# CSE4051: Program Verification

First-Order Theories

2025 Fall

Woosuk Lee

#### Review: First-Order Logic

- FOL is an extension of PL with predicates, functions, and quantifiers.
- The semantics is determined by an interpretation.
- An interpretation I consists of a domain  $(D_I)$  and an assignment  $(A_I)$  for free variables and **nonlogical symbols** (functions, predicates, and constants).
  - $\exists x.x+0=1$  is true under the conventional interpretation but false if we interpret + as multiplication.

#### First-Order Theories

- In practice, we are NOT interested in pure logical validity (i.e., valid in all interpretations) of FOL formulas but in validity in a specific class of interpretations.
  - $\circ$   $\exists x.x+0=1$  under interpretations where + is treated as addition
  - o In many cases, we have a particular meaning of functions/predicates in mind.
- First-order logic is a general framework for building a specific, restricted logic called **theories**.

#### First-Order Theories

- The restrictions are made on nonlogical symbols and interpretations. For instance, in the theory of integers, only + and are allowed for function symbols with their conventional interpretations.
- One natural way for restricting interpretations is to provide a set of **axioms**; we only consider interpretations that satisfy the axioms.

#### First-Order Theories

- A first-order theory T is defined by the two components:
  - **Signature**: a set of nonlogical symbols. Given a signature  $\Sigma$ , a  $\Sigma$ -formula is one whose nonlogical symbols are from  $\Sigma$ . Signature restricts the syntax.
  - $\circ$  **Axioms**: A set of closed FOL formulas whose nonlogical symbols are from  $\Sigma$ . Axioms restrict the interpretations.

## Example: The Theory of Heights

- A theory with a predicate *taller*
- Signature  $\Sigma_H = \{taller\}$
- Axioms  $A_H$  provide the meaning of the symbols in  $\Sigma_H$  (i.e., taller)
  - $\circ \forall x, y . taller(x, y) \Longrightarrow \neg taller(y, x)$
- An interpretation  $I=(D_I,A_I)$  where  $D_I=\{A,B\}$  and  $A_I(taller)=\{(A,B)\mapsto {\sf true}, (B,A)\mapsto {\sf true}\} \text{ does not satisfy the axiom}.$
- An interpretation  $I=(D_I,A_I)$  where  $D_I=\{A,B\}$  and  $A_I(taller)=\{(A,B)\mapsto \text{true}\} \text{ satisfies the axiom}.$

# Example: The Theory of Equality

• A theory with a fixed interpretation for =. For example, the formula must be valid according to the conventional interpretation of =:

$$\forall x, y, z . (((x = y) \land \neg (y = z)) \implies \neg (x = z))$$

- To fix this interpretation, it is sufficient to enforce the following axioms:
  - $\circ$  Reflexivity:  $\forall x . x = x$
  - $\circ \quad \text{Symmetry: } \forall x, y . x = y \implies y = x$

#### Satisfiability and Validity

- Instead of pure logical satisfiability / validity under any interpretation, we focus on satisfiability / validity under interpretations of interest.
- Given a theory T with signature  $\Sigma$  and axioms A, an interpretation I is called T-interpretation if
  - $\circ$   $I \models a$  for every  $a \in A$  (every axiom in A is valid under I)
- A  $\Sigma$ -formula F is T-satisfiable (or satisfiable modulo T) if there exists a T-interpretation that satisfies F.
- A  $\Sigma$ -formula F is T-valid (or valid modulo T) if every T-interpretation satisfies F (we write  $T \models F$ ).
- ullet The theory T consists of all closed formulae that are T-valid.

#### Decidability and Completeness

- A theory T is **decidable** if there exists a procedure that for any  $\Sigma$ -formula (formula consisting of symbols in  $\Sigma$ ) F, (I) eventually halts and (2) answers yes if F is T-valid and no otherwise.
- A theory T is **complete** if for every closed  $\Sigma$ -formula  $F, T \models F$  or  $T \models \neg F$ .

#### Fragments of Theories

- A theory restricts only the nonlogical symbols. Restrictions on the logical symbols or the grammar are done by defining fragments of the logic. Two popular fragments:
  - $\circ$  Quantifier-free fragment: the set of  $\Sigma$ -formulas without quantifiers.
  - Conjunctive fragment: the set of formulas where the only boolean connective that is allowed is conjunction.
- Many first-order theories are undecidable while their quantifier-free fragments are decidable. In practice, we are mostly interested in the satisfiability problem of the quantifier-free fragment of first-order theories.

