficient technique of cylindrical algebraic decomposition (CAD) in
1975. Unfortunately, even the most efficient decision procedures for TR have

prohibitively high time complexity: CAD runs in time proportionate to 22k|F |

,
for some constant k and for |F | the length of ΣR-formula F .

3.4.2 Theory of Rationals

Given the high complexity of deciding TR-validity (and the high intellectual
complexity of Tarski’s and subsequent decision procedures for TR), we turn to
a simpler theory without multiplication, the theory of rationals TQ. It has
signature

ΣQ : {0, 1, +, −, =, ≥} ,

where

• 0 and 1 are constants;
• + (addition) is a binary function;
• − (negation) is a unary function;
• and = (equality) and ≥ (weak inequality) are binary predicates.

Its axioms are the following:

1. ∀x, y. x ≥ y ∧ y ≥ x → x = y (antisymmetry)
2. ∀x, y, z. x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
3. ∀x, y. x ≥ y ∨ y ≥ x (totality)
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3.4 Rationals and Reals 83

4. ∀x, y, z. (x + y) + z = x + (y + z) (+ associativity)
5. ∀x. x + 0 = x (+ identity)
6. ∀x. x + (−x) = 0 (+ inverse)
7. ∀x, y. x + y = y + x (+ commutativity)
8. ∀x, y, z. x ≥ y → x + z ≥ y + z (+ ordered)

9. for each positive integer n,

∀x. nx = 0 → x = 0 (torsion-free)

10. for each positive integer n,

∀x. ∃y. x = ny (divisible)

By nx we mean x added to itself n times: x + · · · + x. The first eight axioms
are a subset of the axioms of TR. They state that every TQ-interpretation is
an ordered abelian group. ≥ is a total order by the first three axioms. Identity
0, addition +, additive inverse −, and equality = comprise an abelian group
by the next four axioms. The eighth axiom asserts that the abelian group is
ordered.

The axiom schema (torsion-free) states that only 0 can be added to itself to
produce 0. The name “torsion-free” comes from the following mathematical
context. In a group, the order of an element v is the integer n such that nv
is the identity element 0: nv = 0. If no such n exists, then the element v has
infinite order. A group is torsion-free if the only element with finite order is
the identity 0.

Finally, the axiom schema (divisible) asserts that all elements of the domain
DI of a TQ-interpretation I are divisible. That is, for every positive integer n,
every element v ∈ DI is the sum of n of some other element w ∈ DI .

Thus, every TQ-interpretation is a divisible torsion-free abelian group. In
particular, the rationals and reals with +, −, =, and ≥ are divisible torsion-
free abelian groups. As TQ-interpretations, the rationals and reals are ele-
mentarily equivalent: there does not exist a ΣQ-formula that distinguishes
between a real TQ-interpretation (an interpretation with domain R) and a
rational TQ-interpretation (an interpretation with domain Q).

This characteristic makes sense, intuitively: no linear expression with only
integer coefficients can capture, say,

√
2 without also being satisfied by some

rational values. When junior high students solve linear algebra problems, they
apply addition, subtraction, multiplication, and division; but they do not take
roots.

In contrast, TR is a theory of reals: the ΣR-formula x·x = 2 is only satisfied
by TR-interpretations I in which αI [x] = −

√
2 or αI [x] =

√
2.

Example 3.13. Strict inequality is simple to express in TQ. Write

∀x, y. ∃z. x + y > z
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as the ΣQ-formula

∀x, y. ∃z. ¬(x + y = z) ∧ x + y ≥ z .

The situation is similar for TR. !

Example 3.14. Rational coefficients are simple to express in TQ. Write

1

2
x +

2

3
y ≥ 4

as the ΣQ-formula 3x + 4y ≥ 24. !

For convenience, we sometimes write x ≤ y for y ≥ x.
In Chapter 7, we study a procedure for eliminating quantifiers in the theory

TQ. On closed formulae, this procedure decides validity. In Chapter 8, we study
a decision procedure for the quantifier-free fragment of TQ, which is efficiently
decidable.

