CSE405 | : Program Verification

2025 Fall

Woosuk Lee

-

Rev'ewo D PLL Algo r|thm - Called “Chronologlcl |

baoktrackmg which does not backtrack to
: , S the real reason of the Confllct _
o DPLL algorlthm repeats the f0||OW|ng steps: S — P

o DECIDE: Choose a variable to assign a value. /
o PROPAGATE: Use unit propagation to deduce furth,signments.

o CONFLICT: If a conflict arises, backtrack to the last decision point and make

a different assighment.

o BACKTRACK:If no decisions left, backtrack to the previous decision point.

“No learning from past mistakes — may make similar
mistakes again and again

CDCL Algorithm

e Conflict-Driven Clause Learning (CDCL) is an extension of the DPLL algorithm.
e [t adds the ability to learn from conflicts and backtrack more intelligently.
e CDCL replaces the following steps in DPLL.:
o CONFLICT: analyze the conflict to learn a new clause that prevents similar
conflicts in the future.
o BACKTRACK: backtrack to the reason for the conflict
e CDCL is more efficient than DPLL because it can avoid repeating the same

mistakes by learning from conflicts and backtracking intelligently.

1,000,000 -

100,000 -

10,000 -

1,000 -

Variables

100 -

T R

1960 1970 1980 1990 2000 2010

Year

Fig. 2.3. The size of industrial CNF formulas (instances generated for solving var-
ious realistic problems such as verification of circuits and planning problems) that
are regularly solved by SAT solvers in a few hours, according to year. Most of the
progress in efficiency has been made in the last decade

kissat-mab-2021
kissat-mab-hywalk-2022
kissat-2020
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-cb-2018
maple-lem-dist-2017
maple-comsps-drup-2016
abcdsat-2015
lingeling-2014
lingeling-2013
glucose-2012
glucose-2011
minisat-2008
precosat-2009
cryptominisat-2010
satelite-gti-2005
minisat-2006

rsat-2007

berkmin-2003
limmat-2002
chaff-2001
zchaff-2004

boehm-1992
grasp-1997

® ¢ 9 O

200

200

® OO N+ PO x

solved instances
k.
) |
S
. .

>

A A
A —A— B g
& S/

.
o—C

>0 0

2.000 3,000 4.000 5,000

time in seconds

Figure 6: All time winners on the SAT Competition 2022 benchmarks (400 problems)

_ https://ceur-ws.org/Vol-3545/paper6.pdf

CDCL Example

o Consider F=cl Ac2Ac3 Ac4AcS5Acbwhere
o cl:xl VvV x2 vx4
o c2:xl| VvV x2 Vv x3
o ¢3:1x3 Vx4
O c4:x4 Vx5V x6
o ¢5: x5V x7

o c¢b:1xb Vx/ Vx8

cl: =x1 v X2 v—x4
c2 : X1 VvV x2 Vv X3
c3: X3 Vx4

c4 : x4 v X5 V X6
CS XD V X/

C6: 7X6 V X7 VX8

is assigned true as the first choice

- 4 v
/ 4
~/."

True literals in green
False literals In red

cl: - x1 v x2 v-x4
c2 : x1 VvV ax2 Vv x3
c3: X3 Vx4

c4 : x4 V X5 V X6 —
ch5: x5 v X7 (_ X8 is assigned true as the second choice)

2 } S -

CO: X6 V X7 VX8

cl: =x1 v X2 v—x4
c2 : —x1 Vv x2 Vv X3
c3: X3 Vx4

c4 : x4 v x5V x6
CS XD V X/

CO6: X6 V X/ VX8

. " -x7 is assigned true (i.e., x7 is false)
’ as the third choice

cl: =x1 v X2 v—x4
c2 : X1 VvV x2 Vv X3
c3: X3 Vx4

c4 : x4 v X5 V X6
CS XD V X/

C6: 7X6 V X/ VX8

{ according to the third choice (owing to implication)

