CSE405 | : Program Verification

2025 Fall

Woosuk Lee

-

Review: Calculus of Computation

e Calculus: a set of symbols + rules for manipulating the symbols
o e.g., Differential calculus: rules for manipulating integral symbols over a
polynomial
e Ve may ask questions about computations
o Does this program terminate?
o Does this program output a sorted array for a given array!?
o Does this program access unallocated memory?

e We need a calculus to reason about computation to answer these questions.

Review: Propositional Logic and First-Order Logic

e Also known as propositional calculus and predicate calculus
e calculi for reasoning about propositions and predicates
e Propositions: statements that can be true or false
o e.g., ltisraining’,"2 +2=4"
e Predicates: statements that can be true or false depending on the values
given to them

o e.g., X is greater than 2", "y is a prime number”

First-Order Logic

e First-order logic (FOL) (also called predicate logic) extends propositional logic
(PL) with, most importantly, predicates.
e A predicate takes arguments and returns a truth value.
O n-ary predicate takes n arguments

e A propositional variable can be regarded as a 0-ary predicate.

e Examples of predicates (x, y are propositional variables, p, g are predicates)

o p(x,y),q(y)

o px,y) Agq(y)
o Love(Alice, Bob) :“Alice loves Bob”

First-Order Logic

e First-order logic (FOL) extends propositional logic (PL) also with functions
and quantifiers.

e In PL,all parts of a formula evaluate to true or false.

(PAQV 1
e In FOL, thanks to functions, parts of a formula may evaluate to values other

than truth values such as integers, strings, etc.

_xty > 5 AfR) = "hi"<

=_Constant

- Predicate

Terms

e Representations of objects that we are reasoning about
e Constants and variables are terms
e Functions taking terms as arguments are also terms.

e Examples:
o f(1):a unary function f applied to a constant 1

o g(x,2):a binary function g applied to a variable x and a constant 2

o flgx, f(1)))

First-Order Logic

o Quantifiers: symbols telling you how many things a statement is talking about
o Universal quantifier(V — “for all”’): a statement is true for every object
Vx.Human(x) —> Mortal(x)
“For every x, if x is a human, then x is mortal.”
o Existential quantifier(d — “there exists”): a statement is true for at least one
object
dx . Student(x) A StudiesCSE4051(x)

“There exists X such that x is a student and x studies the CSE405| course.”

Syntax

e Atom: Basic elements

o Truth symbols L, T, n-ary predicates applied to n terms

e Literal:an atom or its negation
e Formula:a literal or application of a logical connective to formulas, or the

application of a quantifier to a formula

F—-1]|T|p@,...,t) (Atom)
| F|F\AF | FyVE|F=>F, (Logical connectives)
|Vx. Flx]|3dx. F[x] (Quantification)

More about Quantifiers
- Flx]

7~ Quantified ™\
. Vvariable __~

e xin I'|x] is bound (by the quantifier)
e The scope of the quantified variable extends as far as possible
o WVhich are the scopes of Vx and dy !
Vx.p(f(x),x) = (Jy.p(f(gx,¥)), gx,y))) A q(x, f(x))
@ A variable occurrence is free in F|x] if it is not bound.

e Which variable occurrences are free / bound?

Vx.p(f(x),y) = Vy.p(f(x),y)

Examples of FOL Formulas

e Every dog has its day.

Va. dog(x) — Jy. day(y) A itsDay(x,y)
e Some dogs have more days than others.
dx,y. dog(x) N dog(y) N #Hdays(x) > #days(y)

e All cats have more days than dogs.

Va,y. dog(x) AN cat(y) — #Hdays(y) > F#days(x)

Examples of FOL Formulas

e Fido is a dog. Furrball is a cat. Fido has fewer days than does Furrball.

dog(Fido) N cat(Furrball) N #days(Fido) < #days(Furrball)

e The length of one side of a triangle is less than the sum of the lengths of the

other two sides.

Va,y, z. triangle(x,y,z) — length(x) < length(y) + length(z)
e Fermat’s Last Theorem.

Vn. integer(n) A n > 2
— Vx,v, 2.
integer(x) A integer(y) A integer(z) AN x>0 A y>0 A z>0

Semantics (Meaning) of FOL

® Formulae of FOL evaluate to the truth values true and false.

e However, terms of FOL formulae evaluate to values from a specified domain.
e A FOL interpretation I = (D, a;)
o The domain D, :a nonempty (possibly infinite) set of values (e.g., integers, people, ...)
o The assignment o; maps
m 2 variable symbol x to a value in D,
= an n-ary function symbol f to a function f;: D — D,
= an n-ary predicate symbol p to an n-ary predicate p; : D;' — {true, false}

m Each constant (0-ary function) and propositional variable (0-ary predicate) are

assigned a value in D; and a truth value, respectively.

Example

e Given a formula F:x+y>z=>y>z7—x
e Note that 4+, —, > are just symbols: we could have written
p(f(x,¥),2) = p(y, &z, X))
e An interpretation I = (D;, a;) where
o D;= Z (set of integers)

o ay={+r+,,—>—, > >, x> 13,y 42,z 1}

Semantics of FOL

e Given a FOL formula /' and interpretation I = (D, a;),l F Forl F F.
e The meaning of truth symbols:
o IFT,I FL
e For more complicated atoms, a; gives meaning a;(x), a;(c), and a;(f) to variables
X, constants ¢, and functions f. Evaluate arbitrary terms recursively:
a(flty, s 1)) = a(@ty)s - a(8,)
for function symbol f and terms 7, ..., t,. Similarly, for predicate symbol p

a(p(ty, ..., 1) = o (p)afty), ..., aft,))
Then, I & p(t1,...,tn) iff ar|p(ti,...,t,)| = true