#### Example

Recall the theory of heights  $T_H$ .

- An interpretation  $I=(D_I,A_I)$  where  $D_I=\{A,B\}$  and  $A_I(taller)=\{(A,B)\mapsto {\rm true},(B,A)\mapsto {\rm true}\} \text{ is NOT a } T_H\text{-interpretation}.$
- An interpretation  $I=(D_I,A_I)$  where  $D_I=\{A,B\}$  and  $A_I(taller)=\{(A,B)\mapsto \text{true}\} \text{ is a } T_H\text{-interpretation}.$
- The following formula is  $T_H$ -valid.

$$\forall x. \neg taller(x, x)$$

## First-Order Theories for Programs

- When reasoning in SW, we have particular structures in mind (e.g., numbers, lists, arrays, ...)
- First-order theories formalize these structures to enable reasoning about them.
- These theories include a theory of
  - Equality
  - Integers
  - Rationals and reals
  - Arrays
  - Bitvectors
  - O ...

#### Theory of Equality with Uninterpreted Functions ( $T_E$ )

- The simplest first-order theory
- ullet Signature  $\Sigma_E$  consisting of
  - = (equality), a binary predicate,
  - o and all other symbols (constant, function, and predicate symbols)
- Equality = is interpreted predicate symbol: its meaning will be defined via axioms.
- The other functions, predicates, and constants are left unspecified (uninterpreted)
- Axioms  $A_E$ :
  - $\circ$  Reflexivity:  $\forall x . x = x$
  - $\circ$  Symmetry:  $\forall x, y . x = y \implies y = x$
  - Transitivity:  $\forall x, y, z . x = y \land y = z \implies x = z$
  - 0 ...

#### Theory of Equality with Uninterpreted Functions ( $T_E$ )

- 0 ...
- $\circ$  Function congruence (for each positive integer n and n-ary function symbol f):



• Predicate congruence (for each positive integer n and n-ary predicate symbol p):

$$\forall \overline{x}, \overline{y}. \left( \bigwedge_{i=1}^n x_i = y_i \right) \rightarrow (p(\overline{x}) \leftrightarrow p(\overline{y})) \longleftrightarrow \Rightarrow \text{and} \Leftarrow \right)$$

 Meaning: no matter what functions and predicates are used, if the inputs are the same, the outcomes are also the same.

#### Example

• Prove that  $F: a=b \land b=c \rightarrow g(f(a),b)=g(f(c),a)$  is  $T_E$  -valid (proof by contradiction)



congruence

#### Uninterpreted Functions

- In  $T_E$ , function symbols are uninterpreted since the axioms do not assign meaning to them.
- The only thing we know about them is that they are functions.
- A main use of uninterpreted functions is to abstract complex formulas that are otherwise difficult to automatically reason about.

#### Uninterpreted Functions for Program Equivalence

Suppose we want to prove equivalence of the following two programs:

```
int fun1(int y) {
  int x, z, w;
  z = y;
  w = x;
  x = z;
  return x*x;
}
```

```
int fun2(int y) {
  return y*y;
}
```

- Let  $r_1, r_2$  be return values of fun1 and fun2 respectively.
- We want to prove unsatisfiability of

$$z = y \land w = x \land x = z \land r_1 = x \times x \land r_2 = y \times y \land \neg (r_1 = r_2)$$

#### Uninterpreted Functions for Program Equivalence

- We can solve it by reducing the problem into a SAT problem by treating variables x,z,w,y as 32-bit bit vectors.
- But a SAT solver fails to solve within 5 minutes because multiplication makes the problem hard.
- $\bullet$  Using an uninterpreted function sqr, we can rewrite the formula as

$$z = y \land w = x \land x = z \land r_1 = sqr(x) \land r_2 = sqr(y) \land \neg(r_1 = r_2)$$

which is UNSAT in the theory of equality with uninterpreted functions.

• Therefore, the two programs are equal (why?)