T1X6 Is true (i.e., X6 is false)

by c6

cl: =x1 v X2 vx4
c2 : X1 VvV x2 Vv X3
c3: X3 Vx4

c4 : x4 v X5 V X6
CS XD V X/

C6: 7X6 V X/ VX8

; x4 Is true
_according to the third choice by c4 /

cl: x1 v x2 vx4

c2 : X1 v ax2 v X3

c3: X3 Vx4

c4 : x4 v X5 V X6
CS XD V X/

C6: 7X6 V X/ VX8

<

cl: x1 v x2 vx4

c2 : X1 v ax2 v X3

c3: X3 Vx4

c4 : x4 v X5 V X6
CS XD V X/

C6: 7X6 V X/ VX8

7~ A conflict arises (c2 not satisfied)
‘ due to the third choice.

c2

(6@2) 4 (a1

c5 c4 c3

D (<363

cl: x1 v x2 vx4

C2 1 =X1 V =X2 V X3 " Cut: a minimal set of edges
c3: X3 Vx4 (whose removal breaks all paths from the)

cd - x4 v x5 V X6 “~__root nodes to the conflict node _~"

CS5:- x5 v x/
CO: X6 V X/ VX8

O
N

cl: =x1 v x2 vax4
c2 : X1 v =x2 VvV X3
c3: X3 Vx4

c4 : x4 v X5 V X6
CS XD V X/

C6: 7X6 V X/ VX8
c: X1V x4

7~ Learned from the failure: ™\
-X1 v =x4

cl: x1 v x2 vx4
c2:—x1 VvV -ax2 Vv x3

c3: +x3 Vx4 " Backtrack — remove all decisions ~\
c4 : x4 vV X5V x6 after the first choice (but the first choice | |s
CO XS V X/ not deleted) ’

CO: 7 Xb V X7 VX8
c:-x1 Vv x4

4
"/ 4
A

cl:=x1 v x2 v—x4
c2 : X1 VvV x2 Vv X3
c3: X3 Vx4

c4 : x4 v X5 V X6
CS XD V X/

C6: 7X6 V X7 VX8
c: X1 Vv x4

x4 is false
according to the first choice by c
(Different choice than before!)

cl:=x1 v x2 v—x4
c2 : X1V X2 V x3
c3: X3 Vx4

c4d : x4 v X5 V X6
C5 : x5 V XY/

C6: = X6 V X/ VX8
c: X1 Vv x4

C

" Make progress
(similarly and find a satistying
. assignment -~

Satisfying assignment;:

{x1» T, X8+

X0 ~ _

L, X5

X3+ T

L X e L,
L, X4 - 1

S X2 P

T}

cl: -x1 v x2 v—x4

c2 : X1 Vv x2 Vv x3

c3: X3 Vx4

c4 : x4 v X5 V X6
CS XD V X/

Cb6: X6 V X7 VX8

In Case of DPLL

" Backtrack to the last decision .
\. (x7@3)andrevertitt _“

(8@2) o (xi@1

c6 | .
c5 c4 c3

<D <O

\ W
C2 '
\
3
\
*y

cl: =x1 v X2 v-x4
c2 : X1 VvV x2 V X3
c3: X3 Vx4

c4d : x4 v X5 V X6
CS XD V X/

C6: X6 V X/ VX8

(_ Reverted

In Case of DPLL

cl:

C2

C3:

c4

Suppose —x6 |

X1 v x2 vx4

- =x1 v ax2 VvV X3

_'X3 \/—|X4

X4 vV X5 Vv X6
C5:
CO:

X9 V X/
X0 V X/ VX8

and -x5 are
assigned true
nhext V4

In Case of DPLL

7/~ Conflict for the ™\
|same reason due to

c4

\ o1 @ c2 /

Formal Definition of CDCL

A

Decision Levels

e Decision variable: variable assighed in the Decide step

e Decision level:The level (order) in which a decision variable is assigned
(starting from |)

e FEach assignment is associated with the decision level at which it occurred.

e The decision level of a variable assigned due to BCP is the decision level of the

last assigned decision variable.

Quiz

e Consider a formula (0x| V x2) A (7x3 V 1x4)

e Suppose we decide x| = true at decision level |

e What does BCP yield and what is the decision level of it?

e Suppose we decide x4 = true.

e What does BCP yield and what is the decision level of it?

