
CSE4051: Program Verification
Applications of SAT

2025 Fall

Woosuk Lee

 SAT solvers can be used in various applications

● Hardware and software verification

● Automated testing of circuits

● Package management

● Artificial intelligence (e.g., planning, scheduling)

● Cryptography

● Computational Biology

● …

Exercises
● In this lecture, we will try to solve various satisfiability problems using a SAT

solver called Z3.

● Z3 is a high-performance theorem prover developed by Microsoft Research.

● We will use Z3Py, the Python interface for Z3, to write and solve logical

formulas.

Using Z3Py
● Install Z3Py using pip:

● Import Z3Py in your Python script:

● Define Boolean variables:

● Create logical formulas using Z3Py:

● Solve the satisfiability problem:

● The `solve` function will return whether the formula is satisfiable or not, and if it is, it will provide an

interpretation that satisfies the formula.

pip install z3-solver

from z3 import *

a = Bool("a")

b = Bool("b")

f1 = And(Not(a), Not(b))

f2 = Or(a, b)

solve(Not(f1 == f2))

Verifying Correctness of OptimizationsSAT Example: Equivalence Checking if-then-else Chains

Optimization of if-then-else chains

original C code optimized C code

if(!a && !b) h(); if(a) f();
else if(!a) g(); else if(b) g();
else f(); else h();

+ *

if(!a) { if(a) f();
if(!b) h();) else {
else g(); if(!b) h();

} else f(); else g(); }

How to check that these two versions are equivalent?D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 4 / 24

Verifying Correctness of Optimizations
● Represent procedures as Boolean variables

● Compile if-then-else chains into Boolean formula

● Check equivalence of Boolean formula

SAT Example II

1 Represent procedures as independent Boolean variables

original := optimized :=

if ¬a ^ ¬b then h if a then f
else if ¬a then g else if b then g
else f else h

2 Compile if-then-else chains into Boolean formulae

compile(if x then y else z) ⌘ (x ^ y) _ (¬x ^ z)

3 Check equivalence of Boolean formulae

compile(original) , compile(optimized)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 5 / 24

SAT Example II

1 Represent procedures as independent Boolean variables

original := optimized :=

if ¬a ^ ¬b then h if a then f
else if ¬a then g else if b then g
else f else h

2 Compile if-then-else chains into Boolean formulae

compile(if x then y else z) ⌘ (x ^ y) _ (¬x ^ z)

3 Check equivalence of Boolean formulae

compile(original) , compile(optimized)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 5 / 24

SAT Example II

1 Represent procedures as independent Boolean variables

original := optimized :=

if ¬a ^ ¬b then h if a then f
else if ¬a then g else if b then g
else f else h

2 Compile if-then-else chains into Boolean formulae

compile(if x then y else z) ⌘ (x ^ y) _ (¬x ^ z)

3 Check equivalence of Boolean formulae

compile(original) , compile(optimized)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 5 / 24

Verifying Correctness of Optimizations

”Compilation”

original ⌘ if ¬a ^ ¬b then h else if ¬a then g else h

⌘ (¬a ^ ¬b) ^ h _ ¬(¬a ^ ¬b)^ if ¬a then g else f

⌘ (¬a ^ ¬b) ^ h _ ¬(¬a ^ ¬b) ^ (¬a ^ g _ a ^ f)

optimized ⌘ if a then f else if b then g else h

⌘ a ^ f _ ¬a^ if b then g else h

⌘ a ^ f _ ¬a ^ (b ^ g _ ¬b ^ h)

(¬a^¬b)^h _ ¬(¬a^¬b)^(¬a^g _ a^f) , a^f _ ¬a^(b^g _ ¬b^h)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 6 / 24

Exercise
● Suppose now the optimized version is  

 

 if !a then h else if b then g else f

● Is it still equivalent to the original one?