3.5 Recursive Data Structures

The theory of recursive data structures (RDS) describes a set of data
structures that are ubiquitous in programming. The most basic RDS is a non-
recursive structure, like C’s struct, in which a single variable has multiple
fields. Truly recursive RDSs include lists, stacks, and binary trees.

The theory of recursive data structures TRDS formalizes the reasoning
about such structures. It builds on the theory of equality TE.

Theory of Lists

We first focus on the theory of LISP-like lists, Tcons, which has signature

Σcons : {cons, car, cdr, atom, =} ,

where

• cons is a binary function, called the constructor: cons(a, b) represents the
list constructed by concatenating a to b;

• car is a unary function, called the left projector: car(cons(a, b)) = a;
• cdr is a unary function, called the right projector: cdr(cons(a, b)) = b;
• atom is a unary predicate: atom(x) is true iff x is a single-element list;
• and = (equality) is a binary predicate.

car and cdr are historical names abbreviating “contents of address register”
and “contents of decrement register”, respectively. In the intended interpre-
tations, atoms are individual elements, while lists are multiple elements as-
sembled together via cons. For example, cons(a, cons(b, c)) is a list of three
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● Rational numbers do not satisfy ￼  axioms but they satisfy ￼  axioms. 

● ￼  is ￼ -invalid. However, assigning ￼  to ￼  satisfies it, so satisfiable in 

the theory of rationals. 

● Every formula valid in ￼  is valid in ￼ , but not vice versa. 

○ Therefore, deciding ￼ -validity is more difficult than ￼ -validity. 

● Both theories (full and quantifier-free) are decidable. 

Tℤ Tℚ

∃x.2x = 3 Tℤ x
3
2

Tℤ Tℚ

Tℤ Tℚ



Theory of Lists
● The theory of lists ￼  has signature  

￼  

where

○ cons is a binary function, called the constructor: cons(a, b) represents the list 

constructed by concatenating a to b; 

○ car is a unary function, called the left projector: car(cons(a, b)) = a

○ cdr is a unary function, called the right projector: cdr(cons(a, b)) = b

○ atom is a unary predicate: atom(x) is true iff x is a single-element list,

○ and =

Tcons

84 3 First-Order Theories

as the ΣQ-formula

∀x, y. ∃z. ¬(x + y = z) ∧ x + y ≥ z .

The situation is similar for TR. !

Example 3.14. Rational coefficients are simple to express in TQ. Write

1

2
x +

2

3
y ≥ 4

as the ΣQ-formula 3x + 4y ≥ 24. !

For convenience, we sometimes write x ≤ y for y ≥ x.
In Chapter 7, we study a procedure for eliminating quantifiers in the theory

TQ. On closed formulae, this procedure decides validity. In Chapter 8, we study
a decision procedure for the quantifier-free fragment of TQ, which is efficiently
decidable.

3.5 Recursive Data Structures

The theory of recursive data structures (RDS) describes a set of data
structures that are ubiquitous in programming. The most basic RDS is a non-
recursive structure, like C’s struct, in which a single variable has multiple
fields. Truly recursive RDSs include lists, stacks, and binary trees.

The theory of recursive data structures TRDS formalizes the reasoning
about such structures. It builds on the theory of equality TE.

Theory of Lists

We first focus on the theory of LISP-like lists, Tcons, which has signature

Σcons : {cons, car, cdr, atom, =} ,

where

• cons is a binary function, called the constructor: cons(a, b) represents the
list constructed by concatenating a to b;

• car is a unary function, called the left projector: car(cons(a, b)) = a;
• cdr is a unary function, called the right projector: cdr(cons(a, b)) = b;
• atom is a unary predicate: atom(x) is true iff x is a single-element list;
• and = (equality) is a binary predicate.

car and cdr are historical names abbreviating “contents of address register”
and “contents of decrement register”, respectively. In the intended interpre-
tations, atoms are individual elements, while lists are multiple elements as-
sembled together via cons. For example, cons(a, cons(b, c)) is a list of three



Theory of Lists
● Examples

○ cons(a,cons(b,c)) is a list of three elements: a, b, and c. 