Semantics of FOL

e Connectijves:

I = —F iff T £ F

I = Fl/\FQ 1ffI:F1andI F2

I = Fl\/FQ iff]:FlorI:Fg

I & FR—F if if I & F then I = Fy

e Quantifiers:

V. F iff forallve Dy, I<{x— v} = F
dx. F iff there exists v € Dy such that I <{x +— v} = F

~
|

~
|

(with an updated assignment

. Where x maps to v

Example

e Given a formula F:x+y>z=>y>z7—x
e The previous interpretation I = (D;, ;)
o D;= Z (set of integers)
o ay={+rP+,,—> =, > >, x> 13,y 42,z 1}
® s satisfying because
.IFx+y>zsinceax+y>z]=13+42>,1
2. IFy>z—xsinceqly>z—x]=42>,1—,13

3.1 F F by |,2,and the semantics of =

Satisfiability and Validity

e A formula F'is satisfiable iff there exists an interpretation / such that / F F.
e A formula F'is valid iff for all interpretations I,/ F F.

e Technically, satisfiability and validity only apply to closed FOL formulae, which do
not have free variables.
e However, there’s a convention:

o If we say a formula having free variables is valid, we treat free variables as
universally quantified variables (e.g.,“Vx.x > yis valid” means “Vx,y.x >y

is valid”) (Similar for 3)

e Duality holds: V* .F'is valid < d* .- Fis unsatisfiable

Review: Semantic Argument Method

e Assume a formula is invalid, and check if it leads to a contradiction by applying
broof rules.

e A proof rule has one or more premises (assumed facts) and deductions

(deduced facts)

Assumed fact1 , ..., Assumed fact n

Deduced fact1, ... , Deduced fact n

Review: Semantic Argument Method for PL

I = FAG
I = F 1
I = G
I = F—d
I # F | I =

— F [£ —F
L [I E F
I = FVG I £ FVG
I =F | I =G I = F

- I G
I ¥ F—dC I = F

I = F I ¥~ F

I = G I &=

Contradiction!

Semantic Argument Method for FOL

@ [he rules for PL +

e Universal elimination |

I = V. F for any v € D;
I[<{x— v} E F

e Existential elimination |

I ¥ dx. F for any v € D;
I[<{x+— v} ~E F

There rules are usually applied using a domain element v that was introduced

earlier in the proof.

Semantic Argument Method for FOL

e Universal elimination 2

I = dx. F for a fresh v € Dj

7~ Not ™\
\ used before /

e Existential elimination 2

I ¥~ Vx. F for a fresh v € Dy
I[<{x— v} E F

When applying these rules, v must not have been previously used in the proof.

Semantic Argument Method for FOL

e Contradiction

J:I<a--- = p(s1,...,5n)
K:I<x--- E p(ty,...,t,) foree{l,....,n}, as|s;| = axlt;]
I = 1

The inputs to p are semantically equivalent under J and K but the outcome of p

is different, which is a contradiction.

Example

e Lletsprove F': (Vz. p(z)) — (Vy. p(y)) is valid

e Assume it is invalid and derives a contradiction (then, the assumption is wrong,

which means F is valid).

a

Example

e Lletsprove F': (Vz. p(z)) — (Vy. p(y)) is valid
e Assume it is invalid and derives a contradiction (then, the assumption is wrong,

which means F is valid).

I ¥ F

~ 7~ Existential ™\
"\ .~ elimination2 /

7~ Universal ~___
elimination 1 _—""

Contradion!

Example

o letsprove F: p(a) — dx. p(x) isvalid

e Assume it is invalid and derives a contradiction.

I %= F

" Existential ™\

_~ elimination 1/

Example

e Let’s prove

F: pla) — dx. p(x) is valid

e Assume it is invalid and derives a contradiction.

Contadion!

£ T

~ Existential ™\

_~ elimination 1 /

Example

o Letsprove F': (Vx. p(xz,x)) — (Jz. Vy. p(x,y)) is invalid

e To show that it is invalid, we find a counterexample [such that

I = —((Vz. p(z,2)) — (Fz. Vy. p(z,y)))

equivalently,

1 (V. p(z,x)) A —(Fz. Vy. p(x,y))

e Choose D; = {0,1} and p; = {(0,0) — true, (1,1)

— true}

Example

oY
N IR
SR

.

/ Semantics \

{ Semantics \
S e, OfV

[< {x O} Fpx,x) I<{x— 1}F px,x)

 I<af{xe 0} E3y.pn x)
~~ Semantics T~

[<{x— 0,y 1} F p(x, x)

(3. Vy. p(z,y))

~(dx.Vy.p(x,y))

[EVx y.p(x,y)

Idixe 1} Fﬂy —p(x, x)

R ——

of

o 1 y = 0} F =p(x, x)

Why is FOL Called “First-Order”?

e Inlogic, the order refers to what kind of variables quantifiers can bind.

e In first-order logic, we can write Vx.P(x) (“for every individual x, P(x) holds”)
e But we cannot write VP . dx. P(x) (“for every predicate P, there exists ...)

e The above formula is allowed in second-order logic.

e First-order entities: objects in a domain, second-order entities: predicates and

functions on the first-order entities, ...
e FOL restricts quantification to first-order entities and not over predicates

or functions.

Why is FOL Called “First-Order”?

Logic Type Can Quantify Over Example
Propositional Nothing N/A
First-Order (FOL) Objects Vx. P(X)
Second-Order (SOL) Predicatest/)?ér;f;ions over VP.3x.P(x)
Higher-Order Predicates of predicates, etc VO. Q(P)

Summary

e Syntax and semantics of first-order logic
e Terms, functions, predicates

e Quantifiers