Or (And(Not(a), h), And(a, Or(And(b, g), And(Not(b), f))))

Seat Assignment
● Consider three persons 1, 2, and 3 who need to be seated in a row. There are

three constraints:

○ 1 does not want to sit next to 3

○ 1 does not want to sit in the leftmost chair

○ 2 does not want to sit to the right of 3

● We would like to check if there is a seat assignment for the three persons that

satisfies the above constraints.

From https://prl.korea.ac.kr/courses/aaa528/2025/slides/lec3.pdf

https://prl.korea.ac.kr/courses/aaa528/2025/slides/lec3.pdf

Encoding of Seat Assignment
● Let ￼ be boolean variables such that  

 ￼ person ￼ seats in chair ￼

● Constraints

○ Every person is seated: ￼

○ Every seat is occupied: ￼

○ One person per seat: ￼

Xij

Xij ⟺ i j

3

⋀
i=1

3

⋁
j=1

Xij

3

⋀
j=1

3

⋁
i=1

Xij

⋀
i,j∈{1,2,3}

(Xi,j ⟹ ⋀
k,j∈{1,2,3},k≠j

¬Xi,k)

Encoding of Seat Assignment
○ Person 1 does not want to sit next to person 3: 

￼

○ Person 1 does not want to sit in the leftmost chair: ￼

○ Person 2 does not want to sit to the right of person 3:  

￼

(X00 ⟹ ¬X21) ∧ (X01 ⟹ (¬X20 ∧ ¬X22)) ∧ (X02 ⟹ ¬X21)

¬X00

(X20 ⟹ ¬X11) ∧ (X21 ⟹ ¬X12)

Exercise
● Remove the constraint “Person 1 does not want to sit in the leftmost chair”

and get a seat assignment.

Or (And(Not(a), h), And(a, Or(And(b, g), And(Not(b), f))))

Graph Coloring
● A graph is k-colorable if there is an assignment of k colors to its vertices such

that no two adjacent vertices have the same color.

● Deciding if such a coloring exists is a classic NP-complete problem with many

practical applications, such as register allocation in compilers.

● For example, a coloring with 3 colors of a graph:

Graph Coloring
● A finite graph ￼ where ￼ is a set of vertices and

￼ is a set of edges. Given a set of k colors in

￼ , the k-coloring problem for G is to assign a color ￼ to each

vertex ￼ s.t. for every edge ￼ .

● Introduce Boolean variables ￼ such that ￼ is assigned color ￼

● Conditions

○ Every vertex is assigned at least one color.

○ Every vertex is assigned not more than one color.

○ Neighbors are not assigned the same color

G = < V, E > V = {v1, …, vn}

E = {(vi1, wi1), …, (vim, wim)}

C = {c1, …, ck} c ∈ C

v ∈ V < v, w > ∈ E, color(v) ≠ color(w)

xij xij ⟺ vi cj

Graph Coloring
A

B C

D

Graph Coloring

Graph Coloring

Coloring found:

 A: Color 1

 B: Color 2

 C: Color 0

 D: Color 1

A

B C

D

Exercise
● Consider the graph on the right.  

 

 

 

Get all possible 3-colorings of the graph.

A

B

C D

 for node in nodes:

 for c in range(k):

 lit = color_vars[node][c]

 if m.evaluate(lit):

 block.append(Not(lit))

 else:

 block.append(lit)

Package Management
● Install problem: determining whether a new set of packages can be installed in a

system

● Many packages depend on other packages to provide some functionality.

● Each distribution contains a meta-data file containing the name, version, etc.

● More importantly, it contains depends and conflicts clauses that stipulate

which other packages should be on the system.

Package Management

Package: apache
Architecture: i386
Version: 1.3.34-2
Provides: httpd-cgi, httpd
Depends: libc6(>=2.3.5-1),
libdb4.3(>=4.3.28-1),
debconf(>=0.5) | debconf-2.0,
apache-common(>=1.3.34-2),
perl(>=5.8.4-2)

Conflicts: apache-modules,
jserv(<=1.1-3)
libapache-mod-perl

Description: HTTP server.

