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Review: Calculus of Computation
● Calculus: a set of symbols + rules for manipulating the symbols

○ e.g., Differential calculus: rules for manipulating integral symbols over a 

polynomial

● We may ask questions about computations

○ Does this program terminate?

○ Does this program output a sorted array for a given array?

○ Does this program access unallocated memory?

● We need a calculus to reason about computation to answer these questions.



Review: Propositional Logic and First-Order Logic

● Also known as propositional calculus and predicate calculus 

● calculi for reasoning about propositions and predicates

● Propositions: statements that can be true or false

○ e.g., "It is raining", "2 + 2 = 4”

● Predicates: statements that can be true or false depending on the values 

given to them

○ e.g., "x is greater than 2", "y is a prime number" 



First-Order Logic
● First-order logic (FOL) (also called predicate logic) extends propositional logic 

(PL) with, most importantly, predicates. 

● A predicate takes arguments and returns a truth value. 

○ n-ary predicate takes n arguments 

● A propositional variable can be regarded as a 0-ary predicate. 

● Examples of predicates (￼  are propositional variables, ￼  are predicates)

○ ￼ , ￼

○ ￼

○ ￼  : “Alice loves Bob”

x, y p, q

p(x, y) q(y)

¬p(x, y) ∧ q(y)

Love(Alice, Bob)



First-Order Logic
● First-order logic (FOL) extends propositional logic (PL) also with functions 

and quantifiers.

● In PL, all parts of a formula evaluate to true or false.  

                                      ￼

● In FOL, thanks to functions, parts of a formula may evaluate to values other 

than truth values such as integers, strings, etc.  

                                ￼

(p ∧ q) ∨ ¬r

x + y > 5 ∧ f(z) = "hi"

FunctionPredicate

Constant
Function



Terms
● Representations of objects that we are reasoning about

● Constants and variables are terms

● Functions taking terms as arguments are also terms. 

● Examples: 

○ ￼ : a unary function ￼ applied to a constant ￼

○ ￼ : a binary function ￼  applied to a variable ￼  and a constant ￼

○ ￼

f(1) f 1

g(x,2) g x 2

f(g(x, f(1)))



First-Order Logic
● Quantifiers: symbols telling you how many things a statement is talking about

○ Universal quantifier(￼  — “for all”): a statement is true for every object 

                            ￼  

“For every x, if x is a human, then x is mortal.” 

○ Existential quantifier(￼  — “there exists”): a statement is true for at least one 

object 

                      ￼  

“There exists x such that x is a student and x studies the CSE4051 course.” 

∀

∀x . Human(x) ⟹ Mortal(x)

∃

∃x . Student(x) ∧ StudiesCSE4051(x)



Syntax
● Atom: Basic elements 

○ Truth symbols ⊥, ⊤, n-ary predicates applied to n terms

● Literal: an atom or its negation 

● Formula: a literal or application of a logical connective to formulas, or the 

application of a quantifier to a formula 

￼                                     (Atom) 

    ￼                    (Logical connectives)  

    ￼                                      (Quantification) 

F → ⊥ | ⊤ |p(t1, …, tn)

|¬F |F1 ∧ F2 |F1 ∨ F2 |F1 ⇒ F2

|∀x . F[x] |∃x . F[x]



More about Quantifiers

● ￼  in ￼  is bound (by the quantifier)

● The scope of the quantified variable extends as far as possible

○ Which are the scopes of ￼  and ￼  ?  

              ￼

● A variable occurrence is free in ￼  if it is not bound. 

● Which variable occurrences are free / bound?  

                               ￼

x F[x]

∀x ∃y

∀x . p( f(x), x) ⇒ (∃y . p( f(g(x, y)), g(x, y))) ∧ q(x, f(x))

F[x]

∀x . p( f(x), y) ⇒ ∀y . p( f(x), y)

∀x . F[x]
Quantified 
variable

Scope 
of ￼∀x



Examples of FOL Formulas

● Every dog has its day. 

● Some dogs have more days than others.

● All cats have more days than dogs.

38 2 First-Order Logic

• and the subterms of f(t1, . . . , tn) are the term itself and the subterms of
t1, . . . , tn.