Decision Levels

e |[f a variable Xis assigned true (owing to either a decision or an implication) at
decision level dl, we write x@dlI.
e Assignments implied regardless of any assignments are associated with decision

level 0, also called the ground level (e.g., in formula xI A ..., x| » true)

Status of a Clause

e Under a partial assignment (PA), a variable may be assigned (true/false) or

unassigned.
e A clause can be
o Satisfied : at least one literal is satisfied
o Unsatisfied : all literals are assigned but non are satisfied

o Unit:all but one literals are assigned but none are satisfied

o Unresolved: all other cases X1 | X2 | X3 C
e Example : x| vV x2 Vv x3 : 0 Satisfied
0 0 0 Unsatisfied
0 0 Unit
0 Unresolved

Antecedent

e For a given unit clause C with an unassigned literal |, we say that | is implied by
C and that C is the antecedent clause of |, denoted by Antecedent(l)

O Suppose we have the partial assignment {x| » true, x4 » true} and the clause

C:= (x|l vV x4 VvV x3),Antecedent(x3) = C

Implication Graph

e An implication graph is a labeled directed acyclic graph G(V, E), where:
o FEach v €Vis a literal in the current PA and its decision level
o E ={(vy,Vj) | vi,vie V,mvie Antecedent(v))} : the set of directed edges
o0 @G can also contain a single contlict node labeled with k and incoming edges

{(v, K) | 7v € c} labeled with ¢ for some conflicting clause c.

c1: =x1 v x2 v-x4 @ - @

c2:x1 v -x2 Vv x3
c3: X3 Vx4

B @ c4d c @
c4: x4 v X5 v x6
C6: =X6 V X/ VX8 > o4 c3 oo
(o503 (xs03

c2

Implication Graph

e An implication graph is a labeled directed acyclic graph G(V, E), where:
o FEach v €Vis a literal in the current PA and its decision level
o E ={(vy,Vj) | vi,vie V,mvie Antecedent(v))} : the set of directed edges
o0 @G can also contain a single contlict node labeled with k and incoming edges

{(v, K) | 7v € c} labeled with c for some conflicting clause c.

7 Implied \

clixtva2vaxd (Geaz) oo N\terd S (xtet

c2 : x1 Vv x2 v) ,

7 Decision
c3: X3 vx4 | . @
literal

c4:x4 VXS5V x o C1 @
C6: —X6 V X/ V-1x8 - 3 -
(qaea)

0]0)
D

c2

Conflict Clause

e A conflict clause is a clause implied by the original formula that blocks PAs that

lead to the current conflict. Multiple conflict clauses may exist.

o Every cut that separates root nodes from the conflict node defines a valid

: =1X) V X7 V T1Xg =X V "IX4
conflict clause.

C2
O Which one is better? @ @]’

Cut: a minimal set of edges whose removal breaks all paths from the root nodes to the conflict node
It bipartitions the nodes into the reason side (the side that includes all the roots) and the conflict side.

| Figure from https://courses.cs.w—res/LZ.pdf

Conflict Clause

e Why are conflict clauses necessary!?
o To prevent bad partial assignments byderiving contradiction as quickly as
possible

e lo this end, smaller conflict clauses are better.

o cl’: x|l v x7 Vv x8 VS. c?2’ x|l Vv x4

O Number of PAs satisfying cI’° = Number of PAs satisfying c2’

o Therefore, c2’ has better pruning power (can discard more unsatisfying

assignments)

Unique Implication Point (UIP)

e Given a partial conflict graph corresponding to the decision level of the conflict

c2

(8@2) 4 (xie1 3

06 @ C4 C1 @

Unique Implication Point (UIP)

e Given a partial conflict graph corresponding to the decision level of the conflict

Unique Implication Point (UIP)

e Given a partial conflict graph corresponding to the decision level of the conflict,
a unique implication point (UIP) is any node other than the conflict node that is

on all paths from the decision literal to the conflict node

Unique Implication Point (UIP)

e Given a partial conflict graph corresponding to the decision level of the conflict,
a unique implication point (UIP) is any node other than the conflict node that is

on all paths from the decision literal to the conflict node

/ Decision "\
_ literal _¢

S 4
o= N &
g ¥
- =
g

3

b &
. - .
i

Unique Implication Point (UIP)

e Given a partial conflict graph corresponding to the decision level of the conflict,

a unique implication point (UIP) is any node other than the conflict node that is

on all paths from the decision literal to the conflict node

e A first UIP is a UIP that is closest to the conflict node.