Figure 1: Metadata for apache Figure 2: Distribution Graph

Distribution Rules Constraints
Package: a
Depends: b, (¬xa _ xb)

c, (¬xa _ xc)
z (¬xa _ xz)

Package: b
Depends: d (¬xb _ xd)

Package: c
Depends: d | e, (¬xc _ xd _ xe)

f | g (¬xc _ xf _ xg)

Package: d
Conflicts: e (¬xd _ ¬xe)

Figure 3: Fragment of Distribution Meta-
data and Corresponding Constraints

preter. Thus, each distribution contains a metadata file that
describes the requirements of each package of the distribu-
tion. For example, metadata for the apache package in the
Debian distribution sid is shown in Figure 1.

The metadata contains details like the name, version,
size, a description of the functionality provided by the pack-
age, etc. More importantly, it contains depends and conflicts
clauses that stipulate which other packages should be on the
system. The depends clauses stipulate which other pack-
ages must be present. Thus, in order to install apache,
several other packages including perl, libc6, libdb
and apache-common must be installed. Sometimes, a
package requires any of a set of packages to be installed,
possibly because each package in the set provides the re-
quired functionality. For example, the third depends clause
is a disjunction that stipulates that either debconf (with
a version greater than 0.5) or debconf-2.0 must be
present. The conflicts clauses stipulate which other pack-
ages must not be present. Thus, the apache package
should only be installed on a system that does not also
have the apache-modules package, any instance of the
jserv package with version less then 1.1.3 and so on.
Thus, to install apache, the package manager must find
out which other packages must be installed such that ulti-
mately the system contains a set of packages that meet all
the requirements specified in the distribution metadata file.

We now illustrate our approach using a small distribution
with the 9 packages a, b, c, d, e, f, g, y, and z. A distilled
version of the metadata rules for this distribution is shown
on the left in Figure 3. In order for the package a to be
installed on the system, packages b, c and z must also be
installed, while for package c to be installed, one of d, e
must be installed and one of f, g must be installed. The
conflicts clause for d says that e must not be present on the
same system as d.

Figure 2 shows a graph representation of the depends and
conflicts clauses. Each package is shown in a square ver-

tex, and there are directed edges to the other packages that
must also be present. Whenever there is a disjunction in
the depends, we represent it with a circle vertex which has
directed edges to each package in the disjunction. Finally,
there is a dotted edge between pairs of conflicting packages.
Installation Profiles. We call the set of packages installed
on a machine the installation profile of that machine. A
valid installation profile is one which meets all the depends
and conflicts clauses of all the packages. Thus, the pro-
files {}, {y, z} and {a, b, c, d, f, z} are all valid installa-
tion profiles, as each package’s depends and conflict clauses
are satisfied. On the other hand, {a, b, c, d, z} is not a
valid profile, as c requires one of f or g to be present,
but both are absent from the profile. Similarly, the profile
{a, b, c, d, e, f, z} is not a valid profile as it contains both d

and the conflicting package e.

2.1 The Install Problem

Consider a user with the installation profile {z} who wishes
to install the package a. The install problem is to determine
whether there is some set of new packages including a that
can be added to the machine, such that the resulting set of
packages is a valid installation profile.

A tool like apt-get proceeds by traversing the depen-
dency graph and building up the set of other packages that
must be installed before a. To be efficient it restricts the
number of backtracks performed due to conflicts and thus
loses completeness, in the sense that apt-get may incor-
rectly report that there is no suitable set of new packages
even though one exists.
Encoding Distributions as Constraints. Our approach to
the problem is to encode it as a system of propositional con-
straints over variables representing the packages of the dis-
tribution. We create propositional variables for each pack-
age of the distribution and then create propositional con-
straints over the variables for each rule in the distribution.

