CSE405 | : Program Verification

2025 Fall

Woosuk Lee

-

SAT solvers can be used in various applications

e Hardware and software verification

e Automated testing of circuits

e Package management

e Artificial intelligence (e.g., planning, scheduling)
e Cryptography

e Computational Biology

EXxercises

In this lecture, we will try to solve various satisfiability problems using a SAT

solver called Z3.

Z3 is a high-performance theorem prover developed by Microsoft Research.

We will use Z3Py, the Python interface for Z3, to write and solve logical

formulas.

Using Z3Py

e |Install Z3Py using pip: pip install z3-solver
o |mpOI‘t Z3Py IN)’OUI’ P)’thon SCI’iptZ from 73 j_mport *

® Define Boolean variables:

= Bool ("a")
Bool ("b")

O Q
|

e Create logical formulas using Z3Py:

fl = And(Not(a), Not (b))
f2 = Or(a, Db)
e Solve the satisfiability problem:
solve (Not (fl == £2))

e The solve function will return whether the formula is satisfiable or not, and if it is, it will provide an

interpretation that satisfies the formula.

Verifying Correctness of Optimizations

Optimization of if-then-else chains

original C code optimized C code
if(la && 'b) h(); if(a) £0;
else if(la) g(Q); else if(b) g();
else £(); else h();

Y i

if(la) { if(a) £0);

if(!'b) h(Q); = else {

else g(); if(!'b) h(Q);
} else £(); else gO); }

Verifying Correctness of Optimizations

e Represent procedures as Boolean variables

original := optimized :=
if —a A —b then h if a then f
else if —a then g else if b then g
else f else h

e Compile if-then-else chains into Boolean formula

compile(if x thenyelsez) = (zAy) V (mxAz)

e Check equivalence of Boolean formula

compile(original) < compile(optimized)

Verifying Correctness of Optimizations

ortginal = if —a A —b then h else if —a then g else h
= (maA-b)ANh V =(—-a A -b)A if —a then g else f
= (maA-b)ANh V =(maAN-b)AN(-aNg V aA f)
optimized = 1if a then f else if b then g else h

aNf V —aAif bthen g else h
aNf VvV —aNbANgV =bAh)

(maA=D)ANR V = (maA—-b)N(—aNg V aANf) < aAfV —aA(bAg V —bDAh)

EXxercise

e Suppose now the optimized version is

1f !a then h else 1f b then g else £

e s it still equivalent to the original one!?

Seat Assighment

e Consider three persons |,2,and 3 who need to be seated in a row. There are
three constraints:
o | does not want to sit next to 3
o0 | does not want to sit in the leftmost chair
o 2 does not want to sit to the right of 3
e We would like to check if there is a seat assignment for the three persons that

satisfies the above constraints.

From https://prl.korea.ac.kr/courses/aaas528/2025/slides/lec3.pdf

https://prl.korea.ac.kr/courses/aaa528/2025/slides/lec3.pdf

Encoding of Seat Assighment

o Let X be boolean variables such that
X;j < person I seats in chair j

e Constraints

3 3
Every person is seated: /\ \/le

O
i=1 j=1
3
. Every seat is occupied: /\ \/Xij
j=1 i=1
. One person per seat: /\ X, = /\ =X, 1)

i,je{1,2,3} kjeil,2,3}.k#j

Encoding of Seat Assighment

o0 Person | does not want to sit next to person 3:

(Xoo = XD A Xy = (7X A7 X)) A (Xgy = 7Xy))
o Person | does not want to sit in the leftmost chair: =X,

O Person 2 does not want to sit to the right of person 3:

(X = XD AKXy = X))

EXxercise

® Remove the constraint “‘Person | does not want to sit in the leftmost chair”

and get a seat assignment.

Graph Coloring

e A graph is k-colorable if there is an assignment of k colors to its vertices such
that no two adjacent vertices have the same color.

@ Deciding if such a coloring exists is a classic NP-complete problem with many
practical applications, such as register allocation in compilers.

e For example,a coloring with 3 colors of a graph:

Graph Coloring

e Afinite graph G =< V,E > where V= {v,,...,v, } is a set of vertices and
E={(v;;,w;),....(v.,,,w:.)} is a set of edges. Given a set of k colors in
C ={cy,...,C.}, the k-coloring problem for G is to assign a color ¢ € C to each

vertex v € V s.t.for every edge < v,w > € E, color(v) # color(w).

e Introduce Boolean variables x;; such that x;; <= v; is assigned color ¢;

e Conditions
o Every vertex is assigned at least one color.
o Every vertex is assighed not more than one color.

o0 Neighbors are not assighed the same color

Graph Coloring

from z3 1mport

Define the graph

4 graph = {

S IAO: '.IBI' 'C.],

6 IBI: -lAl' ICI' IDIJ’
7 ICI: '.lAl' IBI' IDIJ’
8

9

D' _.B., lcl]
}

11 nodes = list(graph.keys())
12 k =3 # number of colors

14 # Step 1: Create Boolean variables: color_vars|[node) [color]
15 color_vars = {