The strict subterms of a term excludes the term itself.

Example 2.5. In

F : ∀x. p(f(x), y) → ∀y. p(f(x), y) ,

the subformulae of F are

F , p(f(x), y) → ∀y. p(f(x), y) , ∀y. p(f(x), y) , p(f(x), y) .

The subterms of g(f(x), f(h(f(x)))) are

g(f(x), f(h(f(x)))) , f(x) , f(h(f(x))) , h(f(x)) , x .

f(x) occurs twice in g(f(x), f(h(f(x)))). !

Example 2.6. Before discussing the formal semantics for FOL, we suggest
translations of English sentences into FOL. The names of the constants, func-
tions, and predicates are chosen to provide some intuition for the meaning of
the FOL formulae.

• Every dog has its day.

∀x. dog(x) → ∃y. day(y) ∧ itsDay(x, y)

• Some dogs have more days than others.

∃x, y. dog(x) ∧ dog(y) ∧ #days(x) > #days(y)

• All cats have more days than dogs.

∀x, y. dog(x) ∧ cat(y) → #days(y) > #days(x)

• Fido is a dog. Furrball is a cat. Fido has fewer days than does Furrball.

dog(Fido) ∧ cat(Furrball) ∧ #days(Fido) < #days(Furrball)

• The length of one side of a triangle is less than the sum of the lengths of
the other two sides.

∀x, y, z. triangle(x, y, z) → length(x) < length(y) + length(z)

• Fermat’s Last Theorem.

∀n. integer(n) ∧ n > 2
→ ∀x, y, z.

integer(x) ∧ integer(y) ∧ integer(z) ∧ x > 0 ∧ y > 0 ∧ z > 0
→ xn + yn %= zn

!
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Examples of FOL Formulas
● Fido is a dog. Furrball is a cat. Fido has fewer days than does Furrball. 

● The length of one side of a triangle is less than the sum of the lengths of the 

other two sides. 

● Fermat’s Last Theorem. 
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Semantics (Meaning) of FOL
● Formulae of FOL evaluate to the truth values true and false. 

● However, terms of FOL formulae evaluate to values from a specified domain.

● A FOL interpretation ￼

○ The domain ￼  : a nonempty (possibly infinite) set of values (e.g., integers, people, …) 

○ The assignment ￼  maps

■ a variable symbol ￼  to a value in ￼

■ an n-ary function symbol ￼ to a function  ￼

■ an n-ary predicate symbol ￼  to an n-ary predicate ￼

■ Each constant (0-ary function) and propositional variable (0-ary predicate) are 

assigned a value in ￼  and a truth value, respectively. 

I = (DI, αI)

DI

αI

x DI

f fI : Dn
I → DI

p pI : Dn
I → {true, false}

DI



Example
● Given a formula       ￼

● Note that ￼ are just symbols: we could have written 

                              ￼

● An interpretation ￼  where 

○ ￼  (set of integers)

○ ￼

F : x + y > z ⇒ y > z − x

+, − , >

p( f(x, y), z) ⇒ p(y, g(z, x))

I = (DI, αI)

DI = ℤ

αI = { + ↦ +ℤ , − ↦ −ℤ , > ↦ >ℤ , x ↦ 13, y ↦ 42, z ↦ 1}



Semantics of FOL
● Given a FOL formula ￼  and interpretation ￼ , ￼  or ￼ .

● The meaning of truth symbols: 

○ ￼ , ￼

● For more complicated atoms, ￼  gives meaning ￼ , ￼ , and ￼  to variables 

￼ , constants ￼ , and functions ￼. Evaluate arbitrary terms recursively:  

             ￼  

for function symbol ￼ and terms ￼ . Similarly, for predicate symbol ￼  

             ￼  

Then, 

F I = (DI, αI) I ⊧ F I /⊧ F

I ⊧ ⊤ I /⊧ ⊥

αI αI(x) αI(c) αI( f )

x c f

αI( f(t1, …, tn)) = αI( f )(αI(t1), …, αI(tn))

f t1, …, tn p

αI(p(t1, …, tn)) = αI(p)(αI(t1), …, αI(tn))

40 2 First-Order Logic

To + and − we assign standard addition +Z and subtraction −Z of integers,
respectively. To > we assign the standard greater-than relation >Z of integers.
Finally, to x, y, and z, we assign the values 13, 42, and 1, respectively. We
ignore the countably infinitely many other constant, function, and predicate
symbols that do not appear in F . We thus have interpretation I : (Z, αI),
where

αI : {+ "→ +Z, − "→ −Z, > "→>Z, x "→ 13, y "→ 42, z "→ 1, . . .} .

