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Review: First-Order Logic

e FOL is an extension of PL with predicates, functions, and quantifiers.

e [he semantics is determined by an interpretation.
e An interpretation / consists of a domain (D);) and an assignment (4,) for free
variables and nonlogical symbols (functions, predicates, and constants).
o dx.x+ 0 =1 is true under the conventional interpretation but false if we

interpret + as multiplication.




First-Order Theories

e In practice, we are NOT interested in pure logical validity (i.e., valid in all
interpretations) of FOL formulas but in validity in a specific class of
Interpretations.

o dx.x+ 0 =1 under interpretations where + is treated as addition
o In many cases, we have a particular meaning of functions/predicates in mind.
e First-order logic is a general framework for building a specific, restricted logic

called theories.




First-Order Theories

e T[he restrictions are made on nonlogical symbols and interpretations. For
instance, in the theory of integers, only + and — are allowed for function
symbols with their conventional interpretations.

e One natural way for restricting interpretations is to provide a set of axioms;

we only consider interpretations that satisfy the axioms.




First-Order Theories

e A first-order theory T is defined by the two components:
o Signature:a set of nonlogical symbols. Given a signature 2, a 2-formula is

one whose nonlogical symbols are from 2. Signature restricts the syntax.

AXxioms:A set of closed FOL formulas whose nonlogical symbols are from

2..Axioms restrict the interpretations.




Example: The Theory of Heights

e A theory with a predicate taller
e Signature X, = {taller}
e Axioms A, provide the meaning of the symbols in 2, (i.e., taller)
o Vx,y.taller(x,y) = —taller(y, x)
e An interpretation I = (D;, A;) where D, = {A, B} and
A(taller) = {(A, B) = true, (B,A) — true} does not satisfy the axiom.
e An interpretation [ = (D;, A;) where D; = {A, B} and

A/(taller) = {(A, B) — true} satisfies the axiom.




Example: The Theory of Equality

e A theory with a fixed interpretation for =. For example, the formula must be

valid according to the conventional interpretation of =:
VX, y, 2. (x =y) A2y =2) = ~(x=72)
e To fix this interpretation, it is sufficient to enforce the following axioms:
o Reflexivity: Vx.x = x
O Symmetry: Vx,y.x=y — y=x
o Transitivity: VX, y, 2. X=yAy=7 = X=7




Satisfiability and Validity

e |Instead of pure logical satisfiability / validity under any interpretation, we focus

on satisfiability / validity under interpretations of interest.
e Given a theory T with signature 2 and axioms A, an interpretation / is called
I-interpretation if
o IFaforeverya€ A (every axiom in A is valid under /)
e A X2-formula F'is T-satisfiable (or satisfiable modulo 7) if there exists a T’
-interpretation that satisfies £-.
e A 2-formula F'is T-valid (or valid modulo 7) if every T-interpretation satisfies F

(we write T F F).

@ The theory 7 consists of all closed formulae that are 7-valid.




Decidability and Completeness

e A theory T is decidable if there exists a procedure that for any 2-formula
(formula consisting of symbols in ) F, (|) eventually halts and (2) answers yes if
I is T-valid and no otherwise.

e A theory T is complete if for every closed 2-formula F, T F For T F —F.




Fragments of Theories

e A theory restricts only the nonlogical symbols. Restrictions on the logical
symbols or the grammar are done by defining fragments of the logic. Two

popular fragments:
o Quantifier-free fragment: the set of 2-formulas without quantifiers.

o Conjunctive fragment: the set of formulas where the only boolean
connective that is allowed is conjunction.
e Many first-order theories are undecidable while their quantifier-free fragments
are decidable. In practice, we are mostly interested in the satisfiability problem

of the quantifier-free fragment of first-order theories.




Example

Recall the theory of heights 77,
e An interpretation [ = (D, A;) where D, = {A, B} and
A(taller) = {(A, B) = true, (B,A) — true} is NOT a Ty-interpretation.
e An interpretation [ = (D;,A;) where D, = {A, B} and
A/(taller) = {(A, B) = true} is a Tinterpretation.
e The following formula is 7;-valid.