○ atom(a) is true, atom(cons(a,cons(b,c))) is false 

○ car(cons(a, cons(b, c))) = a 

○ cdr(cons(a, cons(b, c))) = cons(b, c)

○ cdr(cdr(cons(a, cons(b, c)))) = c



Theory of Lists
● Axioms ￼ : 
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elements, while a for which atom(a) holds is an atom. car and cdr are func-
tions for accessing parts of lists. For example, car(cons(a, cons(b, c))) returns
the head a of the list; cdr(cons(a, cons(b, c))) returns the tail cons(b, c) of the
list; and cdr(cdr(cons(a, cons(b, c)))) returns c.

The axioms of Tcons are the following:

1. the axioms of (reflexivity), (symmetry), and (transitivity) of TE

2. instantiations of the (function congruence) axiom schema for cons, car, and
cdr:

∀x1, x2, y1, y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)

∀x, y. x = y → car(x) = car(y)

∀x, y. x = y → cdr(x) = cdr(y)

3. an instantiation of the (predicate congruence) axiom schema for atom:

∀x, y. x = y → (atom(x)↔ atom(y))

4. ∀x, y. car(cons(x, y)) = x (left projection)
5. ∀x, y. cdr(cons(x, y)) = y (right projection)
6. ∀x. ¬atom(x) → cons(car(x), cdr(x)) = x (construction)
7. ∀x, y. ¬atom(cons(x, y)) (atom)

The first three sets of axioms define = to be a congruence relation for cons,
car, cdr, and atom. The axioms (left projection) and (right projection) define
the behavior of car and cdr on non-atom lists: car returns the first element of
a cons structure, and cdr returns the second element. However, they do not
specify the behavior of car and cdr on atoms. The (construction) axiom states
that the cons of car(x) and cdr(x) is x itself, unless x is an atom. In other
words, cons constructs structures, and car and cdr deconstructs them. Finally,
the axiom (atom) asserts that a term with root function symbol cons is not
an atom; it is a non-atomic list.

The congruence axioms for cons, car, and cdr assert an important property
about lists: two lists are equal iff their components are equal. The forward
direction — if two lists are equal, then their components are equal — is a
consequence of the (function congruence) axioms for car and cdr. The backward
direction is a consequence of the (function congruence) axiom for cons. This
relationship between two structures and their components is sometimes called
extensionality. We see it in arrays as well.

General Theory of RDS

Tcons is an instance of the general theory of recursive data structures TRDS.
Each RDS contributes the following to the signature:

• an n-ary constructor C;
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a cons structure, and cdr returns the second element. However, they do not
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that the cons of car(x) and cdr(x) is x itself, unless x is an atom. In other
words, cons constructs structures, and car and cdr deconstructs them. Finally,
the axiom (atom) asserts that a term with root function symbol cons is not
an atom; it is a non-atomic list.

The congruence axioms for cons, car, and cdr assert an important property
about lists: two lists are equal iff their components are equal. The forward
direction — if two lists are equal, then their components are equal — is a
consequence of the (function congruence) axioms for car and cdr. The backward
direction is a consequence of the (function congruence) axiom for cons. This
relationship between two structures and their components is sometimes called
extensionality. We see it in arrays as well.
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6. ∀x. ¬atom(x) → cons(car(x), cdr(x)) = x (construction)
7. ∀x, y. ¬atom(cons(x, y)) (atom)

The first three sets of axioms define = to be a congruence relation for cons,
car, cdr, and atom. The axioms (left projection) and (right projection) define
the behavior of car and cdr on non-atom lists: car returns the first element of
a cons structure, and cdr returns the second element. However, they do not
specify the behavior of car and cdr on atoms. The (construction) axiom states
that the cons of car(x) and cdr(x) is x itself, unless x is an atom. In other
words, cons constructs structures, and car and cdr deconstructs them. Finally,
the axiom (atom) asserts that a term with root function symbol cons is not
an atom; it is a non-atomic list.