The elision reminds us that, as always, αI provides values for the countably
infinitely many other constant, function, and predicate symbols. Usually, we
do not write the elision. !

Given a FOL formula F and interpretation I : (DI , αI), we want to com-
pute if F evaluates to true under interpretation I, I |= F , or if F evaluates to
false under interpretation I, I $|= F . We define the semantics inductively as in
PL. To start, define the meaning of truth symbols:

I |= %
I $|= ⊥

Next, consider more complicated atoms. αI gives meaning αI [x], αI [c], and
αI [f ] to variables x, constants c, and functions f . Evaluate arbitrary terms
recursively:

αI [f(t1, . . . , tn)] = αI [f ](αI [t1], . . . , αI [tn]) ,

for terms t1, . . . , tn. That is, define the value of f(t1, . . . , tn) under αI by
evaluating the function αI [f ] over the terms αI [t1], . . . , αI [tn]. Similarly,
evaluate arbitrary atoms recursively:

αI [p(t1, . . . , tn)] = αI [p](αI [t1], . . . , αI [tn]) .

Then

I |= p(t1, . . . , tn) iff αI [p(t1, . . . , tn)] = true

Having completed the base cases of our inductive definition, we turn to
the inductive step. Assume that formulae F1 and F2 have fixed truth values.
From these formulae, evaluate the semantics of more complex formulae. The
logical connectives are handled in FOL in precisely the same way as in PL:

I |= ¬F iff I $|= F
I |= F1 ∧ F2 iff I |= F1 and I |= F2

I |= F1 ∨ F2 iff I |= F1 or I |= F2

I |= F1 → F2 iff, if I |= F1 then I |= F2

I |= F1 ↔ F2 iff I |= F1 and I |= F2, or I $|= F1 and I $|= F2



Semantics of FOL
● Connectives:

● Quantifiers: 

40 2 First-Order Logic
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respectively. To > we assign the standard greater-than relation >Z of integers.
Finally, to x, y, and z, we assign the values 13, 42, and 1, respectively. We
ignore the countably infinitely many other constant, function, and predicate
symbols that do not appear in F . We thus have interpretation I : (Z, αI),
where

αI : {+ "→ +Z, − "→ −Z, > "→>Z, x "→ 13, y "→ 42, z "→ 1, . . .} .

The elision reminds us that, as always, αI provides values for the countably
infinitely many other constant, function, and predicate symbols. Usually, we
do not write the elision. !

Given a FOL formula F and interpretation I : (DI , αI), we want to com-
pute if F evaluates to true under interpretation I, I |= F , or if F evaluates to
false under interpretation I, I $|= F . We define the semantics inductively as in
PL. To start, define the meaning of truth symbols:

I |= %
I $|= ⊥

Next, consider more complicated atoms. αI gives meaning αI [x], αI [c], and
αI [f ] to variables x, constants c, and functions f . Evaluate arbitrary terms
recursively:

αI [f(t1, . . . , tn)] = αI [f ](αI [t1], . . . , αI [tn]) ,

for terms t1, . . . , tn. That is, define the value of f(t1, . . . , tn) under αI by
evaluating the function αI [f ] over the terms αI [t1], . . . , αI [tn]. Similarly,
evaluate arbitrary atoms recursively:

αI [p(t1, . . . , tn)] = αI [p](αI [t1], . . . , αI [tn]) .