Vx.taller(x, x)




First-Order Theories for Programs

e When reasoning in SVV, we have particular structures in mind (e.g., numbers, lists,
arrays, ...)

e First-order theories formalize these structures to enable reasoning about them.
e These theories include a theory of

o Equality

O Integers

o Rationals and reals

O Arrays

o Bitvectors




Theory of Equality with Uninterpreted Functions (/)

e The simplest first-order theory
e Signature 2 consisting of

O = (equality), a binary predicate,

o and all other symbols (constant, function, and predicate symbols)
e Equality = is interpreted predicate symbol: its meaning will be defined via axioms.
e The other functions, predicates, and constants are left unspecified (uninterpreted)
e Axioms Ay :

o Reflexivity: Vx.x = x

O Symmetry: Vx,y.x=y — y=ux

o Transitivity: VX, y,Z. X=VYAy=7 = X =7




Theory of Equality with Uninterpreted Functions (/)

O

o0 Function congruence (for each positive integer n and n-ary function symbol /):

X1y enes X, s

O Predicate unce (for each positive integer n and n-ary predicate symbol

p):

( /\ Ti = yz) — (p(T) < : /

o Meaning: no matter what functions and predicates are used, if the inputs are

the same, the outcomes are also the same.




Example

e Provethat F: a=b A b=c — g(f(a),b) =g(f(c),a) is T -valid (proof by

contradiction)

I £ F

C Transitivity

" Function
M Congruence




Uninterpreted Functions

e In 7, function symbols are uninterpreted since the axioms do not assign

meaning to them.

e The only thing we know about them is that they are functions.

e A main use of uninterpreted functions is to abstract complex formulas that are

otherwise difficult to automatically reason about.




Uninterpreted Functions for Program Equivalence

e Suppose we want to prove equivalence of the following two programes:

jiht”fﬁhi(ihtwyj'{ |

Zy Wy,

lint fun?

| return y*vy;

A B
B 4
’ ¥

Zy

return x*x;

e Lletr,r, bereturn values of funl and fun?2 respectively.
e We want to prove unsatisfiability of

I=YAWSXAX=ZA =XXXAL=YXYA(r =1)




Uninterpreted Functions for Program Equivalence

e We can solve it by reducing the problem into a SAT problem by treating
variables x,z,w,y as 32-bit bit vectors.
e But a SAT solver fails to solve within 5 minutes because multiplication makes
the problem hard.
e Using an uninterpreted function sgr, we can rewrite the formula as
I=YAW=XAX=ZAT1 =58qr(x) Ar, =sqr(y) A (r; = r,)
which is UNSAT in the theory of equality with uninterpreted functions.

e Therefore, the two programs are equal (why?)




Theory of Peano Arithmetic

e The theory of Peano arithmetic 75, has signature 2,, = {0,1,+,-, = }.

o 0, | :constants, +, - (addition & multiplication) : binary functions

O

= :binary predicate

e Axioms Ap, define addition, multiplication and equality over natural numbers.

\IQCﬂp-lkwN)r—\

. Vx. =(x + 1 =0) (zero)
Vr,y.x+1=y+1 — x=y (successor)
. Fl0] N (Vx. Flz]| — Flr+1]) — Vx. F|x] (induction)
. Vr.x+0=x (plus zero)

Vr,y.x+(y+1)=(r+y)+1  Flx]:When Fhasone (plus successor)

Y. -0 =( free variable, a formula

obtained by replacing the (times zero)

. V%, Y. T - (y —+ 1) —= XY + x free variable by x (times SUCCGSSOF)




Example

e The formula 3x + 5 = 2y can be written using 2., as

x+x+x+1+1+1+1+1=y+y

or
A+1+D-x+1+14+1+1+1=0+1)-y
e The formula 3x + 5 > 2y can be written as
dz. 7 (z=0A3x+5=2y+4+7
e The formula 3x 4+ 5 > 2y can be written as

dz.3x+35=2y+z




Example

e Pythagorean Theorem:

e Fermat’s Last Theorem:

