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Review: DPLL Algorithm
● DPLL algorithm repeats the following steps:

○ DECIDE: Choose a variable to assign a value.

○ PROPAGATE: Use unit propagation to deduce further assignments.

○ CONFLICT: If a conflict arises, backtrack to the last decision point and make 

a different assignment.

○ BACKTRACK: If no decisions left, backtrack to the previous decision point.

Called “chronological 
backtracking” which does not backtrack to 

the real reason of the conflict

No learning from past mistakes — may make similar 
mistakes again and again



CDCL Algorithm
● Conflict-Driven Clause Learning (CDCL) is an extension of the DPLL algorithm.

● It adds the ability to learn from conflicts and backtrack more intelligently.

● CDCL replaces the following steps in DPLL:

○ CONFLICT: analyze the conflict to learn a new clause that prevents similar 

conflicts in the future.

○ BACKTRACK: backtrack to the reason for the conflict

● CDCL is more efficient than DPLL because it can avoid repeating the same 

mistakes by learning from conflicts and backtracking intelligently.
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Fig. 2.3. The size of industrial CNF formulas (instances generated for solving var-
ious realistic problems such as verification of circuits and planning problems) that
are regularly solved by SAT solvers in a few hours, according to year. Most of the
progress in efficiency has been made in the last decade

The majority of modern SAT solvers can be classified into two main cate-
gories. The first category is based on the Davis–Putnam–Loveland–Logemann
(DPLL) framework: in this framework the tool can be thought of as traversing
and backtracking on a binary tree, in which internal nodes represent partial
assignments, and the leaves represent full assignments, i.e., an assignment to
all the variables.

The second category is based on a stochastic search: the solver guesses
a full assignment, and then, if the formula is evaluated to false under this
assignment, starts to flip values of variables according to some (greedy) heuris-
tic. Typically it counts the number of unsatisfied clauses and chooses the flip
that minimizes this number. There are various strategies that help such solvers
avoid local minima and avoid repeating previous bad moves. DPLL solvers,
however, are considered better in most cases, at least at the time of writ-
ing this chapter (2007), according to annual competitions that measure their
performance with numerous CNF instances. DPLL solvers also have the ad-
vantage that, unlike most stochastic search methods, they are complete (see
Definition 1.6). Stochastic methods seem to have an average advantage in
solving randomly generated (satisfiable) CNF instances, which is not surpris-
ing: in these instances there is no structure to exploit and learn from, and no
obvious choices of variables and values, which makes the heuristics adopted
by DPLL solvers ineffective. We shall focus on DPLL solvers only.

2.2.2 The DPLL Framework

In its simplest form, a DPLL solver progresses by making a decision about a
variable and its value, propagates implications of this decision that are easy
to detect, and backtracks in the case of a conflict. Viewing the process as a
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Figure 5: All time winners on the SAT Competition 2021 benchmarks (400 problems)
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Figure 6: All time winners on the SAT Competition 2022 benchmarks (400 problems)
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CDCL Example
● Consider F = c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6 where 

○ c1: ¬x1 ⋁ x2 ⋁¬x4

○ c2 : ¬x1 ⋁ ¬x2 ⋁ x3

○ c3: ¬x3 ⋁¬x4

○ c4 : x4 ⋁ x5 ⋁ x6

○ c5 : ¬x5 ⋁ x7

○ c6: ¬x6 ⋁x7 ⋁¬x8



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

x1@1

x1 is assigned true as the first choice

True literals in green

False literals in red



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

x1@1x8@2

x8 is assigned true as the second choice



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

x1@1x8@2

¬x7 is assigned true (i.e., x7 is false)

as the third choice

¬x7@3



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

¬x6 is true (i.e., x6 is false)

according to the third choice (owing to implication)


by c6

¬x7@3

x8@2 x1@1

¬x6@3

c6

c6



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

x4 is true 

according to the third choice by c4

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

c6

c6

c5 c4

c4



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

c6

c6

c5 c4

c4 c1

c3

c1



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

A conflict arises (c2 not satisfied)

due to the third choice. 