Then

I |= p(t1, . . . , tn) iff αI [p(t1, . . . , tn)] = true

Having completed the base cases of our inductive definition, we turn to
the inductive step. Assume that formulae F1 and F2 have fixed truth values.
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2.2 Semantics 41

Example 2.8. Recall the formula

F : x + y > z → y > z − x

of Example 2.7 and the interpretation I : (Z, αI), where

αI : {+ #→ +Z, − #→ −Z, > #→>Z, x #→ 13Z, y #→ 42Z, z #→ 1Z} .

Compute the truth value of F under I as follows:

1. I |= x + y > z since αI [x + y > z] = 13Z +Z 42 >Z 1Z

2. I |= y > z − x since αI [y > z − x] = 42Z >Z 1Z −Z 13Z

3. I |= F by 1, 2, and the semantics of →

!

For the quantifiers, let x be a variable. Define an x-variant of an inter-
pretation I : (DI , αI) as an interpretation J : (DJ , αJ) such that

• DI = DJ ;
• and αI [y] = αJ [y] for all constant, free variable, function, and predicate

symbols y, except possibly x.

That is, I and J agree on everything except possibly the value of variable x.
Denote by J : I " {x #→ v} the x-variant of I in which αJ [x] = v for some
v ∈ DI . Then

I |= ∀x. F iff for all v ∈ DI , I " {x #→ v} |= F
I |= ∃x. F iff there exists v ∈ DI such that I " {x #→ v} |= F

In words, I is an interpretation of ∀x. F iff all x-variants of I are interpre-
tations of F . I is an interpretation of ∃x. F iff some x-variant of I is an
interpretation of F .

Example 2.9. Consider the formula

F : ∃x. f(x) = g(x)

and the interpretation I : (D : {◦, •}, αI) in which

αI : {f(◦) #→ ◦, f(•) #→ •, g(◦) #→ •, g(•) #→ ◦} .

Compute the truth value of F under I as follows:

1. I " {x #→ v} (|= f(x) = g(x) for v ∈ D
2. I (|= ∃x. f(x) = g(x) since v ∈ D is arbitrary

In the first line, basic reasoning about the interpretation I reveals that f and
g always disagree. The second line follows from the first by the semantics of
existential quantification. !

￼  
with an updated assignment 

where ￼  maps to ￼

I

x v



Example
● Given a formula       ￼

● The previous interpretation ￼

○ ￼  (set of integers)

○ ￼

● is satisfying because 

1. ￼  since ￼

2. ￼  since ￼

3. ￼  by 1, 2, and the semantics of ￼

F : x + y > z ⇒ y > z − x

I = (DI, αI)

DI = ℤ

αI = { + ↦ +ℤ , − ↦ −ℤ , > ↦ >ℤ , x ↦ 13, y ↦ 42, z ↦ 1}

I ⊧ x + y > z αI[x + y > z] = 13 + 42 >ℤ 1

I ⊧ y > z − x αI[y > z − x] = 42 >ℤ 1 −ℤ 13

I ⊧ F ⇒



Satisfiability and Validity
● A formula ￼  is satisfiable iff there exists an interpretation ￼ such that ￼ .

● A formula ￼  is valid iff for all interpretations ￼, ￼ .

● Technically, satisfiability and validity only apply to closed FOL formulae, which do 

not have free variables.

● However, there’s a convention:

○ If we say a formula having free variables is valid, we treat free variables as 

universally quantified variables (e.g., “￼  is valid” means  “￼  

is valid”) (Similar for ￼ )

● Duality holds: ￼  is valid ￼  is unsatisfiable 

F I I ⊧ F

F I I ⊧ F

∀x . x > y ∀x, y . x > y

∃

∀ * .F ⟺ ∃ * . ¬F



Review: Semantic Argument Method
● Assume a formula is invalid, and check if it leads to a contradiction by applying 

proof rules.

● A proof rule has one or more premises (assumed facts) and deductions 

(deduced facts)

Assumed fact1 , …, Assumed fact n


Deduced fact1, … , Deduced fact n



Review: Semantic Argument Method for PL
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1.3.2 Semantic Arguments

Our next approach to validity checking is the semantic argument method.
While more complicated than the truth-table method, we introduce it and
emphasize it throughout the remainder of the chapter because it is our only
method of evaluating the satisfiability and validity of formulae in Chapter 2.