The congruence axioms for cons, car, and cdr assert an important property
about lists: two lists are equal iff their components are equal. The forward
direction — if two lists are equal, then their components are equal — is a
consequence of the (function congruence) axioms for car and cdr. The backward
direction is a consequence of the (function congruence) axiom for cons. This
relationship between two structures and their components is sometimes called
extensionality. We see it in arrays as well.
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The axioms of Tcons are the following:
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2. instantiations of the (function congruence) axiom schema for cons, car, and
cdr:

∀x1, x2, y1, y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)
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7. ∀x, y. ¬atom(cons(x, y)) (atom)

The first three sets of axioms define = to be a congruence relation for cons,
car, cdr, and atom. The axioms (left projection) and (right projection) define
the behavior of car and cdr on non-atom lists: car returns the first element of
a cons structure, and cdr returns the second element. However, they do not
specify the behavior of car and cdr on atoms. The (construction) axiom states
that the cons of car(x) and cdr(x) is x itself, unless x is an atom. In other
words, cons constructs structures, and car and cdr deconstructs them. Finally,
the axiom (atom) asserts that a term with root function symbol cons is not
an atom; it is a non-atomic list.

The congruence axioms for cons, car, and cdr assert an important property
about lists: two lists are equal iff their components are equal. The forward
direction — if two lists are equal, then their components are equal — is a
consequence of the (function congruence) axioms for car and cdr. The backward
direction is a consequence of the (function congruence) axiom for cons. This
relationship between two structures and their components is sometimes called
extensionality. We see it in arrays as well.

General Theory of RDS

Tcons is an instance of the general theory of recursive data structures TRDS.
Each RDS contributes the following to the signature:
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car, cdr, and atom. The axioms (left projection) and (right projection) define
the behavior of car and cdr on non-atom lists: car returns the first element of
a cons structure, and cdr returns the second element. However, they do not
specify the behavior of car and cdr on atoms. The (construction) axiom states
that the cons of car(x) and cdr(x) is x itself, unless x is an atom. In other
words, cons constructs structures, and car and cdr deconstructs them. Finally,
the axiom (atom) asserts that a term with root function symbol cons is not
an atom; it is a non-atomic list.

The congruence axioms for cons, car, and cdr assert an important property
about lists: two lists are equal iff their components are equal. The forward
direction — if two lists are equal, then their components are equal — is a
consequence of the (function congruence) axioms for car and cdr. The backward
direction is a consequence of the (function congruence) axiom for cons. This
relationship between two structures and their components is sometimes called
extensionality. We see it in arrays as well.
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∀x, y. x = y → cdr(x) = cdr(y)

3. an instantiation of the (predicate congruence) axiom schema for atom:
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4. ∀x, y. car(cons(x, y)) = x (left projection)
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6. ∀x. ¬atom(x) → cons(car(x), cdr(x)) = x (construction)
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car, cdr, and atom. The axioms (left projection) and (right projection) define
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the axiom (atom) asserts that a term with root function symbol cons is not
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car, cdr, and atom. The axioms (left projection) and (right projection) define
the behavior of car and cdr on non-atom lists: car returns the first element of
a cons structure, and cdr returns the second element. However, they do not
specify the behavior of car and cdr on atoms. The (construction) axiom states
that the cons of car(x) and cdr(x) is x itself, unless x is an atom. In other
words, cons constructs structures, and car and cdr deconstructs them. Finally,
the axiom (atom) asserts that a term with root function symbol cons is not
an atom; it is a non-atomic list.

