
CSE4051: Program Verification
CDCL Algorithm

2025 Fall

Woosuk Lee

Review: DPLL Algorithm
● DPLL algorithm repeats the following steps:

○ DECIDE: Choose a variable to assign a value.

○ PROPAGATE: Use unit propagation to deduce further assignments.

○ CONFLICT: If a conflict arises, backtrack to the last decision point and make

a different assignment.

○ BACKTRACK: If no decisions left, backtrack to the previous decision point.

Called “chronological
backtracking” which does not backtrack to

the real reason of the conflict

No learning from past mistakes — may make similar
mistakes again and again

CDCL Algorithm
● Conflict-Driven Clause Learning (CDCL) is an extension of the DPLL algorithm.

● It adds the ability to learn from conflicts and backtrack more intelligently.

● CDCL replaces the following steps in DPLL:

○ CONFLICT: analyze the conflict to learn a new clause that prevents similar

conflicts in the future.

○ BACKTRACK: backtrack to the reason for the conflict

● CDCL is more efficient than DPLL because it can avoid repeating the same

mistakes by learning from conflicts and backtracking intelligently.

28 2 Decision Procedures for Propositional Logic

1960 1970 1980 1990 2000 2010

1,000,000

100,000

10,000

1,000

100

10

Year

V
ar

ia
b
le

s

Fig. 2.3. The size of industrial CNF formulas (instances generated for solving var-
ious realistic problems such as verification of circuits and planning problems) that
are regularly solved by SAT solvers in a few hours, according to year. Most of the
progress in efficiency has been made in the last decade

The majority of modern SAT solvers can be classified into two main cate-
gories. The first category is based on the Davis–Putnam–Loveland–Logemann
(DPLL) framework: in this framework the tool can be thought of as traversing
and backtracking on a binary tree, in which internal nodes represent partial
assignments, and the leaves represent full assignments, i.e., an assignment to
all the variables.

The second category is based on a stochastic search: the solver guesses
a full assignment, and then, if the formula is evaluated to false under this
assignment, starts to flip values of variables according to some (greedy) heuris-
tic. Typically it counts the number of unsatisfied clauses and chooses the flip
that minimizes this number. There are various strategies that help such solvers
avoid local minima and avoid repeating previous bad moves. DPLL solvers,
however, are considered better in most cases, at least at the time of writ-
ing this chapter (2007), according to annual competitions that measure their
performance with numerous CNF instances. DPLL solvers also have the ad-
vantage that, unlike most stochastic search methods, they are complete (see
Definition 1.6). Stochastic methods seem to have an average advantage in
solving randomly generated (satisfiable) CNF instances, which is not surpris-
ing: in these instances there is no structure to exploit and learn from, and no
obvious choices of variables and values, which makes the heuristics adopted
by DPLL solvers ineffective. We shall focus on DPLL solvers only.

2.2.2 The DPLL Framework

In its simplest form, a DPLL solver progresses by making a decision about a
variable and its value, propagates implications of this decision that are easy
to detect, and backtracks in the case of a conflict. Viewing the process as a

0 1,000 2,000 3,000 4,000 5,000
0

100

200

300

time in seconds

so
lv
ed

in
st
an
ce
s

kissat-mab-hywalk-2022
kissat-mab-2021
kissat-2020
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-2017
maple-lcm-dist-cb-2018
maple-comsps-drup-2016
abcdsat-2015
lingeling-2014
glucose-2012
lingeling-2013
glucose-2011
minisat-2008
precosat-2009
cryptominisat-2010
minisat-2006
rsat-2007
satelite-gti-2005
berkmin-2003
boehm-1992
cha�-2001
zcha�-2004
limmat-2002
grasp-1997

Figure 5: All time winners on the SAT Competition 2021 benchmarks (400 problems)

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

200

250

time in seconds

so
lv
ed

in
st
an
ce
s

kissat-mab-2021
kissat-mab-hywalk-2022
kissat-2020
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-cb-2018
maple-lcm-dist-2017
maple-comsps-drup-2016
abcdsat-2015
lingeling-2014
lingeling-2013
glucose-2012
glucose-2011
minisat-2008
precosat-2009
cryptominisat-2010
satelite-gti-2005
minisat-2006
rsat-2007
berkmin-2003
limmat-2002
cha�-2001
zcha�-2004
boehm-1992
grasp-1997