{(Ve,y,z. 2 20 N y#0 AN 2#0 — z" 4+ y" # 2"

Jr,y,z. e A0 N y#0 AN 2#0 N zx +yy = 22

:n>2 N né€Z}




Decidability and Completeness

e Validity in 75, is NOT decidable: there does NOT exist a procedure that for

any 2, formula F, (l) eventually halts and (2) answers “yes” if I is T -valid

and answers ‘no’”’ otherwise.

e Validity in even the quantifier-free fragment 1, (i.e., 7, without quantifiers) is

not decidable.

o 7,,isincomplete: Not all valid 2, ,-formulae can be proved to be valid using

the axioms Ap,.

® o be decidable and complete, we need to drop multiplication.




Theory of Presburger Arithmetic

e The theory of Presburger arithmetic 7, has signature 2y = {0,1, 4+, = }.

o 0, | :constants, + (addition) : binary function

O = :binary predicate
e Axioms Ay define addition, multiplication and equality over natural numbers.
1. V. =(z + 1 = 0) (zero)
2. Vz,y.c+1=y+1 — ==y (successor)
3. FIO] A (Vz. Flx| — Flx +1]) — Vx. F|x] (induction)
4. Ve. z+0==x (plus zero)
5. Ve,y.x+ (y+1)=(z+y) +1 (plus successor)

e 1/ is both complete and decidable.




Encoding Negative Numbers

e How can we reason about all integers Z (including negative numbers?)

e Consider Fp: Vw,z. dJy,z. x +2y—2—13 > —3w+ 5

where — is meant to be subtraction, and all variables are intended to range over

Z. The formula

YWy, Wy s Tpy T IYpys Yny Zpy Zn-
(@p — @) +2(Yp — Yn) — (2p — 2n) — 13> =3(wp —wn) + 5

F1 :
introduces two variables, v, and v, for each variable v in -, (each v, and v, can

only range over N, v, — v, should range over Z.Then, how is — interpreted!




Encoding Negative Numbers

e Moving negated terms to the other side eliminates —:

F2:

VWp, Wny Tpy Ty =

Yps Yn, Zpy Zn -

Tp + 2Yyp + 2n +3Wp > Ty, + 2yn + 2p + 13+ 3w, + 5.

e The final transformation eliminates constant coefficients and strict inequality:

ng

YWy, W,y Tpy Ty -
—(u = 0) A
Tp +Yp +Yp T Zn + Wp + Wy + Wp

=Tp T Yn T Yn T Zp + Wy + Wy, + Wy, + U

1 -

1 -

1 -

141 -

1 -

1 -

141 -

Yps Yn s Rpy 2n. =

1 -

1 -

1 -

Uu.

1 -

1 -

1 -

-1

1 -

-1




Theory of Integers

e Although integer reasoning can be done with natural numbers, it is convenient to

have a theory of integers.

e The theory of integers 717, has signature

Yy 4...,—2,—-1,0, 1, 2, ..., =3, =2, 2, 3+, ..., +, —, =, >}
where

ooy =2, =1, 0, 1,2, ... 3re integer constants,

ey T =240 240 54 Lol gre unary functions representing constant

coefficients (e.g., 2 - x, abbreviated 2x)

+, — are binary functions and =, > are binary predicates over Z




Theory of Rationals
e The theory of rationals 7 has signature 2
EQ: {07 17 _|_7 R Z}

e AXxioms A@

1. Ve,y.x >y N y>x — x=y (antisymmetry)
2. Vr,y,z. x>y N y>z — x>z (transitivity)
3. Vr,y.x >y V y>x (totality)
4. Ve,y,z. (x+y)+z=x+ (y + 2) (+ associativity)
. Ve. x+0 == (+ identity)
6. V. z+ (—x) =0 (+ inverse)
7. Ve,y. x+y=y—+2x (+ commutativity)
8. Vr,y,z.x >y — x+2>y+=z2 (+ ordered)




Theory of Rationals

e Axioms Ag

9. for each positive integer n,
Ve. nt=0 — =0

10. for each positive integer n,

Ve, dy. x = ny

(torsion-free)

(divisible)




Theory of Rationals

e Strict inequality is simple to express in 1(.VVrite

Ve,y. dz.x+y > 2

as Z@-formula

Ve,y. dz. 2(z+y=2) N z+y> 2.

e Rational coefficients are also simple to express.Write

1 2

—r > 4

ot T3 =
as

dr + 4y > 24.