16 node: [Bool(f"{node} {c}") for c¢ in range(k)]
17 for node 1in nodes

18 }

19

20 solver = Solver()

Graph Coloring

21

22 # Step 2: Each node must have exactly one color
23 for node 1in nodes:

24
25
26
27
28
29
30
31

At least one color
solver.add(0Or(color_vars|[node]))

At most one color
for ¢1 in range(k):
for ¢2 in range(cl + 1, k):
solver.add(Not(And(color_vars([node] [c1l], color_vars[node] [c2])))

32 # Step 3: Adjacent nodes must not share the same color
33 for node in graph:

34
335
36
37
38

for neighbor in graph[node]:
1f node < neighbor: # avold duplicate constraints
for ¢ in range(k):
solver.add(Or(Not(color_vars(node] [c]), Not(color_vars[neighbor][c])))

Graph Coloring

39 # Step 4: Solve and display

40
41
42
43
44
45
46
47
48

if solver.check() == sat:
model = solver.model()
print("Coloring found:")
for node in nodes:
for ¢ in range(k):

if model.evaluate(color_vars|[node] [c]):
print(f" {node}: Color {c}")

else:

print("No valid coloring found.")

Coloring found:

A: Co.
B: Col
C: Col
D: Col

10X

Oor

L O

Oor

1

2
0
1

EXxercise

e Consider the graph on the right.

Get all possible 3-colorings of the graph.

Package Management

e |Install problem: determining whether a new set of packages can be installed in a
system

e Many packages depend on other packages to provide some functionality.

e Each distribution contains a meta-data file containing the name, version, etc.

e More importantly, it contains depends and conflicts clauses that stipulate

which other packages should be on the system.

Package Management

Package: apache
Architecture: 1386
Version: 1.3.34-2
Provides: httpd-cgi, httpd
Depends: libcb6 (>=2.3.5-1),
libdb4 .3 (>=4.3.28-1),

debconf (>=0.5) | debconf-2.0,

apache-common (>=1.3.34-2),
perl (>=5.8.4-2)

Conflicts: apache—-modules,
jserv (<=1.1-3)
libapache—-mod—-perl

Description: HTTP server.

Figure 1: Metadata for apache

X, < package a is installed

Distribution Rules Constraints
Package: a
Depends: b, (0xa V Tp)
c, (0xa V xc)
Z (_'CUa V xz)
a
{ Package: Db
Depends: d (0xp V x4)
b ! Z
Package: c
M Depends: d | e, | (mxcV xgqV xe)
deel| | £ g £ 1 g | (7% VoV ag)
\. Package: d
Conflicts: e (—xq V o)
Figure 3. Fragment of Distribution Meta-
Figure 2: Distribution Graph data and Corresponding Constraints

The formula will be the constraints in Figure 3 along with packages to be installed and already installed

Package Management

e Installation in the presence of conflicts: to install “a” while minimizing the

number of removed components, what can we do?

Il
v (Already
dieel| |£ o
v o

MaxSAT

e Given a formula F in CNEF find assighment maximizing the number of satisfied
clauses of F
o If Fis satisfiable, the solution is simply the number of clauses in F
o If Fis unsatisfiable, we want to find a maximum subset of F's clauses whose

conjunction is satisfiable

o For(aVv b)A-aA-b,asolutionis{ar— 1L .b— 1 }

Partial MaxSAT

e The goal is the same as MaxSAT except that we have
o0 Hard constraints: clauses that must be satisfied
o Soft constraints: clauses that do not have to be satisfied but we want to satisfy
as many as possible
e Goal: Given a formula in CNF marked as hard or soft, find an assignment that
satisfies all hard constraints and maximizes the number of satisfied soft

constraints

EXxercise

e Installation in the presence of conflicts: to install “a” while minimizing the
number of removed components, what can we do?

O => we can encode the problem as a partial MaxSAT problem and solve it.

Hard :

Soft:

EXxercise

e Installation in the presence of conflicts: to install “a” while minimizing the
number of removed components, what can we do?
O => we can encode the problem as a partial MaxSAT problem and solve it.

Hard: (maVb)A(maVc)A(maVZI)A(TYyV I A
("bVd)N(cvdVe)A(mecVIVE)A(dYV e)Aa

Soft: ZA g

Partial Weighted MaxSAT

e Soft clauses have weights indicating their importance.

e Goal: Find assignment maximizing the sum of weights of satisfied soft clauses

e Partial MaxSAT is an instance of partial weighted MaxSAT where all clauses have

equal weight.

EXxercise

e To install“a” minimizing the total size of removed components, assuming z and g

are SMB and 2MB each

Hard: (maVb)A(maVc)A(maVZI)A(TYyV I A
("bVd)N(cvdVe)A(mecVIVE)A(dYV e)Aa

Soft: z:S5ANg:2