Figure 6: All time winners on the SAT Competition 2022 benchmarks (400 problems)

https://ceur-ws.org/Vol-3545/paper6.pdf

CDCL Example
● Consider F = c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6 where

○ c1: ¬x1 ⋁ x2 ⋁¬x4

○ c2 : ¬x1 ⋁ ¬x2 ⋁ x3

○ c3: ¬x3 ⋁¬x4

○ c4 : x4 ⋁ x5 ⋁ x6

○ c5 : ¬x5 ⋁ x7

○ c6: ¬x6 ⋁x7 ⋁¬x8

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

x1@1

x1 is assigned true as the first choice

True literals in green

False literals in red

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

x1@1x8@2

x8 is assigned true as the second choice

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

x1@1x8@2

¬x7 is assigned true (i.e., x7 is false)

as the third choice

¬x7@3

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

¬x6 is true (i.e., x6 is false)

according to the third choice (owing to implication)

by c6

¬x7@3

x8@2 x1@1

¬x6@3

c6

c6

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

x4 is true

according to the third choice by c4

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

c6

c6

c5 c4

c4

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

c6

c6

c5 c4

c4 c1

c3

c1

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

A conflict arises (c2 not satisfied)

due to the third choice.

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

Cut: a minimal set of edges
whose removal breaks all paths from the

root nodes to the conflict node

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

c : ¬x1 ⋁ ¬x4

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

Learned from the failure:
¬x1 ⋁ ¬x4

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

c : ¬x1 ⋁ ¬x4

Backtrack — remove all decisions
after the first choice (but the first choice is

not deleted)

x1@1

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

c : ¬x1 ⋁ ¬x4

x1@1

¬x4@1

c

x4 is false

according to the first choice by c

(Different choice than before!)

Make progress
similarly and find a satisfying

assignment

Satisfying assignment:

{ x1 ↦ ⊤, x8 ↦ ⊤, x7 ↦ ⊥,

 x6 ↦ ⊥, x5 ↦ ⊥, x4 ↦ ⊥,

 x3 ↦ ⊤, x2 ↦ ⊤ }

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

c : ¬x1 ⋁ ¬x4

¬x7@3

x8@2

x1@1

¬x5@3

¬x6@3

c6

c6

c5

¬x4@1

c

x6@3

c4

c4

x3@4

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

In Case of DPLL

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

Backtrack to the last decision
(¬x7@3) and revert it!

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

In Case of DPLL

x8@2

x7@3

x1@1
Reverted

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

x8@2

x7@3

¬x6@4

¬x5@5

x1@1

x4@5

x2@5

¬x3@5

k@3

c1

c3 c2

c2

c1

c2

c4

c4

c4

In Case of DPLL

Suppose ¬x6
and ¬x5 are
assigned true

next

Conflict for the
same reason due to

x1 ∧ x4 !

Formal Definition of CDCL

Decision Levels
● Decision variable: variable assigned in the Decide step

● Decision level: The level (order) in which a decision variable is assigned

(starting from 1)

● Each assignment is associated with the decision level at which it occurred.

● The decision level of a variable assigned due to BCP is the decision level of the

last assigned decision variable.

Quiz
● Consider a formula (¬x1 ⋁ x2) ∧ (¬x3 ⋁ ¬x4)

● Suppose we decide x1 = true at decision level 1

● What does BCP yield and what is the decision level of it?  

x2, 1

● Suppose we decide x4 = true.

● What does BCP yield and what is the decision level of it?  

¬x3, 2

Decision Levels
● If a variable xi is assigned true (owing to either a decision or an implication) at

decision level dl, we write xi@dl.
● Assignments implied regardless of any assignments are associated with decision

level 0, also called the ground level (e.g., in formula x1 ∧ …, x1 ↦ true)

Status of a Clause
● Under a partial assignment (PA), a variable may be assigned (true/false) or

unassigned.