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

Cut: a minimal set of edges 
whose removal breaks all paths from the 

root nodes to the conflict node



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

c : ¬x1 ⋁ ¬x4

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

Learned from the failure: 
¬x1 ⋁ ¬x4



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

c : ¬x1 ⋁ ¬x4

Backtrack — remove all decisions 
after the first choice (but the first choice is 

not deleted)

x1@1



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

c : ¬x1 ⋁ ¬x4

x1@1

¬x4@1

c

x4 is false 

according to the first choice by c

(Different choice than before!)



Make progress 
similarly and find a satisfying 

assignment

Satisfying assignment: 

{ x1 ↦ ⊤,  x8 ↦ ⊤, x7 ↦ ⊥, 

  x6 ↦ ⊥,  x5 ↦ ⊥, x4 ↦ ⊥, 

  x3 ↦ ⊤,  x2 ↦ ⊤ }

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

c : ¬x1 ⋁ ¬x4

¬x7@3

x8@2

x1@1

¬x5@3

¬x6@3

c6

c6

c5

¬x4@1

c

x6@3

c4

c4

x3@4



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

In Case of DPLL

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

Backtrack to the last decision 
(¬x7@3) and revert it!



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

In Case of DPLL

x8@2

x7@3

x1@1
Reverted



c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

x8@2

x7@3

¬x6@4

¬x5@5

x1@1

x4@5

x2@5

¬x3@5

k@3

c1

c3 c2

c2

c1

c2

c4

c4

c4

In Case of DPLL

Suppose ¬x6 
and  ¬x5 are 
assigned true 

next

Conflict for the 
same reason due to 

x1 ∧ x4 ! 



Formal Definition of CDCL



Decision Levels
● Decision variable: variable assigned in the Decide step

● Decision level: The level (order) in which a decision variable is assigned 

(starting from 1)

● Each assignment is associated with the decision level at which it occurred. 

● The decision level of a variable assigned due to BCP is the decision level of the 

last assigned decision variable.



Quiz
● Consider a formula (¬x1 ⋁ x2) ∧ (¬x3 ⋁ ¬x4)

● Suppose we decide x1 = true at decision level 1 

● What does BCP yield and what is the decision level of it?   

x2, 1

● Suppose we decide x4 = true.

● What does BCP yield and what is the decision level of it?   

¬x3, 2



Decision Levels
● If a variable xi  is assigned true (owing to either a decision or an implication) at 

decision level dl, we write xi@dl.
● Assignments implied regardless of any assignments are associated with decision 

level 0, also called the ground level (e.g., in formula x1 ∧ …, x1 ↦ true)



Status of a Clause
● Under a partial assignment (PA), a variable may be assigned (true/false) or 

unassigned.

● A clause can be 

○ Satisfied : at least one literal is satisfied

○ Unsatisfied : all literals are assigned but non are satisfied

○ Unit: all but one literals are assigned but none are satisfied

○ Unresolved: all other cases

● Example : x1 ⋁ x2 ⋁ x3 

○

x1 x2 x3 C
1 0 Satisfied

0 0 0 Unsatisfied

0 0 Unit

0 Unresolved



Antecedent
● For a given unit clause C with an unassigned literal l, we say that l is implied by 

C and that C is the antecedent clause of l, denoted by Antecedent(l)

○ Suppose we have the partial assignment {x1 ↦ true, x4 ↦ true} and the clause 

C := (¬x1 ⋁ ¬x4 ⋁ x3), Antecedent(x3) = C



Implication Graph
● An implication graph is a labeled directed acyclic graph G(V, E), where:

○ Each v ￼  V is a literal in the current PA and its decision level

○ E = {(vi,vj) | vi,vj ∈ V,¬vi ∈ Antecedent(vj)} : the set of directed edges

○ G can also contain a single conflict node labeled with k and incoming edges 

{(v, κ) | ¬v ∈ c} labeled with c for some conflicting clause c.

∈

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2
c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8



Implication Graph
● An implication graph is a labeled directed acyclic graph G(V, E), where:

○ Each v ￼  V is a literal in the current PA and its decision level

○ E = {(vi,vj) | vi,vj ∈ V,¬vi ∈ Antecedent(vj)} : the set of directed edges

○ G can also contain a single conflict node labeled with k and incoming edges 

{(v, κ) | ¬v ∈ c} labeled with c for some conflicting clause c.