3

conflict

The formula will be the constraints in Figure 3 along with packages to be installed and already installed

￼ ￼ package ￼ is installedxa ⟺ a

Package Management
● Installation in the presence of conflicts: to install “a” while minimizing the

number of removed components, what can we do?
Package: apache
Architecture: i386
Version: 1.3.34-2
Provides: httpd-cgi, httpd
Depends: libc6(>=2.3.5-1),
libdb4.3(>=4.3.28-1),
debconf(>=0.5) | debconf-2.0,
apache-common(>=1.3.34-2),
perl(>=5.8.4-2)

Conflicts: apache-modules,
jserv(<=1.1-3)
libapache-mod-perl

Description: HTTP server.

Figure 1: Metadata for apache Figure 2: Distribution Graph

Distribution Rules Constraints
Package: a
Depends: b, (¬xa _ xb)

c, (¬xa _ xc)
z (¬xa _ xz)

Package: b
Depends: d (¬xb _ xd)

Package: c
Depends: d | e, (¬xc _ xd _ xe)

f | g (¬xc _ xf _ xg)

Package: d
Conflicts: e (¬xd _ ¬xe)

Figure 3: Fragment of Distribution Meta-
data and Corresponding Constraints

preter. Thus, each distribution contains a metadata file that
describes the requirements of each package of the distribu-
tion. For example, metadata for the apache package in the
Debian distribution sid is shown in Figure 1.

The metadata contains details like the name, version,
size, a description of the functionality provided by the pack-
age, etc. More importantly, it contains depends and conflicts
clauses that stipulate which other packages should be on the
system. The depends clauses stipulate which other pack-
ages must be present. Thus, in order to install apache,
several other packages including perl, libc6, libdb
and apache-common must be installed. Sometimes, a
package requires any of a set of packages to be installed,
possibly because each package in the set provides the re-
quired functionality. For example, the third depends clause
is a disjunction that stipulates that either debconf (with
a version greater than 0.5) or debconf-2.0 must be
present. The conflicts clauses stipulate which other pack-
ages must not be present. Thus, the apache package
should only be installed on a system that does not also
have the apache-modules package, any instance of the
jserv package with version less then 1.1.3 and so on.
Thus, to install apache, the package manager must find
out which other packages must be installed such that ulti-
mately the system contains a set of packages that meet all
the requirements specified in the distribution metadata file.

We now illustrate our approach using a small distribution
with the 9 packages a, b, c, d, e, f, g, y, and z. A distilled
version of the metadata rules for this distribution is shown
on the left in Figure 3. In order for the package a to be
installed on the system, packages b, c and z must also be
installed, while for package c to be installed, one of d, e
must be installed and one of f, g must be installed. The
conflicts clause for d says that e must not be present on the
same system as d.

Figure 2 shows a graph representation of the depends and
conflicts clauses. Each package is shown in a square ver-

tex, and there are directed edges to the other packages that
must also be present. Whenever there is a disjunction in
the depends, we represent it with a circle vertex which has
directed edges to each package in the disjunction. Finally,
there is a dotted edge between pairs of conflicting packages.
Installation Profiles. We call the set of packages installed
on a machine the installation profile of that machine. A
valid installation profile is one which meets all the depends
and conflicts clauses of all the packages. Thus, the pro-
files {}, {y, z} and {a, b, c, d, f, z} are all valid installa-
tion profiles, as each package’s depends and conflict clauses
are satisfied. On the other hand, {a, b, c, d, z} is not a
valid profile, as c requires one of f or g to be present,
but both are absent from the profile. Similarly, the profile
{a, b, c, d, e, f, z} is not a valid profile as it contains both d

and the conflicting package e.

2.1 The Install Problem

Consider a user with the installation profile {z} who wishes
to install the package a. The install problem is to determine
whether there is some set of new packages including a that
can be added to the machine, such that the resulting set of
packages is a valid installation profile.