7 Decision \
_ literal _¢

S e ¢
T g K
. APV s
- g
Y

A

Y f
. . - 1
i

Unique Implication Point (UIP)

e Any decision literal is a UIP by definition.

e Other UIPs (if exists) are implied literals at the decision level of the conflict.

® There is always a single UIP closest to the conflict node (why?)

Unique Implication Point (UIP)

e Any decision literal is a UIP by definition.
e Other UIPs (if exists) are implied literals at the decision level of the conflict.
® There is always a single UIP closest to the conflict node (why?)
o => All paths to a single conflict node should pass through the first UIP which
cannot be more than two.
o A first UIP is a single literal which is a common cause of the conflict in the

current decision level.

EXxercise

e Consider F =c; Acy A3 A cy Where
C1 = (—034 NV o V $5)
Co (—1334 V 10 V mG)
C3 (—I£E5 V g V ﬂa;'7)
Cqp — (—I£C6 \V4 567)

Which node is the first UIP!?

CDCL Algorithm

A :assignment made so far
BCP (F, A):Boolean constraint propagation

over F after assigning variables using A

d1:current decision level
Decide (F):choose a variable and assign a

value

b: level to backtrack to

c: learned conflict clause

Backtrack (F, A, b) :remove all variable
assignments made after b (but assignments at

level b not deleted)

function CDCL (F) =

A = {}

F/ := BCP(F, A);

i1f F' = T then return SAT
else 1f F/ = 1 then return UNSAT

dl := 0
while hasUnassignedVars (F,A) do
dl := dl + 1
<x,v> := Decide (F)
A := A{x p» v}
F' := BCP(F, A)
while Conflict (F) do
<b,c> := AnalyzeConflict (F,A)
FF = F AN C
1f b < 0 then return UNSAT
else
A := Backtrack (F,A,Db)

dl := Db

return SAT

AnalyzeConflict

e Iwo goals:

o0 Deriving conflict clauses

o Decide what level to backtrack to
e Ve want to backtrack to a level that

makes conflict clause c an asserting

clause in the next step
o Asserting clause is a clause with

exactly one unassigned literal

function AnalyzeConflict
k@d := GetConflict (F, A)
1f d = 0 then return -1
Antecedent (k)
repeat
11t :=
VarOflLiteral (11t)
Antecedent (lit
ante,

C =

X 1=
ante :=
c := Resolve (c,
until onelitAtLevel (c,d)

b := assertinglLevel (c)

return <b,c>

(F', A)

)

X)

LastAssignedLiteralAtLevel (c, d)

e Hence,if we make c an asserting clause,

BCP will force at least one assignment

AnalyzeConflict

c4 @
|- 02

function AnalyzeConflict
k@d := GetConflict (F, A)
1f d = 0 then return -1
c := Antecedent (k)
repeat
11t :=
X := VarOfLiteral (1it)
ante := Antecedent (lit
c := Resolve(c, ante,
until onelitAtLevel (c, d)

b := assertinglLevel (c)

return <b,c>

(F', A)

)

X)

LastAssignedLiteralAtLevel (c,d)

AnalyzeConflict

x1@1
c4 @
- 02

function AnalyzeConflict
k@d := GetConflict (F, A)
1f d = 0 then return -1
c := Antecedent (k)
repeat
11t :=
X := VarOfLiteral (1it)
ante := Antecedent (lit
c := Resolve(c, ante,
until onelitAtLevel (c, d)

b := assertinglLevel (c)

return <b,c>

(F', A)

)

X)

LastAssignedLiteralAtLevel (c,d)

AnalyzeConflict

d=3
c =C2
lit =x2
X = X2
ante = C1

T et

= 3=

04 \

02

function AnalyzeConflict (F,A) =

k@d := GetConflict (F, A)