∈

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2
c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

Decision 
literal

Implied 
literal



Conflict Clause
● A conflict clause is a clause implied by the original formula that blocks PAs that 

lead to the current conflict.  Multiple conflict clauses may exist. 

○ Every cut that separates root nodes from the conflict node defines a valid 

conflict clause.

○ Which one is better?CDCL(F)
  A ← {}   
  if BCP(F, A) = conflict then return false
  level ← 0
  while hasUnassignedVars(F)  
    level ← level + 1
    A ← A ∪ { DECIDE(F, A) }
   while BCP(F, A) = conflict
      ⟨b, c⟩ ← ANALYZECONFLICT()
      F ← F ∪ {c}
      if b < 0 then return false
      else BACKTRACK(F, A, b)
             level ← b
  return true

A conflict clause is implied by F and it 
blocks PAs that lead to the current 
conflict.

Every cut that separates sources from 
the sink defines a valid conflict clause.

Using an implication graph to analyze a conflict

11

x8@2

¬x7@3

¬x6@3

¬x5@3

x4@3

x2@3

¬x3@3

κ@3

x1@1c6

c6

c5

c4

c4

c1

c3

c2

c2

c1

c2

✂✂

¬x1 ⋁ x7 ⋁ ¬x8 ¬x1 ⋁ ¬x4

Cut: a minimal set of edges whose removal breaks all paths from the root nodes to the conflict node

It bipartitions the nodes into the reason side (the side that includes all the roots) and the conflict side. 

Figure from https://courses.cs.washington.edu/courses/cse507/16sp/lectures/L2.pdf



Conflict Clause
● Why are conflict clauses necessary?

○ To prevent bad partial assignments by deriving contradiction as quickly as 

possible

● To this end, smaller conflict clauses are better.

○ c1’: ¬x1 ⋁ x7 ⋁ ¬x8         vs.         c2’ : ¬x1 ⋁ ¬x4

○ Number of PAs satisfying c1’  ≥  Number of PAs satisfying c2’ 

○ Therefore, c2’ has better pruning power (can discard more unsatisfying 

assignments)



Unique Implication Point (UIP)
● Given a partial conflict graph corresponding to the decision level of the conflict

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2



Unique Implication Point (UIP)
● Given a partial conflict graph corresponding to the decision level of the conflict

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2



Unique Implication Point (UIP)
● Given a partial conflict graph corresponding to the decision level of the conflict, 

a unique implication point (UIP) is any node other than the conflict node that is 

on all paths from the decision literal to the conflict node

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2



Unique Implication Point (UIP)
● Given a partial conflict graph corresponding to the decision level of the conflict, 

a unique implication point (UIP) is any node other than the conflict node that is 

on all paths from the decision literal to the conflict node

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

Decision 
literal

UIP

UIP



Unique Implication Point (UIP)
● Given a partial conflict graph corresponding to the decision level of the conflict, 

a unique implication point (UIP) is any node other than the conflict node that is 

on all paths from the decision literal to the conflict node

● A first UIP is a UIP that is closest to the conflict node.

¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

Decision 
literal

First UIP
UIP

UIP



Unique Implication Point (UIP)
● Any decision literal is a UIP by definition.

● Other UIPs (if exists) are implied literals at the decision level of the conflict. 

● There is always a single UIP closest to the conflict node (why?)



Unique Implication Point (UIP)
● Any decision literal is a UIP by definition.

● Other UIPs (if exists) are implied literals at the decision level of the conflict. 

● There is always a single UIP closest to the conflict node (why?)

○ => All paths to a single conflict node should pass through the first UIP which 

cannot be more than two.

○ A first UIP is a single literal which is a common cause of the conflict in the 

current decision level.



Exercise
● Consider ￼  where  

 

 

 

Which node is the first UIP?

F = c1 ∧ c2 ∧ c3 ∧ c4

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.