A tool like apt-get proceeds by traversing the depen-
dency graph and building up the set of other packages that
must be installed before a. To be efficient it restricts the
number of backtracks performed due to conflicts and thus
loses completeness, in the sense that apt-get may incor-
rectly report that there is no suitable set of new packages
even though one exists.
Encoding Distributions as Constraints. Our approach to
the problem is to encode it as a system of propositional con-
straints over variables representing the packages of the dis-
tribution. We create propositional variables for each pack-
age of the distribution and then create propositional con-
straints over the variables for each rule in the distribution.

3

Want

AlreadyAlready

MaxSAT
● Given a formula F in CNF, find assignment maximizing the number of satisfied

clauses of F

○ If F is satisfiable, the solution is simply the number of clauses in F

○ If F is unsatisfiable, we want to find a maximum subset of F’s clauses whose

conjunction is satisfiable

○ For ￼ , a solution is ￼(a ∨ b) ∧ ¬a ∧ ¬b {a ↦ ⊥ , b ↦ ⊥ }

Partial MaxSAT
● The goal is the same as MaxSAT except that we have

○ Hard constraints: clauses that must be satisfied

○ Soft constraints: clauses that do not have to be satisfied but we want to satisfy

as many as possible

● Goal: Given a formula in CNF marked as hard or soft, find an assignment that

satisfies all hard constraints and maximizes the number of satisfied soft

constraints

Exercise
● Installation in the presence of conflicts: to install “a” while minimizing the

number of removed components, what can we do?

○ => we can encode the problem as a partial MaxSAT problem and solve it.
Package: apache
Architecture: i386
Version: 1.3.34-2
Provides: httpd-cgi, httpd
Depends: libc6(>=2.3.5-1),
libdb4.3(>=4.3.28-1),
debconf(>=0.5) | debconf-2.0,
apache-common(>=1.3.34-2),
perl(>=5.8.4-2)

Conflicts: apache-modules,
jserv(<=1.1-3)
libapache-mod-perl

Description: HTTP server.

Figure 1: Metadata for apache Figure 2: Distribution Graph

Distribution Rules Constraints
Package: a
Depends: b, (¬xa _ xb)

c, (¬xa _ xc)
z (¬xa _ xz)

Package: b
Depends: d (¬xb _ xd)

Package: c
Depends: d | e, (¬xc _ xd _ xe)

f | g (¬xc _ xf _ xg)

Package: d
Conflicts: e (¬xd _ ¬xe)

Figure 3: Fragment of Distribution Meta-
data and Corresponding Constraints

preter. Thus, each distribution contains a metadata file that
describes the requirements of each package of the distribu-
tion. For example, metadata for the apache package in the
Debian distribution sid is shown in Figure 1.

The metadata contains details like the name, version,
size, a description of the functionality provided by the pack-
age, etc. More importantly, it contains depends and conflicts
clauses that stipulate which other packages should be on the
system. The depends clauses stipulate which other pack-
ages must be present. Thus, in order to install apache,
several other packages including perl, libc6, libdb
and apache-common must be installed. Sometimes, a
package requires any of a set of packages to be installed,
possibly because each package in the set provides the re-
quired functionality. For example, the third depends clause
is a disjunction that stipulates that either debconf (with
a version greater than 0.5) or debconf-2.0 must be
present. The conflicts clauses stipulate which other pack-
ages must not be present. Thus, the apache package
should only be installed on a system that does not also
have the apache-modules package, any instance of the
jserv package with version less then 1.1.3 and so on.
Thus, to install apache, the package manager must find
out which other packages must be installed such that ulti-
mately the system contains a set of packages that meet all
the requirements specified in the distribution metadata file.