A proof based on the semantic method begins by assuming that the given
formula F is invalid: hence, there is a falsifying interpretation I such that
I !|= F . The proof proceeds by applying the semantic definitions of the logical
connectives in the form of proof rules. A proof rule has one or more premises
(assumed facts) and one or more deductions (deduced facts). An application
of a proof rule requires matching the premises to facts already existing in the
semantic argument and then forming the deductions. The proof rules are the
following:

• According to the semantics of negation, from I |= ¬F , deduce I !|= F ; and
from I !|= ¬F , deduce I |= F :

I |= ¬F
I !|= F

I !|= ¬F
I |= F

• According to the semantics of conjunction, from I |= F ∧G, deduce both
I |= F and I |= G; and from I !|= F ∧ G, deduce I !|= F or I !|= G. The
latter deduction results in a fork in the proof; each case must be considered
separately.

I |= F ∧G
I |= F
I |= G

I !|= F ∧G
I !|= F | I !|= G

• According to the semantics of disjunction, from I |= F ∨G, deduce I |= F
or I |= G; and from I !|= F ∨ G, deduce both I !|= F and I !|= G. The
former deduction requires a case analysis in the proof.

I |= F ∨G
I |= F | I |= G

I !|= F ∨G
I !|= F
I !|= G

• According to the semantics of implication, from I |= F → G, deduce
I !|= F or I |= G; and from I !|= F → G, deduce both I |= F and I !|= G.
The former deduction requires a case analysis in the proof.

I |= F → G
I !|= F | I |= G

I !|= F → G
I |= F
I !|= G
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• According to the semantics of iff, from I |= F ↔ G, deduce I |= F ∧G or
I #|= F ∨ G; and from I #|= F ↔ G, deduce I |= F ∧ ¬G or I |= ¬F ∧ G.
Both deductions require considering multiple cases.

I |= F ↔ G
I |= F ∧G | I #|= F ∨G

I #|= F ↔ G
I |= F ∧ ¬G | I |= ¬F ∧G

• Finally, a contradiction occurs when following the above proof rules results
in the claim that an interpretation I both satisfies a formula F and does
not satisfy F .

I |= F
I #|= F
I |= ⊥

Before explaining proofs in more detail, let us see several examples.

Example 1.7. To prove that the formula

F : P ∧Q → P ∨ ¬Q

is valid, assume that it is invalid and derive a contradiction. Thus, assume
that there is a falsifying interpretation I of F (such that I #|= F ). Then,

1. I #|= P ∧Q → P ∨ ¬Q assumption
2. I |= P ∧Q by 1 and semantics of →
3. I #|= P ∨ ¬Q by 1 and semantics of →
4. I |= P by 2 and semantics of ∧
5. I |= Q by 2 and semantics of ∧
6. I #|= P by 3 and semantics of ∨
7. I #|= ¬Q by 3 and semantics of ∨
8. I |= Q by 7 and semantics of ¬

Lines 4 and 6 contradict each other, so that our assumption must be wrong:
F is actually valid.

We can end the proof as soon as we have a contradiction. For example,

1. I #|= P ∧Q → P ∨ ¬Q assumption
2. I |= P ∧Q by 1 and semantics of →
3. I #|= P ∨ ¬Q by 1 and semantics of →
4. I |= P by 2 and semantics of ∧
5. I #|= P by 3 and semantics of ∨

This argument is sufficient because a contradiction already exists. In other
words, the discovered contradiction closes the one branch of the proof. We
sometimes note the contradiction explicitly in the proof:

6. I |= ⊥ 4 and 5 are contradictory

!

Contradiction!

OR



● The rules for PL + 

● Universal elimination 1

● Existential elimination 1 

 

 

There rules are usually applied using a domain element v that was  introduced 

earlier in the proof.
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2.3 Satisfiability and Validity

A formula F is said to be satisfiable iff there exists an interpretation I
such that I |= F . A formula F is said to be valid iff for all interpretations
I, I |= F . Determining satisfiability and validity of formulae are important
tasks in FOL. Recall that satisfiability and validity are dual: F is valid iff ¬F
is unsatisfiable.