● A clause can be

○ Satisfied : at least one literal is satisfied

○ Unsatisfied : all literals are assigned but non are satisfied

○ Unit: all but one literals are assigned but none are satisfied

○ Unresolved: all other cases

● Example : x1 ⋁ x2 ⋁ x3

○

x1 x2 x3 C
1 0 Satisfied

0 0 0 Unsatisfied

0 0 Unit

0 Unresolved

Antecedent
● For a given unit clause C with an unassigned literal l, we say that l is implied by

C and that C is the antecedent clause of l, denoted by Antecedent(l)

○ Suppose we have the partial assignment {x1 ↦ true, x4 ↦ true} and the clause

C := (¬x1 ⋁ ¬x4 ⋁ x3), Antecedent(x3) = C

Implication Graph
● An implication graph is a labeled directed acyclic graph G(V, E), where:

○ Each v ￼ V is a literal in the current PA and its decision level

○ E = {(vi,vj) | vi,vj ∈ V,¬vi ∈ Antecedent(vj)} : the set of directed edges

○ G can also contain a single conflict node labeled with k and incoming edges

{(v, κ) | ¬v ∈ c} labeled with c for some conflicting clause c.

∈

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2
c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

Implication Graph
● An implication graph is a labeled directed acyclic graph G(V, E), where:

○ Each v ￼ V is a literal in the current PA and its decision level

○ E = {(vi,vj) | vi,vj ∈ V,¬vi ∈ Antecedent(vj)} : the set of directed edges

○ G can also contain a single conflict node labeled with k and incoming edges

{(v, κ) | ¬v ∈ c} labeled with c for some conflicting clause c.

∈

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2
c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

Decision
literal

Implied
literal

Conflict Clause
● A conflict clause is a clause implied by the original formula that blocks PAs that

lead to the current conflict. Multiple conflict clauses may exist.

○ Every cut that separates root nodes from the conflict node defines a valid

conflict clause.

○ Which one is better?CDCL(F)
 A ← {}
 if BCP(F, A) = conflict then return false
 level ← 0
 while hasUnassignedVars(F)
 level ← level + 1
 A ← A ∪ { DECIDE(F, A) }
 while BCP(F, A) = conflict
 ⟨b, c⟩ ← ANALYZECONFLICT()
 F ← F ∪ {c}
 if b < 0 then return false
 else BACKTRACK(F, A, b)
 level ← b
 return true

A conflict clause is implied by F and it
blocks PAs that lead to the current
conflict.

Every cut that separates sources from
the sink defines a valid conflict clause.

Using an implication graph to analyze a conflict

11

x8@2

¬x7@3

¬x6@3

¬x5@3

x4@3

x2@3

¬x3@3

κ@3

x1@1c6

c6

c5

c4

c4

c1

c3

c2

c2

c1

c2

✂✂

¬x1 ⋁ x7 ⋁ ¬x8 ¬x1 ⋁ ¬x4

Cut: a minimal set of edges whose removal breaks all paths from the root nodes to the conflict node

It bipartitions the nodes into the reason side (the side that includes all the roots) and the conflict side.

Figure from https://courses.cs.washington.edu/courses/cse507/16sp/lectures/L2.pdf

Conflict Clause
● Why are conflict clauses necessary?

○ To prevent bad partial assignments by deriving contradiction as quickly as

possible

● To this end, smaller conflict clauses are better.

○ c1’: ¬x1 ⋁ x7 ⋁ ¬x8 vs. c2’ : ¬x1 ⋁ ¬x4

○ Number of PAs satisfying c1’ ≥ Number of PAs satisfying c2’

○ Therefore, c2’ has better pruning power (can discard more unsatisfying

assignments)

Unique Implication Point (UIP)
● Given a partial conflict graph corresponding to the decision level of the conflict

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

Unique Implication Point (UIP)
● Given a partial conflict graph corresponding to the decision level of the conflict

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

Unique Implication Point (UIP)
● Given a partial conflict graph corresponding to the decision level of the conflict,

a unique implication point (UIP) is any node other than the conflict node that is

on all paths from the decision literal to the conflict node

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

Unique Implication Point (UIP)
● Given a partial conflict graph corresponding to the decision level of the conflict,

a unique implication point (UIP) is any node other than the conflict node that is

on all paths from the decision literal to the conflict node

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

Decision
literal

UIP

UIP

Unique Implication Point (UIP)
● Given a partial conflict graph corresponding to the decision level of the conflict,

a unique implication point (UIP) is any node other than the conflict node that is

on all paths from the decision literal to the conflict node

● A first UIP is a UIP that is closest to the conflict node.