We now illustrate our approach using a small distribution
with the 9 packages a, b, c, d, e, f, g, y, and z. A distilled
version of the metadata rules for this distribution is shown
on the left in Figure 3. In order for the package a to be
installed on the system, packages b, c and z must also be
installed, while for package c to be installed, one of d, e
must be installed and one of f, g must be installed. The
conflicts clause for d says that e must not be present on the
same system as d.

Figure 2 shows a graph representation of the depends and
conflicts clauses. Each package is shown in a square ver-

tex, and there are directed edges to the other packages that
must also be present. Whenever there is a disjunction in
the depends, we represent it with a circle vertex which has
directed edges to each package in the disjunction. Finally,
there is a dotted edge between pairs of conflicting packages.
Installation Profiles. We call the set of packages installed
on a machine the installation profile of that machine. A
valid installation profile is one which meets all the depends
and conflicts clauses of all the packages. Thus, the pro-
files {}, {y, z} and {a, b, c, d, f, z} are all valid installa-
tion profiles, as each package’s depends and conflict clauses
are satisfied. On the other hand, {a, b, c, d, z} is not a
valid profile, as c requires one of f or g to be present,
but both are absent from the profile. Similarly, the profile
{a, b, c, d, e, f, z} is not a valid profile as it contains both d

and the conflicting package e.

2.1 The Install Problem

Consider a user with the installation profile {z} who wishes
to install the package a. The install problem is to determine
whether there is some set of new packages including a that
can be added to the machine, such that the resulting set of
packages is a valid installation profile.

A tool like apt-get proceeds by traversing the depen-
dency graph and building up the set of other packages that
must be installed before a. To be efficient it restricts the
number of backtracks performed due to conflicts and thus
loses completeness, in the sense that apt-get may incor-
rectly report that there is no suitable set of new packages
even though one exists.
Encoding Distributions as Constraints. Our approach to
the problem is to encode it as a system of propositional con-
straints over variables representing the packages of the dis-
tribution. We create propositional variables for each pack-
age of the distribution and then create propositional con-
straints over the variables for each rule in the distribution.

3

Want

AlreadyAlready

Hard :

Soft:

Exercise
● Installation in the presence of conflicts: to install “a” while minimizing the

number of removed components, what can we do?

○ => we can encode the problem as a partial MaxSAT problem and solve it.
Package: apache
Architecture: i386
Version: 1.3.34-2
Provides: httpd-cgi, httpd
Depends: libc6(>=2.3.5-1),
libdb4.3(>=4.3.28-1),
debconf(>=0.5) | debconf-2.0,
apache-common(>=1.3.34-2),
perl(>=5.8.4-2)

Conflicts: apache-modules,
jserv(<=1.1-3)
libapache-mod-perl

Description: HTTP server.

Figure 1: Metadata for apache Figure 2: Distribution Graph

Distribution Rules Constraints
Package: a
Depends: b, (¬xa _ xb)

c, (¬xa _ xc)
z (¬xa _ xz)

Package: b
Depends: d (¬xb _ xd)

Package: c
Depends: d | e, (¬xc _ xd _ xe)

f | g (¬xc _ xf _ xg)

Package: d
Conflicts: e (¬xd _ ¬xe)

Figure 3: Fragment of Distribution Meta-
data and Corresponding Constraints

preter. Thus, each distribution contains a metadata file that
describes the requirements of each package of the distribu-
tion. For example, metadata for the apache package in the
Debian distribution sid is shown in Figure 1.

The metadata contains details like the name, version,
size, a description of the functionality provided by the pack-
age, etc. More importantly, it contains depends and conflicts
clauses that stipulate which other packages should be on the
system. The depends clauses stipulate which other pack-
ages must be present. Thus, in order to install apache,
several other packages including perl, libc6, libdb
and apache-common must be installed. Sometimes, a
package requires any of a set of packages to be installed,
possibly because each package in the set provides the re-
quired functionality. For example, the third depends clause
is a disjunction that stipulates that either debconf (with
a version greater than 0.5) or debconf-2.0 must be
present. The conflicts clauses stipulate which other pack-
ages must not be present. Thus, the apache package
should only be installed on a system that does not also
have the apache-modules package, any instance of the
jserv package with version less then 1.1.3 and so on.
Thus, to install apache, the package manager must find
out which other packages must be installed such that ulti-
mately the system contains a set of packages that meet all
the requirements specified in the distribution metadata file.