#### Theory of Peano Arithmetic

- The theory of Peano arithmetic  $T_{PA}$  has signature  $\Sigma_{PA} = \{0,1,+,\cdot,=\}$ .
  - $\circ$  0, I : constants,  $+,\cdot$  (addition & multiplication) : binary functions
  - = : binary predicate
- ullet Axioms  $A_{PA}$  define addition, multiplication and equality over natural numbers.
  - 1.  $\forall x. \ \neg(x+1=0)$
  - 2.  $\forall x, y. \ x + 1 = y + 1 \rightarrow x = y$
  - 3.  $F[0] \land (\forall x. F[x] \rightarrow F[x+1]) \rightarrow \forall x. F[x]$
  - 4.  $\forall x. \ x + 0 = x$
  - 5.  $\forall x, y. \ x + (y+1) = (x+y) + 1$
  - 6.  $\forall x. \ x \cdot 0 = 0$
  - 7.  $\forall x, y. \ x \cdot (y+1) = x \cdot y + x$

 $\forall x. \ F[x]$  (induction) F[x]: When F has onefree variable, a formula obtained by replacing the free variable by x (induction) (plus zero) (plus successor) (times zero)

(zero)

(successor)

#### Example

• The formula 3x + 5 = 2y can be written using  $\Sigma_{PA}$  as

$$x + x + x + 1 + 1 + 1 + 1 + 1 + 1 = y + y$$

or

$$(1+1+1)\cdot x + 1 + 1 + 1 + 1 + 1 = (1+1)\cdot y$$

• The formula 3x + 5 > 2y can be written as

$$\exists z. \neg (z=0) \land 3x + 5 = 2y + z$$

• The formula  $3x + 5 \ge 2y$  can be written as

$$\exists z.3x + 5 = 2y + z$$

#### Example

• Pythagorean Theorem:

$$\exists x, y, z. \ x \neq 0 \ \land \ y \neq 0 \ \land \ z \neq 0 \ \land \ xx + yy = zz$$

• Fermat's Last Theorem:

$$\{\forall x, y, z. \ x \neq 0 \land y \neq 0 \land z \neq 0 \rightarrow x^n + y^n \neq z^n : n > 2 \land n \in \mathbb{Z}\}$$

#### Decidability and Completeness

- Validity in  $T_{PA}$  is NOT **decidable**: there does NOT exist a procedure that for any  $\Sigma_{PA}$  formula F, (I) eventually halts and (2) answers "yes" if F is  $T_{PA}$ -valid and answers "no" otherwise.
- Validity in even the quantifier-free fragment  $T_{PA}$  (i.e.,  $T_{PA}$  without quantifiers) is not decidable.
- $T_{PA}$  is **incomplete**: Not all valid  $\Sigma_{PA}$ -formulae can be proved to be valid using the axioms  $A_{PA}$ .
- To be decidable and complete, we need to drop multiplication.

### Theory of Presburger Arithmetic

- The theory of Presburger arithmetic  $T_{\mathbb{N}}$  has signature  $\Sigma_{\mathbb{N}} = \{0,1,+,=\}$ .
  - 0, I : constants,
     + (addition) : binary function
  - = : binary predicate
- ullet Axioms  $A_{\mathbb{N}}$  define addition, multiplication and equality over natural numbers.
- 1.  $\forall x. \ \neg(x+1=0)$  (zero)
- 2.  $\forall x, y. \ x+1=y+1 \rightarrow x=y$  (successor)
- 3.  $F[0] \land (\forall x. F[x] \rightarrow F[x+1]) \rightarrow \forall x. F[x]$  (induction)
- 4.  $\forall x. \ x + 0 = x$  (plus zero)
- 5.  $\forall x, y. \ x + (y+1) = (x+y) + 1$  (plus successor)
- $T_{\mathbb{N}}$  is both complete and decidable.

#### Encoding Negative Numbers

- ullet How can we reason about all integers  $\mathbb Z$  (including negative numbers?)
- Consider  $F_0: \forall w, x. \ \exists y, z. \ x+2y-z-13>-3w+5$  where is meant to be subtraction, and all variables are intended to range over  $\mathbb{Z}$ . The formula

$$F_1: \begin{array}{l} \forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n. \\ (x_p - x_n) + 2(y_p - y_n) - (z_p - z_n) - 13 > -3(w_p - w_n) + 5 \end{array}$$

introduces two variables,  $v_p$  and  $v_n$  for each variable v in  $F_0$  (each  $v_p$  and  $v_n$  can only range over  $\mathbb{N}$ ,  $v_p - v_n$  should range over  $\mathbb{Z}$ . Then, how is — interpreted?