The congruence axioms for cons, car, and cdr assert an important property
about lists: two lists are equal iff their components are equal. The forward
direction — if two lists are equal, then their components are equal — is a
consequence of the (function congruence) axioms for car and cdr. The backward
direction is a consequence of the (function congruence) axiom for cons. This
relationship between two structures and their components is sometimes called
extensionality. We see it in arrays as well.
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Theory of Lists with Equality

In Chapter 9, we describe a decision procedure for satisfiability in the
quantifier-free fragment of Tcons. The decision procedure is actually appli-
cable to the quantifier-free fragment of a more expressive theory, T =

cons, which
is the combination of TE and Tcons and thus includes uninterpreted constants,
functions, and predicates. Thus, its signature is ΣE∪Σcons, and its axioms are
the union of the axioms of TE and Tcons. In Section 3.8 and Chapter 10, we
discuss more general combinations of theories.

Example 3.15. To prove that the Σ=
cons-formula

F :
car(a) = car(b) ∧ cdr(a) = cdr(b) ∧ ¬atom(a) ∧ ¬atom(b)
→ f(a) = f(b)

is T =
cons-valid, assume otherwise: there exists a T =

cons-interpretation I such that
I $|= F :

1. I $|= F assumption
2. I |= car(a) = car(b) 1, →, ∧
3. I |= cdr(a) = cdr(b) 1, →, ∧
4. I |= ¬atom(a) 1, →, ∧
5. I |= ¬atom(b) 1, →, ∧
6. I $|= f(a) = f(b) 1, →
7. I |= cons(car(a), cdr(a)) = cons(car(b), cdr(b))

2, 3, (function congruence)
8. I |= cons(car(a), cdr(a)) = a 4, (construction)
9. I |= cons(car(b), cdr(b)) = b 5, (construction)
10. I |= a = b 7, 8, 9, (transitivity)
11. I |= f(a) = f(b) 10, (function congruence)
12. I |= ⊥ 6, 11

Therefore, F is T =
cons-valid. !

3.6 Arrays

Arrays are another common data structure in programming. They are similar
to the uninterpreted functions of TE except that they can be modified. The
theory of arrays TA describes the basic characteristic of an array: if value v
is written to position i of array a, then subsequently reading from position i
of a should return v. Because logic is static, modified arrays are represented
functionally, as in functional programming.

The theory of arrays TA has signature

ΣA : {·[·], ·〈· " ·〉, =} ,

where⋅ [ ⋅ ] a[i] a

i

⋅ ⟨ ⋅ ⊲ ⋅ ⟩ a⟨i ⊲ v⟩

a i v



Theory of Arrays
● Axioms ￼

○ The axioms of reflexivity, symmetry, and transitivity of ￼

○ ￼                    (array congruence)

○ ￼              (read-over-write 1)

○ ￼              (read-over-write 2)

● The equality predicate = is only defined for array “elements” (equality between 

arrays is not allowed). 
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• a[i] (read) is a binary function: a[i] represents the value of array a at
position i;

• a〈i ! v〉 (write) is a ternary function: a〈i ! v〉 represents the modified array
a in which position i has value v;

• and = (equality) is a binary predicate.

·[·] and ·〈·!·〉 really are binary and ternary functions, respectively, even though
we write them using a convenient notation. Writing a[i] as read(a, i) and a〈i!e〉
as write(a, i, e) emphasizes that they are functions.

Arrays are represented functionally. The term a〈i ! v〉 is an array that
is like a except that it has value v at position i. The term a〈i ! v〉[j] (which
abbreviates (a〈i!v〉)[j]) is equal to the value of array a〈i!v〉 at position j: it is
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1. I !|= F ′ assumption
2. I |= a[i] = e 1, →
3. I !|= ∀j. a〈i ! e〉[j] = a[j] 1, →
4. I1 : I ! {j &→ j} !|= a〈i ! e〉[j] = a[j] 3, ∀, for some j ∈ DI

5. I1 |= a〈i ! e〉[j] != a[j] 4, ¬
6. I1 |= i = j 5, (read-over-write 2)
7. I1 |= a[i] = a[j] 6, (array congruence)
8. I1 |= a〈i ! e〉[j] = e 6, (read-over-write 1)
9. I1 |= a〈i ! e〉[j] = a[j] 2, 7, 8, (transitivity)
10. I1 |= ⊥ 4, 9

We derive line 6 from line 5 by using the contrapositive of (read-over-write
2). The contrapositive of F1 → F2 is ¬F2 → ¬F1, and

F1 → F2 ⇔ ¬F2 → ¬F1 .