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

Decision
literal

First UIP
UIP

UIP

Unique Implication Point (UIP)
● Any decision literal is a UIP by definition.

● Other UIPs (if exists) are implied literals at the decision level of the conflict.

● There is always a single UIP closest to the conflict node (why?)

Unique Implication Point (UIP)
● Any decision literal is a UIP by definition.

● Other UIPs (if exists) are implied literals at the decision level of the conflict.

● There is always a single UIP closest to the conflict node (why?)

○ => All paths to a single conflict node should pass through the first UIP which

cannot be more than two.

○ A first UIP is a single literal which is a common cause of the conflict in the

current decision level.

Exercise
● Consider ￼ where  

 

 

 

Which node is the first UIP?

F = c1 ∧ c2 ∧ c3 ∧ c4

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

CDCL Algorithm
function CDCL (F) =

A := {}

F’ := BCP(F, A);

if F’ = ⊤ then return SAT

else if F’ = ⊥ then return UNSAT

dl := 0

while hasUnassignedVars(F,A) do

 dl := dl + 1

 <x,v> := Decide(F)

 A := A{x ↦ v}

 F := BCP(F, A)

 while Conflict(F) do

 <b,c> := AnalyzeConflict(F,A)

 F := F ∧ c

 if b < 0 then return UNSAT

 else

 A := Backtrack(F,A,b)

 dl := b

return SAT

● A : assignment made so far

● BCP(F, A): Boolean constraint propagation

over F after assigning variables using A

● dl: current decision level

● Decide(F): choose a variable and assign a

value

● b: level to backtrack to

● c: learned conflict clause

● Backtrack(F,A,b): remove all variable

assignments made after b (but assignments at

level b not deleted)

AnalyzeConflict
function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteralAtLevel(c,d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>

● Two goals:

○ Deriving conflict clauses

○ Decide what level to backtrack to

● We want to backtrack to a level that

makes conflict clause c an asserting

clause in the next step

○ Asserting clause is a clause with

exactly one unassigned literal

● Hence, if we make c an asserting clause,

BCP will force at least one assignment

AnalyzeConflict

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

d = 3

function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteralAtLevel(c,d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>

AnalyzeConflict

d = 3

c = c2

function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteralAtLevel(c,d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

AnalyzeConflict

d = 3

c = c2

lit = x2

x = x2

ante = c1

function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteralAtLevel(c,d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

AnalyzeConflict
function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteral(d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 d := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>

● Resolve(c,ante,x): unit

resolution rule

○ Suppose c = ￼ ,  

ante = ￼ , by the

rule  

 

 

 

Resolve(c,ante,x) =

￼

α1 ∨ ⋯ ∨ αn ∨ x

β1 ∨ ⋯ ∨ βm ∨ ¬x

α1 ∨ ⋯ ∨ αn ∨ β1 ∨ ⋯ ∨ βm

￼α1 ∨ ⋯ ∨ αn ∨ x ￼β1 ∨ ⋯ ∨ βm ∨ ¬x

￼α1 ∨ ⋯ ∨ αn ∨ β1 ∨ ⋯ ∨ βm

AnalyzeConflict
d = 3

c = c2

lit = x2

x = x2

ante = c1

Resolve(c, ante, x) =

 = Resolve(¬x1 ⋁ ¬x2 ⋁ x3, ¬x1 ⋁ x2 ⋁¬x4, x2)

 = ¬x1 ⋁ x3 ⋁ ¬x4

function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteralAtLevel(c,d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

AnalyzeConflict
d = 3 c = ¬x1 ⋁ x3 ⋁ ¬x4 lit = x2  
x = x2 ante = c1

Resolve(c, ante, x) =

 = Resolve(¬x1 ⋁ ¬x2 ⋁ x3, ¬x1 ⋁ x2 ⋁¬x4, x2)