#### Encoding Negative Numbers

Moving negated terms to the other side eliminates —:

$$F_2: \begin{cases} \forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n. \\ x_p + 2y_p + z_n + 3w_p > x_n + 2y_n + z_p + 13 + 3w_n + 5. \end{cases}$$

The final transformation eliminates constant coefficients and strict inequality:

### Theory of Integers

- Although integer reasoning can be done with natural numbers, it is convenient to have a theory of integers.
- ullet The theory of integers  $T_{\mathbb{Z}}$  has signature

$$\Sigma_{\mathbb{Z}}: \{\ldots, -2, -1, 0, 1, 2, \ldots, -3\cdot, -2\cdot, 2\cdot, 3\cdot, \ldots, +, -, =, >\}$$

where

 $\ldots$ , -2, -1, 0, 1, 2,  $\ldots$  are integer constants,

 $\cdots$ ,  $-3\cdot$ ,  $-2\cdot$ ,  $2\cdot$ ,  $3\cdot$ ,  $\cdots$  are unary functions representing constant

coefficients (e.g.,  $2 \cdot x$ , abbreviated 2x)

+, – are binary functions and =, > are binary predicates over  $\mathbb{Z}$ 

#### Theory of Rationals

ullet The theory of rationals  $T_{\mathbb{R}}$  has signature  $\Sigma_{\mathbb{Q}}$ 

$$\Sigma_{\mathbb{Q}}: \{0, 1, +, -, =, \geq\}$$

ullet Axioms  $A_{\mathbb Q}$ 

1. 
$$\forall x, y. \ x \geq y \land y \geq x \rightarrow x = y$$

2. 
$$\forall x, y, z. \ x \geq y \land y \geq z \rightarrow x \geq z$$

3. 
$$\forall x, y. \ x \geq y \ \lor \ y \geq x$$

4. 
$$\forall x, y, z$$
.  $(x + y) + z = x + (y + z)$ 

5. 
$$\forall x. \ x + 0 = x$$

6. 
$$\forall x. \ x + (-x) = 0$$

7. 
$$\forall x, y. \ x + y = y + x$$

8. 
$$\forall x, y, z. \ x \geq y \rightarrow x + z \geq y + z$$

```
(antisymmetry)
   (transitivity)
   (totality)
   (+ associativity)
        (+ identity)
        (+ inverse)
   (+ commutativity)
        (+ ordered)
```

• • •

# Theory of Rationals

ullet Axioms  $A_{\mathbb Q}$ 

• • •

9. for each positive integer n,

$$\forall x. \ nx = 0 \rightarrow x = 0$$

(torsion-free)

10. for each positive integer n,

$$\forall x. \ \exists y. \ x = ny$$

(divisible)

## Theory of Rationals

ullet Strict inequality is simple to express in  $T_{\mathbb Q}$ . Write

$$\forall x, y. \exists z. x + y > z$$

as  $\Sigma_{\mathbb{Q}}$ -formula

$$\forall x, y. \exists z. \neg (x + y = z) \land x + y \ge z$$
.

Rational coefficients are also simple to express. Write

$$\frac{1}{2}x + \frac{2}{3}y \ge 4$$

as

$$3x + 4y \ge 24$$
.

#### Theory of Rationals vs. Presburger arithmetic

- ullet Rational numbers do not satisfy  $T_{\mathbb{Z}}$  axioms but they satisfy  $T_{\mathbb{Q}}$  axioms.
- $\exists x.2x=3$  is  $T_{\mathbb{Z}}$ -invalid. However, assigning x to  $\frac{3}{2}$  satisfies it, so satisfiable in the theory of rationals.
- Every formula valid in  $T_{\mathbb{Z}}$  is valid in  $T_{\mathbb{Q}}$ , but not vice versa.
  - $\circ$  Therefore, deciding  $T_{\mathbb{Z}}$ -validity is more difficult than  $T_{\mathbb{Q}}$ -validity.
- Both theories (full and quantifier-free) are decidable.