Lines 4 and 9 are contradictory, so that actually I |= F ′. Thus, F ′ is TA-valid.
!

Unfortunately, TA-validity is undecidable. It is straightforward to encode
arbitrary formulae of FOL in TA by viewing functions as multi-dimensional
arrays (arrays whose elements are arrays). Therefore, a theory T =

A in which
the behavior of = on arrays is axiomatized has been studied. Its quantifier-
free fragment is decidable. The signature of T =

A is the same as that of TA. Its
axioms consists of those of TA and the following axiom:

∀a, b. (∀i. a[i] = b[i]) ↔ a = b (extensionality)

Example 3.17. To prove that

F : a[i] = e → a〈i ! e〉 = a

is T =
A -valid, assume otherwise: there is a T =

A -interpretation I such that I !|=
F :

1. I !|= F assumption
2. I |= a[i] = e 1, →
3. I !|= a〈i ! e〉 = a 1, →
4. I |= a〈i ! e〉 != a 3, ¬
5. I |= ¬(∀j. a〈i ! e〉[j] = a[j]) 4, (extensionality)
6. I !|= ∀j. a〈i ! e〉[j] = a[j] 5, ¬

The rest of the proof then proceeds as in Example 3.16. !

We present a decision procedure for the quantifier-free fragment of TA in
Chapter 9. In Chapter 11, we present a decision procedure for satisfiability in a
fragment of TA that is more expressive than even the quantifier-free fragment
of T =

A .
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Unfortunately, TA-validity is undecidable. It is straightforward to encode
arbitrary formulae of FOL in TA by viewing functions as multi-dimensional
arrays (arrays whose elements are arrays). Therefore, a theory T =

A in which
the behavior of = on arrays is axiomatized has been studied. Its quantifier-
free fragment is decidable. The signature of T =

A is the same as that of TA. Its
axioms consists of those of TA and the following axiom:

∀a, b. (∀i. a[i] = b[i]) ↔ a = b (extensionality)

Example 3.17. To prove that

F : a[i] = e → a〈i ! e〉 = a

is T =
A -valid, assume otherwise: there is a T =

A -interpretation I such that I !|=
F :

1. I !|= F assumption
2. I |= a[i] = e 1, →
3. I !|= a〈i ! e〉 = a 1, →
4. I |= a〈i ! e〉 != a 3, ¬
5. I |= ¬(∀j. a〈i ! e〉[j] = a[j]) 4, (extensionality)
6. I !|= ∀j. a〈i ! e〉[j] = a[j] 5, ¬

The rest of the proof then proceeds as in Example 3.16. !

We present a decision procedure for the quantifier-free fragment of TA in
Chapter 9. In Chapter 11, we present a decision procedure for satisfiability in a
fragment of TA that is more expressive than even the quantifier-free fragment
of T =

A .
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Contradiction!

Contrapositive of 
read-over-write 2

read-over-write 1

array congruence



Theory of Fixed-Width Bitvectors
● The theory of fixed-width bitvectors has signature 

○ constants

○ fixed-width words (modeling machine ints, longs, etc.)

○ arithmetic operations (+, -, *, /, etc.)

○ bitwise operations (&, |, ^, etc.)

○ comparison operators (<, >, etc.)

○ = 

● With many axioms



Decidability of theories and quantifier-free fragments 

90 3 First-Order Theories

Table 3.1. Decidability of theories and quantifier-free fragments

Theory Description Full QFF

TE equality no yes
TPA Peano arithmetic no no
TN Presburger arithmetic yes yes
TZ linear integers yes yes
TR reals (with ·) yes yes
TQ rationals (without ·) yes yes
TRDS recursive data structures no yes
T+

RDS acyclic recursive data structures yes yes
TA arrays no yes
T=

A arrays with extensionality no yes

Table 3.2. Complexities for decidable theories

Theory Complexity

PL NP-complete

TN, TZ Ω
“

22n
”

, O

„

222
kn

«

TR O
“

22kn
”

TQ Ω (2n), O
“

22kn
”

T+
RDS not elementary recursive

3.7 !Survey of Decidability and Complexity

We survey the known decidability and complexity results of the theories of
this chapter.