1f d = 0 then return -1

c := Antecedent (k)

repeat
lit := LastAssignedLiteralAtLevel (c,d)
X := VarOfLiteral (1it)
ante := Antecedent(lit)
c := Resolve(c, ante, x)

until onelitAtLevel (c, d)

b := assertinglLevel (c)

return <b,c>

AnalyzeConflict

@ Resolve(c,ante, xX):unit
resolution rule
o Supposec =a;V - ---Va,VAx,
ante =,V -V, V x by the
rule

al\/...\/an\/x ﬁl\/...\/ﬁm\/—lx

aV--Va,Vp V--Vp

Resolve (c,ante, x) =

aV--vVa,Vp V--Vp,

function AnalyzeConflict
k@d := GetConflict (F,A)
1f d = 0 then return -1
c := Antecedent (k)
repeat

X := VarOfLiteral (1lit)
ante := Antecedent(lit
d := Resolve(c, ante,
until onelitAtLevel (c, d)
b := assertingLevel (c)
return <b, c>

(F', A)

11t := LastAssignedLiteral (d)

)

X)

AnalyzeConflict

d=3
c=c2 function AnalyzeConflict (F,A) =
1it = x2 k@d := GetConflict (F,A)
X = X2 if d = 0 then return -1
ante = C1 c := Antecedent (k)
repeat
Resolve(c, ante, x) = lit := LastAssignedLiteralAtLevel (c,d)
= Resolve (7x1 Vv X2 v x3, 7x1 v X2 vx4, x2) | |
X := VarOflLiteral (lit)
= X1 v x3 Vv x4 |
ante := Antecedent(lit)

@ c6 x1e1 c := Resolve(c, ante, x)
. @ until onelitAtLevel (c,d)

@ b := assertinglLevel (c)
@ return <b,c>
02 cl: -x1 v x2 v-x4

c2 : X1V x2 Vv X3
c3: X3 v-x4

c4 : x4 v x5V x6
c5: x5 Vv X7

CB: 7x6 V X/ V-x8

AnalyzeConflict

d=3 c=xx1vx3v x4 1it=Xx2

x = X2 ante = C1

Resolve (c, ante,

= Resolve (7x1 v 7x2 v x3, 7x1 v x2 vx4, x2)

= x1 v X3 Vv x4

X) =

onelLitAtLevel (c,d) =
(. X3 and x4 are at d)

ces

c4

x1@1

F'alse

=

@.@ -

function AnalyzeConflict
k@d := GetConflict (F, A)
1f d = 0 then return -1
c := Antecedent (k)
repeat

lit := LastAssignedLiteralAtLevel (c,d)

X := VarOfLiteral (1it)

ante := Antecedent(lit

c := Resolve(c, ante,
until onelitAtLevel (c, d)
b := assertinglLevel (c)

return <b,c>

(F,A) =

)

X)

cl: =-xT v x2 v—x4
c2 : X1V x2 Vv X3
c3: X3 v-x4

c4 : x4 v x5V x6
c5: x5 Vv X7

CB: 7x6 V X/ V-x8

d=3 c =-x1V x3 Vv x4

x =X2 ante =c1

ces

= 3=

c4

x1@1

AnalyzeConflict

1it =x3

=Y

02

function AnalyzeConflict

k@d := GetConflict (F, A)
1f d = 0 then return -1
c := Antecedent (k)
repeat

lit := LastAssignedLiteralAtLevel (c,d)

X := VarOfLiteral (1it)

(F,A) =

ante := Antecedent (lit)

c := Resolve(c, ante,
until onelitAtLevel (c, d)
b := assertinglLevel (c)

return <b,c>

X)

cl: =-xT v x2 v—x4
c2 : X1V x2 Vv X3
c3: X3 v-x4

c4 : x4 v x5V x6
c5: x5 Vv X7

CB: =X6 VvV X/ VX8

d=3 c =-x1V x3 Vv x4

x =X3 ante =c3

ces

= 3=

c4

x1@1

AnalyzeConflict

1it =x3

=Y

02

function AnalyzeConflict

k@d := GetConflict (F, A)
1f d = 0 then return -1
c := Antecedent (k)
repeat

lit := LastAssignedLiteralAtLevel (c,d)