### Theory of Lists

ullet The theory of lists  $T_{cons}$  has signature

```
\Sigma_{\mathsf{cons}}: {cons, car, cdr, atom, =} where
```

- cons is a binary function, called the constructor: cons(a, b) represents the list
   constructed by concatenating a to b;
- o car is a unary function, called the left projector: car(cons(a, b)) = a
- cdr is a unary function, called the right projector: cdr(cons(a, b)) = b
- $\circ$  atom is a unary predicate: atom(x) is true iff x is a single-element list,
- $\circ$  and =

### Theory of Lists

- Examples
  - o cons(a,cons(b,c)) is a list of three elements: a, b, and c.
  - o atom(a) is true, atom(cons(a,cons(b,c))) is false
  - $\circ$  car(cons(a, cons(b, c))) = a
  - $\circ$  cdr(cons(a, cons(b, c))) = cons(b, c)
  - cdr(cdr(cons(a, cons(b, c)))) = c

#### Theory of Lists

- Axioms  $A_{cons}$ :
  - $\circ$  The axioms of reflexivity, symmetry, and transitivity of  $T_E$

$$\forall x_1, x_2, y_1, y_2. \ x_1 = x_2 \ \land \ y_1 = y_2 \ \rightarrow \ \mathsf{cons}(x_1, y_1) = \mathsf{cons}(x_2, y_2)$$

$$\forall x, y. \ x = y \rightarrow \operatorname{car}(x) = \operatorname{car}(y)$$

$$\forall x, y. \ x = y \rightarrow \operatorname{cdr}(x) = \operatorname{cdr}(y)$$

$$\forall x, y. \ x = y \rightarrow (\mathsf{atom}(x) \leftrightarrow \mathsf{atom}(y))$$

$$\forall x, y. \ \mathsf{car}(\mathsf{cons}(x, y)) = x$$

$$\forall x, y. \ \mathsf{cdr}(\mathsf{cons}(x, y)) = y$$

$$\forall x, y. \neg atom(cons(x, y))$$

### Theory of Arrays

- Arrays are similar to the uninterpreted functions of  $T_E$  except they can be modified.
- ullet The theory of arrays  $T_A$  has signature  $\varSigma_{\mathsf{A}}\colon \{\cdot[\cdot],\ \cdot\langle\cdot\,\triangleleft\cdot\rangle,\ =\}$  where
  - $\circ$   $\cdot$  [  $\cdot$  ] (read) is a binary function: a[i] represents the value of array a at position i
  - $\circ$   $\cdot \langle \cdot \triangleleft \cdot \rangle$  (write) is a ternary function:  $a\langle i \triangleleft v \rangle$  represents the modified array a in which position i has value v

## Theory of Arrays

- $\bullet$  Axioms  $A_A$ 
  - $\circ$  The axioms of reflexivity, symmetry, and transitivity of  $T_{\!E}$
  - $\forall a,i,j. \ i=j \ \rightarrow \ a[i]=a[j]$  (array congruence)
  - $\forall a, v, i, j. \ i = j \ \rightarrow \ a \langle i \triangleleft v \rangle [j] = v$  (read-over-write I)
  - $\forall a, v, i, j. \ i \neq j \ \rightarrow \ a \langle i \triangleleft v \rangle [j] = a[j]$  (read-over-write 2)
- The equality predicate = is only defined for array "elements" (equality between arrays is not allowed).

#### Example

• Prove F':  $a[i] = e \rightarrow \forall j$ .  $a\langle i \triangleleft e \rangle[j] = a[j]$   $T_A$ -vaid.



### Theory of Fixed-Width Bitvectors

- The theory of fixed-width bitvectors has signature
  - constants
  - o fixed-width words (modeling machine ints, longs, etc.)
  - o arithmetic operations (+, -, \*, /, etc.)
  - o bitwise operations (&, |, ^, etc.)
  - comparison operators (<, >, etc.)
  - O =
- With many axioms

#### Decidability of theories and quantifier-free fragments

| Theory           | Description                       | Full | QFF |
|------------------|-----------------------------------|------|-----|
| $T_{E}$          | equality                          | no   | yes |
| $T_{PA}$         | Peano arithmetic                  | no   | no  |
| $T_{\mathbb{N}}$ | Presburger arithmetic             | yes  | yes |
| $T_{\mathbb{Z}}$ | linear integers                   | yes  | yes |
| $T_{\mathbb{R}}$ | $reals (with \cdot)$              | yes  | yes |
| $T_{\mathbb{Q}}$ | rationals (without $\cdot$ )      | yes  | yes |
| $T_{RDS}$        | recursive data structures         | no   | yes |
| $T_{RDS}^+$      | acyclic recursive data structures | yes  | yes |
| $T_{A}$          | arrays                            | no   | yes |
| $T_{A}^{=}$      | arrays with extensionality        | no   | yes |

 $T_A$  with axiom  $\forall a,b. \ (\forall i. \ a[i]=b[i]) \ \leftrightarrow \ a=b$ 

# Summary

- First-order theories
- Signature, axioms
- Decidability