Technically, satisfiability and validity only apply to closed FOL formulae,
which do not have free variables. However, let us agree on a convention: if we
say that a formula F such that free(F ) != ∅ is valid, we mean that its universal
closure ∀ ∗ . F is valid; and if we say that it is satisfiable, we mean that its
existential closure ∃ ∗ . F is satisfiable. Duality still holds: a formula F with
free variables is valid (∀ ∗ . F is valid) iff its negation is unsatisfiable (∃ ∗ . ¬F
is unsatisfiable). Henceforth, we freely discuss the validity and satisfiability of
formulae with free variables.

For arguing the validity of FOL formulae, we extend the semantic argu-
ment method from PL to FOL. Most of the concepts carry over to the FOL
case without change. In addition to the rules for the logical connectives of PL
(see Section 1.3), we have the following rules for the quantifiers.

• According to the semantics of universal quantification, from I |= ∀x. F ,
deduce I ! {x &→ v} |= F for any v ∈ DI .

I |= ∀x. F
I ! {x &→ v} |= F

for any v ∈ DI

In practice, we usually apply this rule using a domain element v that was
introduced earlier in the proof.

• Similarly, from the semantics of existential quantification, from I !|= ∃x. F ,
deduce I ! {x &→ v} !|= F for any v ∈ DI .

I !|= ∃x. F
I ! {x &→ v} !|= F

for any v ∈ DI

Again, we usually apply this rule using a domain element v that was in-
troduced earlier in the proof.

• According to the semantics of existential quantification, from I |= ∃x. F ,
deduce I ! {x &→ v} |= F for some v ∈ DI that has not been previously
used in the proof.

I |= ∃x. F
I ! {x &→ v} |= F

for a fresh v ∈ DI

• Similarly, from the semantics of universal quantification, from I !|= ∀x. F ,
deduce I ! {x &→ v} !|= F for some v ∈ DI that has not been previously
used in the proof.

I !|= ∀x. F
I ! {x &→ v} !|= F

for a fresh v ∈ DI
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● Universal elimination 2 

● Existential elimination 2  

 

 

When applying these rules, v must not have been previously used in the    proof.
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● Contradiction  

 

 

 

The inputs to ￼  are semantically equivalent under ￼  and ￼  but the outcome of ￼  

is different, which is a contradiction. 

p J K p
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The restriction in the latter two rules corresponds to our intuition: if all we
know is that ∃x. F , then we certainly do not know which value in particular
satisfies F . Hence, we choose a new value v that does not appear previously in
the proof: it was never introduced before by a quantification rule. Moreover,
αI does not already assign it to some constant, αI [a], or to some function
application, αI [f(t1, . . . , tn)].

Notice the similarity between the first two and between the final two rules.
The first two rules handle a case that is universal in character. Consider the
second rule: if there does not exist an x such that F , then for all values, F
does not hold. The final two rules are existential in character.

Lastly, the contradiction rule is modified for the FOL case.

• A contradiction exists if two variants of the original interpretation I dis-
agree on the truth value of an n-ary predicate p for a given tuple of domain
values.

J : I " · · · |= p(s1, . . . , sn)
K : I " · · · "|= p(t1, . . . , tn)
I |= ⊥

for i ∈ {1, . . . , n}, αJ [si] = αK [ti]

The intuition behind the contradiction rule is the following. The variants J
and K are constructed only through the rules for quantification. Hence, the
truth value of p on the given tuple of domain values is already established
by I. Therefore, the disagreement between J and K on the truth value of p
indicates a problem with I.

None of these rules cause branching, but several of the rules for the logical
connectives do. Thus, a proof in general is a tree. A branch is closed if it
contains a contradiction according to the (first-order) contradiction rule; it is
open otherwise. All branches are closed in a finished proof of a valid formula.
We exhibit the proof method through several examples.