X := VarOfLiteral (1it)

(F,A) =

ante := Antecedent (lit)

c := Resolve(c, ante,
until onelitAtLevel (c, d)
b := assertinglLevel (c)

return <b,c>

X)

cl: =-xT v x2 v—x4
c2 : X1V x2 Vv X3
c3: X3 v-x4

c4 : x4 v x5V x6
c5: x5 Vv X7

CB: =X6 VvV X/ VX8

AnalyzeConflict

d=3
X = X3

c =-x1V x3 Vv x4 1it =Xx3

ante = ¢3

Resolve (c, ante, x) =
= Resolve (7x1 v x3 Vv 7x4, 7x3 v x4, x3)

= X1 v x4

c4 @
|- 02

function AnalyzeConflict (F,A) =

k@d := GetConflict (F, A)
1f d = 0 then return -1
c := Antecedent (k)
repeat
lit := LastAssignedLiteralAtLevel (c,d)
X := VarOfLiteral (1it)
ante := Antecedent(lit)
c := Resolve(c, ante, x)
until onelitAtLevel (c, d)
b := assertinglLevel (c)

return <b,c>

cl: =-xT v x2 v—x4
c2 : X1V x2 Vv X3
c3: X3 v-x4

c4 : x4 v x5V x6
c5: x5 Vv X7

CB: 7x6 V X/ V-x8

d=3 c =-x1V x3 Vv x4

x =X3 ante =c3

Resolve (c, ante,
= Resolve (7x1 v x3 Vv 7x4, 7x3 v x4, x3)

= x1 v x4

X)

onelLitAtLevel (c,d) =

(. x4 isatd)

ces

c4

x1@1

AnalyzeConflict

1it =x3

True

=

@.@ -

function AnalyzeConflict
k@d := GetConflict (F, A)
1f d = 0 then return -1
c := Antecedent (k)
repeat

lit := LastAssignedLiteralAtLevel (c,d)

X := VarOfLiteral (1it)

ante := Antecedent(lit

c := Resolve(c, ante,
until onelitAtLevel (c, d)
b := assertinglLevel (c)

return <b,c>

(F,A) =

)

X)

cl: =-xT v x2 v—x4
c2 : X1V x2 Vv X3
c3: X3 v-x4

c4 : x4 v x5V x6
c5: x5 Vv X7

CB: 7x6 V X/ V-x8

AnalyzeConflict

c=x1v x4

assertinglLevel (c) returns the second
highest decision level for any literal in c,
unless c is unary (in that case, it returns 0).

assertinglLevel (c) = 1
(" x1@1 and x4@3, 1 is the second

highest)
c2
@3)

x1@1

(x802) o6
c4

c1
:

function AnalyzeConflict (F,A) =

k@d := GetConflict (F, A)

1f d = 0 then return -1

c := Antecedent (k)

repeat
lit := LastAssignedLiteralAtLevel (c,d)
X := VarOfLiteral (1it)
ante := Antecedent(lit)
c := Resolve(c, ante, Xx)

until onelitAtLevel (c, d)

b := assertinglLevel (c)

return <b,c>

cl: =-xT v x2 v—x4
c2 : X1V x2 Vv X3
c3: X3 v-x4

c4 : x4 v x5V x6
c5: x5 Vv X7

CB: 7x6 V X/ V-x8

AnalyzeConflict

Why second highest?

The second one is the highest among the
levels of the literals in the conflict clause,
excluding the current decision level (which is
the highest). It backtracks to only as far as
needed to make the learned clause useful.
returns <1,

c2
(882) o6
c4 @ c2
k

ci
@.@ 62

X1 v x4>

x1@1

function AnalyzeConflict
k@d := GetConflict (F, A)
1f d = 0 then return -1
c := Antecedent (k)
repeat
lit := LastAssignedLiteralAtLevel (c,d)
X := VarOfLiteral (1it)
ante := Antecedent(lit)
c := Resolve(c, ante, x)
until onelitAtLevel (c, d)
b := assertinglLevel (c)