Theory of Rationals vs. Presburger arithmetic

e Rational numbers do not satisfy 7>, axioms but they satisfy 7 axioms.

3

e JX.2x = 3 is T,-invalid. However, assigning x to — satisfies it, so satisfiable in

2

the theory of rationals.

e Every formula valid in 7, is valid in 7, but not vice versa.

o Therefore, deciding 1>,-validity is more difficult than 7;-validity.

e Both theories (full and quantifier-free) are decidable.




Theory of Lists

e The theory of lists 7. has signature

cons
Yeons - {cons, car, cdr, atom, =}
where

O cons is a binary function, called the constructor: cons(a, b) represents the list

constructed by concatenating a to b;

O car is a unary function, called the left projector: car(cons(a, b)) = a

o cdr is a unary function, called the right projector: cdr(cons(a, b)) = b

O atom is a unary predicate: atom(x) is true iff x is a single-element list,

O and =




Theory of Lists

e Examples

O

O

O

cons(a,cons(b,c)) is a list of three elements: a, b, and c.
atom(a) is true, atom(cons(a,cons(b,c))) is false
car(cons(a, cons(b, ¢))) = a

cdr(cons(a, cons(b, ¢))) = cons(b, c)

cdr(cdr(cons(a, cons(b, c)))) = ¢




Theory of Lists

e AxiomsA, .

o The axioms of reflexivity, symmetry, and transitivity of 17

V1, x2,y1,Y2. T1 = To A Y1 =y2 — cons(xy,y;) = cons(xz, yo)

O

L Vr,y.x =y — car(z) = car(y)

. Vx,y.x =y — cdr(x) = cdr(y)

. Vr,y.x=y — (atom(z) < atom(y))

. Vx,y. car(cons(z,y)) =
- Vx,y. cdr(cons(x,y)) =y
Vx. matom(x) — cons(car(z),cdr(z)) = x

Va,y. matom(cons(x, y))




Theory of Arrays

e Arrays are similar to the uninterpreted functions of 1. except they can be
modified.

e The theory of arrays T, has signature Xa: {-[], -(-<-), =} where

o | -] (read) is a binary function: ali| represents the value of array a at
position 1
o -(-<-) (write) is a ternary function: a(i < v) represents the modified

array a in which position 7 has value v




Theory of Arrays

e Axioms A,
o The axioms of reflexivity, symmetry, and transitivity of 75
o Va,i,j.i=j — ali] =alj (array congruence)
o Va,v,i,j. 1 =7 — a{idv)[j] =0 (read-over-write |)
O va,v,1, ). 1 7& ] — a<i < v>[=7] — a[j] (read-over-write 2)
e The equality predicate = is only defined for array “elements” (equality between

arrays is not allowed).




Example

o Prove F': ali

Contradiction!

. Contrapositive of ™\
\_ read-over-write 2 _/




Theory of Fixed-Width Bitvectors

e The theory of fixed-width bitvectors has signature
O constants
o fixed-width words (modeling machine ints, longs, etc.)
o arithmetic operations (+, -, *, /, etc.)
o bitwise operations (&, |, *, etc.)
O comparison operators (<, >, etc.)
o =

e With many axioms




Decidability of theories and quantifier-free fragments
Theory|Description Full QFF
1E equality no| yes
T Peano arithmetic Nno no
T Presburger arithmetic yes| vyes
17y linear integers yes| yes
TRk reals (with -) yes| yes
To rationals (without -) yes| yes
TRDS recursive data structures no| vyes
1 rbs acyclic recursive data structures| yes| yes
A arrays no| yes
VN arrays with extensionality no| yes

I’y with axiom
a, b. (Vi. alt] =Dbli]) < a=




Summary

e First-order theories
e Signature, axioms

e Decidability