 = ¬x1 ⋁ x3 ⋁ ¬x4

oneLitAtLevel(c,d) = False

(∵ x3 and ¬x4 are at d)

function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteralAtLevel(c,d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

AnalyzeConflict
d = 3 c = ¬x1 ⋁ x3 ⋁ ¬x4 lit = x3  
x = x2 ante = c1 function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteralAtLevel(c,d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

AnalyzeConflict
d = 3 c = ¬x1 ⋁ x3 ⋁ ¬x4 lit = x3  
x = x3 ante = c3 function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteralAtLevel(c,d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

AnalyzeConflict
d = 3 c = ¬x1 ⋁ x3 ⋁ ¬x4 lit = x3  
x = x3 ante = c3

Resolve(c, ante, x) =

 = Resolve(¬x1 ⋁ x3 ⋁ ¬x4, ¬x3 ⋁ ¬x4, x3)

 = ¬x1 ⋁ ¬x4

function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteralAtLevel(c,d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

AnalyzeConflict
d = 3 c = ¬x1 ⋁ x3 ⋁ ¬x4 lit = x3  
x = x3 ante = c3

Resolve(c, ante, x) =

 = Resolve(¬x1 ⋁ x3 ⋁ ¬x4, ¬x3 ⋁ ¬x4, x3)

 = ¬x1 ⋁ ¬x4

oneLitAtLevel(c,d) = True

(∵ ¬x4 is at d)

function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteralAtLevel(c,d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

AnalyzeConflict
c = ¬x1 ⋁ ¬x4

assertingLevel(c) returns the second
highest decision level for any literal in c,
unless c is unary (in that case, it returns 0).

assertingLevel(c) = 1

(∵ x1@1 and x4@3, 1 is the second
highest)

function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteralAtLevel(c,d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

AnalyzeConflict
Why second highest?

The second one is the highest among the
levels of the literals in the conflict clause,
excluding the current decision level (which is
the highest). It backtracks to only as far as
needed to make the learned clause useful.

returns <1, ¬x1 ⋁ ¬x4>

function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteralAtLevel(c,d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

AnalyzeConflict
• By construction, c is always unit at b  

(It has only one literal at the current level d)
• It let the previous assignment immediately

fire the learned clause c by BCP and “fix"
the reason for the conflict at the current
decision level.

function AnalyzeConflict (F,A) =

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

 lit := LastAssignedLiteralAtLevel(c,d)

 x := VarOfLiteral(lit)

 ante := Antecedent(lit)

 c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

c : ¬x1 ⋁ ¬x4

x1@1

¬x4@1

c

Exercise
● Consider ￼ where  

 

 

 

What is the conflict clause?  

(suppose x4, x5, x6, x7 are assigned in turn  

at decision level 3)

F = c1 ∧ c2 ∧ c3 ∧ c4

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

Informal, Easier Method for Clause Learning

● : clauses considered so far

● : reasons for the conflict

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

Informal, Easier Method for Clause Learning2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

Pick

Informal, Easier Method for Clause Learning2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

Pick

Informal, Easier Method for Clause Learning2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

Pick

Informal, Easier Method for Clause Learning

● Quit when one literal at the current level  

in ￼ nodes

● Negate all ￼ literals and conjoin them: 

￼x2 ∨ ¬x4 ∨ x10

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

One literal at
level 5. Done!

Variable Choice Heuristics in CDCL
● Various strategies by which the variables and the value given to them are

chosen

● Dynamic Largest Individual Sum (DLIS): At each decision level, choose the

unassigned literal that satisfies the largest number of currently unsatisfied

clauses.

● Variable State Independent Decaying Sum (VSIDS): Similar to DLIS, but tries to

reduce overhead and favor literals involved in conflicts

Overview of CDCL Algorithm

Decide BCPFormula

SAT

Return SAT

No conflict

AnalyzeConflict

Conflict Backtrack if dl > 0

UNSAT if dl ≤ 0

Return UNSAT

Summary
● CDCL

● Non-chronological backtracking

● Conflict clause learning

● Implication graph

● Unique Implication Point