We now illustrate our approach using a small distribution
with the 9 packages a, b, c, d, e, f, g, y, and z. A distilled
version of the metadata rules for this distribution is shown
on the left in Figure 3. In order for the package a to be
installed on the system, packages b, c and z must also be
installed, while for package c to be installed, one of d, e
must be installed and one of f, g must be installed. The
conflicts clause for d says that e must not be present on the
same system as d.

Figure 2 shows a graph representation of the depends and
conflicts clauses. Each package is shown in a square ver-

tex, and there are directed edges to the other packages that
must also be present. Whenever there is a disjunction in
the depends, we represent it with a circle vertex which has
directed edges to each package in the disjunction. Finally,
there is a dotted edge between pairs of conflicting packages.
Installation Profiles. We call the set of packages installed
on a machine the installation profile of that machine. A
valid installation profile is one which meets all the depends
and conflicts clauses of all the packages. Thus, the pro-
files {}, {y, z} and {a, b, c, d, f, z} are all valid installa-
tion profiles, as each package’s depends and conflict clauses
are satisfied. On the other hand, {a, b, c, d, z} is not a
valid profile, as c requires one of f or g to be present,
but both are absent from the profile. Similarly, the profile
{a, b, c, d, e, f, z} is not a valid profile as it contains both d

and the conflicting package e.

2.1 The Install Problem

Consider a user with the installation profile {z} who wishes
to install the package a. The install problem is to determine
whether there is some set of new packages including a that
can be added to the machine, such that the resulting set of
packages is a valid installation profile.

A tool like apt-get proceeds by traversing the depen-
dency graph and building up the set of other packages that
must be installed before a. To be efficient it restricts the
number of backtracks performed due to conflicts and thus
loses completeness, in the sense that apt-get may incor-
rectly report that there is no suitable set of new packages
even though one exists.
Encoding Distributions as Constraints. Our approach to
the problem is to encode it as a system of propositional con-
straints over variables representing the packages of the dis-
tribution. We create propositional variables for each pack-
age of the distribution and then create propositional con-
straints over the variables for each rule in the distribution.

3

Want

AlreadyAlready

Hard : ￼

 ￼

(¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬a ∨ z) ∧ (¬y ∨ z) ∧
(¬b ∨ d) ∧ (¬c ∨ d ∨ e) ∧ (¬c ∨ f ∨ g) ∧ (¬d ∨ ¬e) ∧ a

Soft: ￼z ∧ g

Partial Weighted MaxSAT
● Soft clauses have weights indicating their importance.

● Goal: Find assignment maximizing the sum of weights of satisfied soft clauses

● Partial MaxSAT is an instance of partial weighted MaxSAT where all clauses have

equal weight.

Exercise
● To install “a” minimizing the total size of removed components, assuming z and g

are 5MB and 2MB each

Package: apache
Architecture: i386
Version: 1.3.34-2
Provides: httpd-cgi, httpd
Depends: libc6(>=2.3.5-1),
libdb4.3(>=4.3.28-1),
debconf(>=0.5) | debconf-2.0,
apache-common(>=1.3.34-2),
perl(>=5.8.4-2)

Conflicts: apache-modules,
jserv(<=1.1-3)
libapache-mod-perl

Description: HTTP server.