CDCL Algorithm
function CDCL (F) = 

A := {} 

F’ := BCP(F, A);

if F’ = ⊤ then return SAT

else if F’ = ⊥ then return UNSAT

dl := 0 

while hasUnassignedVars(F,A) do

  dl := dl + 1 

  <x,v> := Decide(F)


  A := A{x ↦ v} 

  F := BCP(F, A)

  while Conflict(F) do 

    <b,c> := AnalyzeConflict(F,A)


    F := F ∧ c

    if b < 0 then return UNSAT 

    else 

      A := Backtrack(F,A,b)

      dl := b

return SAT

● A : assignment made so far

● BCP(F, A): Boolean constraint propagation 

over F after assigning variables using A

● dl: current decision level 

● Decide(F): choose a variable and assign a 

value

● b: level to backtrack to

● c: learned conflict clause 

● Backtrack(F,A,b): remove all variable 

assignments made after b (but assignments at 

level b not deleted) 



AnalyzeConflict
function AnalyzeConflict (F,A) = 

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteralAtLevel(c,d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>

● Two goals:

○ Deriving conflict clauses

○ Decide what level to backtrack to

● We want to backtrack to a level that 

makes conflict clause c an asserting 

clause in the next step

○ Asserting clause is a clause with 

exactly one unassigned literal

● Hence, if we make c an asserting clause, 

BCP will force at least one assignment
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d = 3

function AnalyzeConflict (F,A) = 

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteralAtLevel(c,d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>
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d = 3

c = c2

function AnalyzeConflict (F,A) = 

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteralAtLevel(c,d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1
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AnalyzeConflict

d = 3

c = c2

lit = x2

x = x2

ante = c1

function AnalyzeConflict (F,A) = 

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteralAtLevel(c,d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3
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AnalyzeConflict
function AnalyzeConflict (F,A) = 

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteral(d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  d := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>

● Resolve(c,ante,x): unit 

resolution rule 

○ Suppose c = ￼ ,  

ante = ￼ , by the 

rule  

 

 

 

Resolve(c,ante,x) = 

￼

α1 ∨ ⋯ ∨ αn ∨ x

β1 ∨ ⋯ ∨ βm ∨ ¬x

α1 ∨ ⋯ ∨ αn ∨ β1 ∨ ⋯ ∨ βm

￼α1 ∨ ⋯ ∨ αn ∨ x ￼β1 ∨ ⋯ ∨ βm ∨ ¬x

￼α1 ∨ ⋯ ∨ αn ∨ β1 ∨ ⋯ ∨ βm



AnalyzeConflict
d = 3

c = c2

lit = x2

x = x2

ante = c1


Resolve(c, ante, x) = 

 = Resolve(¬x1 ⋁ ¬x2 ⋁ x3, ¬x1 ⋁ x2 ⋁¬x4, x2)

  =  ¬x1 ⋁ x3 ⋁ ¬x4


function AnalyzeConflict (F,A) = 

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteralAtLevel(c,d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3
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x4@3

x2@3

¬x3@3

k@3

c6
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c5 c4

c4 c1

c3 c2
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c1
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c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8



AnalyzeConflict
d = 3    c = ¬x1 ⋁ x3 ⋁ ¬x4    lit = x2        
x = x2  ante = c1


Resolve(c, ante, x) = 

 = Resolve(¬x1 ⋁ ¬x2 ⋁ x3, ¬x1 ⋁ x2 ⋁¬x4, x2)

  =  ¬x1 ⋁ x3 ⋁ ¬x4


oneLitAtLevel(c,d) = False 


(∵ x3 and ¬x4 are at d)

function AnalyzeConflict (F,A) = 

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteralAtLevel(c,d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2
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c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8



AnalyzeConflict
d = 3      c = ¬x1 ⋁ x3 ⋁ ¬x4      lit = x3        
x = x2    ante = c1 function AnalyzeConflict (F,A) = 


k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteralAtLevel(c,d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3
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c6

c6

c5 c4

c4 c1

c3 c2

c2
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c2

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8



AnalyzeConflict
d = 3      c = ¬x1 ⋁ x3 ⋁ ¬x4      lit = x3        
x = x3    ante = c3 function AnalyzeConflict (F,A) = 


k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteralAtLevel(c,d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3
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¬x3@3
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c6

c5 c4

c4 c1
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c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8