Example 2.10. We prove that

F : (∀x. p(x)) → (∀y. p(y))

is valid. Suppose not; then there is an interpretation I such that I "|= F :

1. I "|= F assumption
2. I |= ∀x. p(x) 1 and semantics of →
3. I "|= ∀y. p(y) 1 and semantics of →
4. I " {y '→ v} "|= p(y) 3 and semantics of ∀, for some v ∈ DI

5. I " {x '→ v} |= p(x) 2 and semantics of ∀

Lines 2 and 3 state the case in which line 1 holds: the antecedent and conse-
quent of F are respectively true and false under I. Line 4 states that because
of 3, there must be a value v ∈ DI such that I " {y '→ v} "|= p(y). Line 5 uses
this same value v and the semantics of ∀ with 2 to derive a contradiction:
under I, p(v) is false by 4 and true by 5. Thus, F is valid. !



Example
● Let’s prove                                                        is valid

● Assume it is invalid and derives a contradiction (then, the assumption is wrong, 

which means F is valid).
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44 2 First-Order Logic

For concision we shorten, for example, “semantics of ∀” to “∀” in the
explanation column of our arguments.

Example 2.11. Consider the following relation between universal and exis-
tential quantification:

F : (∀x. p(x)) ↔ (¬∃x. ¬p(x)) .

Is it valid? Suppose not. Then there is an interpretation I such that I $|= F .
Consider the forward (→) and backward (←) directions of ↔ as separate
cases. In the first case,

1. I |= ∀x. p(x) assumption
2. I $|= ¬∃x. ¬p(x) assumption
3. I |= ∃x. ¬p(x) 2 and ¬
4. I ! {x '→ v} |= ¬p(x) 3 and ∃, for some v ∈ DI

5. I ! {x '→ v} |= p(x) 1 and ∀

Lines 4 and 5 are contradictory. In line 5, we use the value introduced in line
4 with the semantics of ∀ and line 1. We are allowed to choose this same value
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5. I ! {x '→ v} $|= ¬p(x) 4 and ∃
6. I ! {x '→ v} |= p(x) 5 and ¬

Lines 3 and 6 are contradictory. Line 4 says that ∃x. ¬p(x) is false under I.
Thus, by the semantics of ∃, no value w from DI is such that p(w) is true. In
particular, line 5 identifies v, introduced in line 3.

As both cases end in contradictions for arbitrary interpretation I, F is
valid. !

It is sometimes useful to reference known values, as the following simple
example illustrates.

Example 2.12. To prove that

F : p(a) → ∃x. p(x)

is valid, assume otherwise and derive a contradiction.

1. I $|= F assumption
2. I |= p(a) 1 and →
3. I $|= ∃x. p(x) 1 and →
4. I ! {x '→ αI [a]} $|= p(x) 3 and ∃
5. I |= ⊥ 2, 4
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Example
● Let’s prove                                                            is invalid

● To show that it is invalid, we find a counterexample ￼ such that  

 

equivalently, 

● Choose ￼  and ￼

I

DI = {0,1} pI = {(0,0) ↦ true, (1,1) ↦ true}

2.4 Substitution 45

In line 4, we used the value assigned to a to instantiate the quantified variable
of line 3, which has universal character. Because lines 2 and 4 are contradic-
tory, F is valid. !

To show that a formula F is invalid, it suffices to find an interpretation I
such that I |= ¬F .

Example 2.13. Consider the formula

F : (∀x. p(x, x)) → (∃x. ∀y. p(x, y)) .

To show that it is invalid, we find an interpretation I such that

I |= ¬((∀x. p(x, x)) → (∃x. ∀y. p(x, y))) ,

or, according to the semantics of →,

I |= (∀x. p(x, x)) ∧ ¬(∃x. ∀y. p(x, y)) .

Choose

DI = {0, 1}

and

pI = {(0, 0), (1, 1)} .

We use a common notation for defining relations: pI(a, b) is true iff (a, b) ∈ pI .
Here, pI(0, 0) is true, and pI(1, 0) is false.

Both ∀x. p(x, x) and ¬(∃x. ∀y. p(x, y)) evaluate to true under I, so

I |= (∀x. p(x, x)) ∧ ¬(∃x. ∀y. p(x, y)) ,

which shows that F is invalid. Interpretation I is a falsifying interpretation
of F . !