Figure 1: Metadata for apache Figure 2: Distribution Graph

Distribution Rules Constraints
Package: a
Depends: b, (¬xa _ xb)

c, (¬xa _ xc)
z (¬xa _ xz)

Package: b
Depends: d (¬xb _ xd)

Package: c
Depends: d | e, (¬xc _ xd _ xe)

f | g (¬xc _ xf _ xg)

Package: d
Conflicts: e (¬xd _ ¬xe)

Figure 3: Fragment of Distribution Meta-
data and Corresponding Constraints

preter. Thus, each distribution contains a metadata file that
describes the requirements of each package of the distribu-
tion. For example, metadata for the apache package in the
Debian distribution sid is shown in Figure 1.

The metadata contains details like the name, version,
size, a description of the functionality provided by the pack-
age, etc. More importantly, it contains depends and conflicts
clauses that stipulate which other packages should be on the
system. The depends clauses stipulate which other pack-
ages must be present. Thus, in order to install apache,
several other packages including perl, libc6, libdb
and apache-common must be installed. Sometimes, a
package requires any of a set of packages to be installed,
possibly because each package in the set provides the re-
quired functionality. For example, the third depends clause
is a disjunction that stipulates that either debconf (with
a version greater than 0.5) or debconf-2.0 must be
present. The conflicts clauses stipulate which other pack-
ages must not be present. Thus, the apache package
should only be installed on a system that does not also
have the apache-modules package, any instance of the
jserv package with version less then 1.1.3 and so on.
Thus, to install apache, the package manager must find
out which other packages must be installed such that ulti-
mately the system contains a set of packages that meet all
the requirements specified in the distribution metadata file.

We now illustrate our approach using a small distribution
with the 9 packages a, b, c, d, e, f, g, y, and z. A distilled
version of the metadata rules for this distribution is shown
on the left in Figure 3. In order for the package a to be
installed on the system, packages b, c and z must also be
installed, while for package c to be installed, one of d, e
must be installed and one of f, g must be installed. The
conflicts clause for d says that e must not be present on the
same system as d.

Figure 2 shows a graph representation of the depends and
conflicts clauses. Each package is shown in a square ver-

tex, and there are directed edges to the other packages that
must also be present. Whenever there is a disjunction in
the depends, we represent it with a circle vertex which has
directed edges to each package in the disjunction. Finally,
there is a dotted edge between pairs of conflicting packages.
Installation Profiles. We call the set of packages installed
on a machine the installation profile of that machine. A
valid installation profile is one which meets all the depends
and conflicts clauses of all the packages. Thus, the pro-
files {}, {y, z} and {a, b, c, d, f, z} are all valid installa-
tion profiles, as each package’s depends and conflict clauses
are satisfied. On the other hand, {a, b, c, d, z} is not a
valid profile, as c requires one of f or g to be present,
but both are absent from the profile. Similarly, the profile
{a, b, c, d, e, f, z} is not a valid profile as it contains both d

and the conflicting package e.

2.1 The Install Problem

Consider a user with the installation profile {z} who wishes
to install the package a. The install problem is to determine
whether there is some set of new packages including a that
can be added to the machine, such that the resulting set of
packages is a valid installation profile.

A tool like apt-get proceeds by traversing the depen-
dency graph and building up the set of other packages that
must be installed before a. To be efficient it restricts the
number of backtracks performed due to conflicts and thus
loses completeness, in the sense that apt-get may incor-
rectly report that there is no suitable set of new packages
even though one exists.
Encoding Distributions as Constraints. Our approach to
the problem is to encode it as a system of propositional con-
straints over variables representing the packages of the dis-
tribution. We create propositional variables for each pack-
age of the distribution and then create propositional con-
straints over the variables for each rule in the distribution.

3

Want

AlreadyAlready

Hard : ￼

 ￼

(¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬a ∨ z) ∧ (¬y ∨ z) ∧
(¬b ∨ d) ∧ (¬c ∨ d ∨ e) ∧ (¬c ∨ f ∨ g) ∧ (¬d ∨ ¬e) ∧ a

Soft: ￼z : 5 ∧ g : 2