Table 3.1 summarizes the decidability results for the first-order theories.
The quantifier-free fragment of each theory that we study in Part II of this
book is decidable.

Table 3.2 summarizes the complexity results for satisfiability in PL and the
decidable first-order theories. For all complexities, n is the size of the input
formula, and k is some positive integer. A decision problem is not elementary
recursive if its running time cannot be bounded by a fixed-height stack of
exponentials. Only decision procedures for satisfiability in PL scale well to
large problems.

Table 3.3 summarizes the complexity results for the quantifier-free frag-
ments. As satisfiability in PL is already NP-complete, we consider only con-
junctive formulae, which are just conjunctions of literals. For example, sat-
isfiability of propositional conjunctive formulae is decidable in linear time: if
both P and ¬P appear in F , for some propositional variable P , then F is un-
satisfiable; otherwise, F is satisfiable. For quantifier-free (but not conjunctive)
formulae, all complexities except that for TR are NP-complete. Satisfiability in
the quantifier-free fragments of TE, TQ, TRDS, and T +

RDS is efficiently decidable.

￼  with axiom 
￼  

TA

3.6 Arrays 89

1. I !|= F ′ assumption
2. I |= a[i] = e 1, →
3. I !|= ∀j. a〈i ! e〉[j] = a[j] 1, →
4. I1 : I ! {j &→ j} !|= a〈i ! e〉[j] = a[j] 3, ∀, for some j ∈ DI

5. I1 |= a〈i ! e〉[j] != a[j] 4, ¬
6. I1 |= i = j 5, (read-over-write 2)
7. I1 |= a[i] = a[j] 6, (array congruence)
8. I1 |= a〈i ! e〉[j] = e 6, (read-over-write 1)
9. I1 |= a〈i ! e〉[j] = a[j] 2, 7, 8, (transitivity)
10. I1 |= ⊥ 4, 9

We derive line 6 from line 5 by using the contrapositive of (read-over-write
2). The contrapositive of F1 → F2 is ¬F2 → ¬F1, and

F1 → F2 ⇔ ¬F2 → ¬F1 .

Lines 4 and 9 are contradictory, so that actually I |= F ′. Thus, F ′ is TA-valid.
!

Unfortunately, TA-validity is undecidable. It is straightforward to encode
arbitrary formulae of FOL in TA by viewing functions as multi-dimensional
arrays (arrays whose elements are arrays). Therefore, a theory T =

A in which
the behavior of = on arrays is axiomatized has been studied. Its quantifier-
free fragment is decidable. The signature of T =

A is the same as that of TA. Its
axioms consists of those of TA and the following axiom:

∀a, b. (∀i. a[i] = b[i]) ↔ a = b (extensionality)

Example 3.17. To prove that

F : a[i] = e → a〈i ! e〉 = a

is T =
A -valid, assume otherwise: there is a T =

A -interpretation I such that I !|=
F :

1. I !|= F assumption
2. I |= a[i] = e 1, →
3. I !|= a〈i ! e〉 = a 1, →
4. I |= a〈i ! e〉 != a 3, ¬
5. I |= ¬(∀j. a〈i ! e〉[j] = a[j]) 4, (extensionality)
6. I !|= ∀j. a〈i ! e〉[j] = a[j] 5, ¬

The rest of the proof then proceeds as in Example 3.16. !

We present a decision procedure for the quantifier-free fragment of TA in
Chapter 9. In Chapter 11, we present a decision procedure for satisfiability in a
fragment of TA that is more expressive than even the quantifier-free fragment
of T =

A .



Summary
● First-order theories 

● Signature, axioms

● Decidability