(F,A) =

return <b,c>

cl: =-xT v x2 v—x4
c2 : X1V x2 Vv X3
c3: X3 v-x4

c4 : x4 v x5V x6
c5: x5 Vv X7

CB: 7x6 V X/ V-x8

AnalyzeConflict

* By construction, c is always unit at b
(It has only one literal at the current level d)
* [t let the previous assighment immediately
fire the learned clause ¢ by BCP and “fix"
the reason for the conflict at the current
decision level.

cl:=x1 v x2 v-x4
c2 : X1V X2 Vv X3
c3: X3 Vx4

c4 : x4 v X5 V X6
CS: x5 Vv x/

Ccb: X6 V X7 VX8
c: X1 v x4

C

function AnalyzeConflict
k@d := GetConflict (F, A)
1f d = 0 then return -1
Antecedent (k)
repeat
11t :=
VarOfLiteral (11t)
Antecedent (11t
c := Resolve(c, ante,
until onelitAtLevel (c, d)
b =

C 2=

X =

ante :=

assertingLevel (c)

return <b,c>

(F,A) =

)

X)

LastAssignedLiteralAtLevel (c,d)

cl: =-xT v x2 v—x4
c2 : X1V x2 Vv X3
c3: X3 v-x4

c4 : x4 v x5V x6
c5: x5 Vv X7

CB: 7x6 V X/ V-x8

EXxercise

e Consider F =c; Acy A3 A cy Where

C1 = (—034 NV o V $5)

Co = (—1334 V 10 V :136)
C3 — (—I£E5 V g V ﬂa;'7)
Cqp = (—I£C6 \V4 567)

What is the conflict clause?

(suppose x4, x5, x6, x/ are assigned in turn

at decision level 3)

Informal, Easier Method for Clause Learning
_IZEQ@S

= (—xq4 Va2 V X5)

— (—I.CU4 V 10 V 213'6)
C3 — (—15135 V g V —1137)
Cqp = (—ILIZ‘(; \ 337)

QO
N
.

® : clauses considered so far

° : reasons for the conflict O/ N
_lilfl()@g K

Informal, Easier Method for Clause Learning
_IZEQ@S

(—x4 V2 V 5)
(—ICU4 V 10 V 21’36)
(—1.5135 V g V —1137)
(—x6 V x7)

Informal, Easier Method for Clause Learning

_IZEQ@S
C
—x4 V 22 V T5) !

= (

— (—ICU4 V 10 V 21’36) 0375@5

— (—1.5135 V g V —1137) C3

— (—laj6 \V QE7> _|$7@5
C3 Cy

_lilfl()@g K

\V4 2175)

\ Lo

(_IQM V 10 V 21’365)67)
(_I$4 V g V —
—L5

N — Eﬂa:‘e; V x7)

Cqg —

C1
C2

Informal, Easier Method for Clause Learning

Iy V 22V 25) / Oneliteralat \ ¢
C1L = b V2 VLS) A level 5. Done! / Qs
C2 — (_'564 V Z10 V JJ@) — (2 L5
C3 — (—|Qj5 \/ L6 \/ _I[L'7) N Cl CS
= (—lai‘e; \ 337) 0554@5 (] _1337@5
C9 C3 Cy
e Quit when one literal at the current level
@ ZE6@5
in nodes Co Cy
Q/_lilfl()@g (DK

e Negate all literals and conjoin them:

XZ V _'.X4 V xlo

Variable Choice Heuristics in CDCL

® Various strategies by which the variables and the value given to them are
chosen

e Dynamic Largest Individual Sum (DLIS): At each decision level, choose the
unassigned literal that satisfies the largest number of currently unsatisfied

clauses.

e Variable State Independent Decaying Sum (VSIDS): Similar to DLIS, but tries to

reduce overhead and favor literals involved in conflicts

Overview of CDCL Algorithm

Formula —» Decide BCP
r—
No conflict
lSAT Conflict l I Backtrack if dl > 0
Return SAT

AnalyzeConflict

lUNSAT ifdl<0

Return UNSAT

Summary

o CDCL

e Non-chronological backtracking
e Conflict clause learning
e Implication graph

e Unique Implication Point