We apply the semantic argument method to more examples in Section 3.1.
Equivalence (F1 ⇔ F2) and implication (F1 ⇒ F2) extend directly from

PL to FOL. Equivalence of and implication between two formulae can be
argued using the semantic argument method. See, for example, Example 2.11.

2.4 Substitution

Substitution for FOL is more complex than substitution for PL because of
quantification. We introduce two types of substitution in this section with
the goal of generalizing Propositions 1.15 and 1.17 to the FOL setting. As in
PL, substitution allows us to consider the validity of entire sets of formulae
simultaneously.
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To show that a formula F is invalid, it suffices to find an interpretation I
such that I |= ¬F .

Example 2.13. Consider the formula

F : (∀x. p(x, x)) → (∃x. ∀y. p(x, y)) .

To show that it is invalid, we find an interpretation I such that

I |= ¬((∀x. p(x, x)) → (∃x. ∀y. p(x, y))) ,

or, according to the semantics of →,

I |= (∀x. p(x, x)) ∧ ¬(∃x. ∀y. p(x, y)) .

Choose

DI = {0, 1}

and

pI = {(0, 0), (1, 1)} .

We use a common notation for defining relations: pI(a, b) is true iff (a, b) ∈ pI .
Here, pI(0, 0) is true, and pI(1, 0) is false.

Both ∀x. p(x, x) and ¬(∃x. ∀y. p(x, y)) evaluate to true under I, so

I |= (∀x. p(x, x)) ∧ ¬(∃x. ∀y. p(x, y)) ,

which shows that F is invalid. Interpretation I is a falsifying interpretation
of F . !

We apply the semantic argument method to more examples in Section 3.1.
Equivalence (F1 ⇔ F2) and implication (F1 ⇒ F2) extend directly from

PL to FOL. Equivalence of and implication between two formulae can be
argued using the semantic argument method. See, for example, Example 2.11.

2.4 Substitution

Substitution for FOL is more complex than substitution for PL because of
quantification. We introduce two types of substitution in this section with
the goal of generalizing Propositions 1.15 and 1.17 to the FOL setting. As in
PL, substitution allows us to consider the validity of entire sets of formulae
simultaneously.
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quantification. We introduce two types of substitution in this section with
the goal of generalizing Propositions 1.15 and 1.17 to the FOL setting. As in
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simultaneously.

I ⊧ ∀x . p(x, x) I ⊧ ¬(∃x . ∀y . p(x, y))

I ⊲ {x ↦ 0} ⊧ p(x, x) I ⊲ {x ↦ 1} ⊧ p(x, x) I ⊧ ∀x . ∃y . ¬p(x, y)

Semantics 
of ￼∀

I ⊲ {x ↦ 0} ⊧ ∃y . ¬p(x, x) I ⊲ {x ↦ 1} ⊧ ∃y . ¬p(x, x)

I ⊲ {x ↦ 0,y ↦ 1} ⊧ ¬p(x, x) I ⊲ {x ↦ 1,y ↦ 0} ⊧ ¬p(x, x)

Semantics 
of ￼∃

Semantics 
of ￼∀

Semantics 
of ￼∃



Why is FOL Called “First-Order”?
● In logic, the order refers to what kind of variables quantifiers can bind.

● In first-order logic, we can write ￼    (“for every individual ￼ , ￼  holds”)

● But we cannot write ￼  (“for every predicate P, there exists …)

● The above formula is allowed in second-order logic. 

● First-order entities: objects in a domain, second-order entities: predicates and 

functions on the first-order entities, … 

● FOL restricts quantification to first-order entities and not over predicates 

or functions.

∀x . P(x) x P(x)

∀P . ∃x . P(x)



Why is FOL Called “First-Order”?

 Logic Type Can Quantify Over Example

Propositional Nothing N/A

First-Order (FOL) Objects

Second-Order (SOL) Predicates/functions over 
objects

Higher-Order Predicates of predicates, etc

∀x . P(x)

∀P . ∃x . P(x)

∀Q . Q(P)



Summary
● Syntax and semantics of first-order logic

● Terms, functions, predicates

● Quantifiers