AnalyzeConflict
d = 3      c = ¬x1 ⋁ x3 ⋁ ¬x4      lit = x3        
x = x3    ante = c3


Resolve(c, ante, x) = 

 = Resolve(¬x1 ⋁ x3 ⋁ ¬x4, ¬x3 ⋁ ¬x4, x3)

  =  ¬x1 ⋁ ¬x4

function AnalyzeConflict (F,A) = 

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteralAtLevel(c,d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3
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AnalyzeConflict
d = 3      c = ¬x1 ⋁ x3 ⋁ ¬x4      lit = x3        
x = x3    ante = c3


Resolve(c, ante, x) = 

 = Resolve(¬x1 ⋁ x3 ⋁ ¬x4, ¬x3 ⋁ ¬x4, x3)

  =  ¬x1 ⋁ ¬x4


oneLitAtLevel(c,d) = True 


(∵ ¬x4 is at d)

function AnalyzeConflict (F,A) = 

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteralAtLevel(c,d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3
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x4@3
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¬x3@3
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c4 c1

c3 c2

c2

c1

c2

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8



AnalyzeConflict
c = ¬x1 ⋁ ¬x4 


assertingLevel(c) returns the second 
highest decision level for any literal in c, 
unless c is unary (in that case, it returns 0).


assertingLevel(c) = 1

(∵ x1@1 and x4@3, 1 is the second 
highest) 

function AnalyzeConflict (F,A) = 

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteralAtLevel(c,d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8



AnalyzeConflict
Why second highest? 


The second one is the highest among the 
levels of the literals in the conflict clause, 
excluding the current decision level (which is 
the highest). It backtracks to only as far as 
needed to make the learned clause useful.


returns <1, ¬x1 ⋁ ¬x4>

function AnalyzeConflict (F,A) = 

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteralAtLevel(c,d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>¬x7@3

x8@2 x1@1

¬x5@3

¬x6@3

x4@3

x2@3

¬x3@3

k@3

c6

c6

c5 c4

c4 c1

c3 c2

c2

c1

c2

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8



AnalyzeConflict
• By construction, c is always unit at b  

(It has only one literal at the current level d) 
• It let the previous assignment immediately 

fire the learned clause c by BCP and “fix" 
the reason for the conflict at the current 
decision level.

function AnalyzeConflict (F,A) = 

k@d := GetConflict(F,A)

if d = 0 then return -1

c := Antecedent(k)

repeat

  lit := LastAssignedLiteralAtLevel(c,d)

  x := VarOfLiteral(lit)

  ante := Antecedent(lit)

  c := Resolve(c, ante, x)

until oneLitAtLevel(c,d)

b := assertingLevel(c)

return <b,c>

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

c1: ¬x1 ⋁ x2 ⋁¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3: ¬x3 ⋁¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6: ¬x6 ⋁ x7 ⋁¬x8

c : ¬x1 ⋁ ¬x4

x1@1

¬x4@1

c



Exercise
● Consider ￼  where  

 

 

 

What is the conflict clause?  

(suppose x4, x5, x6, x7 are assigned in turn  

at decision level 3)

F = c1 ∧ c2 ∧ c3 ∧ c4
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c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
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... c2
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Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.
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Informal, Easier Method for Clause Learning

●          : clauses considered so far 

●          : reasons for the conflict
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One literal at 
level 5. Done!



Variable Choice Heuristics in CDCL
● Various strategies by which the variables and the value given to them are 

chosen

● Dynamic Largest Individual Sum (DLIS): At each decision level, choose the 

unassigned literal that satisfies the largest number of currently unsatisfied 

clauses.

● Variable State Independent Decaying Sum (VSIDS): Similar to DLIS, but tries to 

reduce overhead and favor literals involved in conflicts



Overview of CDCL Algorithm

Decide BCPFormula

SAT

Return SAT

No conflict

AnalyzeConflict

Conflict Backtrack if dl > 0 

UNSAT if dl ≤ 0

Return UNSAT



Summary
● CDCL

● Non-chronological backtracking

● Conflict clause learning

● Implication graph

● Unique Implication Point


